Chopping stuff up...
To decide things fast!
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Structural Graph theory & Category Theory L ots of deep
Complexity theory R h h
(Graph minors, Tree- et / @ grap L eOry
Decompositions, < IS about
algorithms ...) -

much more

than graphs!



Why am | talking to you?

1. To get you excited about decompositions & algorithms
2. To get friendly feedback

3. I’'m looking for collaborators!
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Max bag size is 3.

3 perspectives on graph
decompositions:

1. Completions @ @
2. Decompositions

A tree decomposition (7', (V,),c7) of G of width 2.

3. Width measures
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Df/ Thm [Dirac]:

The class of chordal graphs is defined recursively
as follows:

1. Gompletions 1. Every complete graph K, is chordal

2. If H, and H, are chordal, then the pushout of
any span H; < K. < H, is a chordal graph.
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1. Completions

A chordal graph with eight vertices, =
represented as the intersection graph
of eight subtrees of a six-node tree.
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1. Completions
2. Decompositions

3. Width

A tree decomposition (7', (V;),c7) of G of width 2.
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Structured decompositions

For any graph class (&, there is a category
D.C & Diag C
of C-valued structured decompositions with shapes in &.

Objects: d: JG - C withGeg
Morphisms: (F, 1) : (d: JG — C) — (d’: JG’ — C)

where F: J'G—> JG’ and 7n:d=>d oF



Structured decompositions (of graphs)
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Structured decompositions (of graphs)
d: JT — QGr
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Aim: use decompositions to define a measure of structural complexity

Recall “completions VS decompositions”
monos into chordal graphs “recipes for constructing a graph”
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ldea: pick out some “atomic building blocks” from C

Q: K-—->C

Construct “maximally dense” compositional structures

DK 2 DC D C
Def: a (&, (2)-completion of some ¢ € C is a mono

¢ & (colim o DQ)d.

Say that ¢ € C has (&, 2)-width at most K if it admits a (&, £2)-completion
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Defining Width Measures

Aim: use decompositions to define a measure of structural complexity

Recall “completions J VS decompositions”

Lemma 5.10. Let C be an adhesive category, J be a non-empty category with
finitely-many objects and whose arrows are monic, D . J — C be a diagram in
C which preserves monomorphisms, A be a colimit conone over D and 6 . X —
colim D be an arrow. Then X is the colimit of the diagram Dy . J — C obtained
by pullback of A along 6 as in the following diagram.

X =colim D, —5> colim D

. b

[Bumpus, Kocsis, Master]



Defining Width Measures

Summary:
* Pick out “atomic” objects to be viewed as “complex”
* This, together with completions —> define structural complexity

 From any completion we can recover a genuine decomposition
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Compositional algorithms: deciding sheaves on
presheaves
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Structured decomps. yield Grothendieck topologies on adhesive categories

w/ sufficiently many colimits...

Theorem 3.5. If C is a small adhesively cocomplete category, then the functor
Dcmp (defined below) is a subfunctor of subMon.

Dcmp : C? - Set
Dcmp: ¢ {d | colimd =cand d € DC}
Dcmp: (f: a—>b)— (f*: (d € subMonb) — (d; EsubMona)).

Furthermore, for any such C, we have that (C,Dcmp) and (C
are sites.

Dcmp |-

mono )

mono?

[Althaus, Bumpus, Fairbanks, Rosiak]
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Structured decomps. yield Grothendieck topologies on adhesive categories

w/ sufficiently many colimits...

... We can speak of sheaves with respect to the decomposition topology



Algorithms

F ——> FinSet’ dec? —> 29P
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Algorithms

C % FinSet® de—cop) 2°P

Lan D I FinSet?” comm. (by Thm. 4. 1) A (4)

> DFinSet?” 7) DFinSet” —— D2%

Ddec??
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Recap

Structured decompositions represent d 16 = C
compositional data. '

& yield Grothendieck topologies

y s @ op
Shaves represent compositional C Z FinSet? %, 9op
problems

We obtain a fast dynamic
programming algorithm for

problems encoded as sheaves [ “
w.r.t. decomposition topology ) > DFinSe” — 5 DFinSet” 3 D2

F . dec? P al oy e
C — FinSet?” ——M > 2% f@s«» WAL R ) *wﬁ




What next?

1. Structured decomps d: [G — (', but with G another kind of C-set?

. Obstructions to categorial decompositions (tangles, brambles, etc.)

. Applications of decompositions to other areas of math / CS?

2
3
4. How does this relate to your work?
5

. Get in touch to get involved!
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