Chopping stuff up... To decide things fast!

Benjamin Merlin Bumpus - University of Florida 2

Based on:

1. arXiv-2302.05575
(w/ Ernst Althaus, James Fairbanks \& Daniel Rosiak)
2. arXiv-2207.06091v2 (w/ Jade Master \& Zoltan Kocsis)
3. blog posts at bmbumpus.com

This talk

Compositionality

Structural
Representational
Algorithmic

This talk

Compositionality

Structural
Representational
Algorithmic

This talk

Compositionality

Structural

Representational

Sheaves

This talk

Compositionality

Structural

Representational

Sheaves

Algorithmic

Dynamic Programming

MR TR Use category theory to amalgamate these 3 perspectives

MR TR Use category theory to amalgamate these 3 perspectives

This talk

Use category theory to amalgamate these 3 perspectives

Dynamic Programming

Sheaves

This talk
 Use category theory to amalgamate these 3 perspectives

Obtain Algorithmic meta-theorem:
Deciding Sheaves in linear time
on "nicely" decomposable classes of inputs

Why am I giving this talk?

Why am I giving this talk?

Structural Graph theory \&
Complexity theory
(Graph minors, Tree-
Decompositions, algorithms ...)

Why am I giving this talk?

Structural Graph theory \&
Complexity theory
(Graph minors, Tree-
Decompositions, algorithms ...)

Why am I giving this talk?

Structural Graph theory \& Complexity theory
(Graph minors, TreeDecompositions, algorithms ...)

Category Theory

Why am I giving this talk?

Structural Graph theory \& Complexity theory
(Graph minors, TreeDecompositions, algorithms ...)

Category Theory

Lots of deep graph theory is about much more than graphs!

Why am I talking to you?

1. To get you excited about decompositions \& algorithms
2. To get friendly feedback
3. I'm looking for collaborators!

The Nitty-Gritty PT1: Background

The Nitty-Gritty PT1: Background

Structural Graph theory \& Complexity theory
(Graph minors, TreeDecompositions, algorithms ...)

The Nitty-Gritty PT1: Background

3 perspectives on graph decompositions:

1. Completions
2. Decompositions
3. Width measures

The Nitty-Gritty PT1: Background

Df/ Thm [Dirac]:

The class of chordal graphs is defined recursively as follows:

1. Every complete graph K_{n} is chordal
2. If H_{1} and H_{2} are chordal, then the pushout of any span $H_{1} \hookleftarrow K_{n} \hookrightarrow H_{2}$ is a chordal graph.

The Nitty-Gritty PT1: Background

The Nitty-Gritty PT1: Background

1. Completions
2. Decompositions

The Nitty-Gritty PT1: Background

1. Completions
2. Decompositions
3. Width

The Nitty-Gritty PT2: compositional data.

 Structured decompositions
Structured decompositions

Structured decompositions

Structured decompositions

For any category C, a C-valued structured decomposition of shape G is a diagram

$$
d: \int G \rightarrow C
$$

where G is a graph

$$
\begin{aligned}
G: \text { GrSch } \rightarrow \text { FinSet } \\
\text { GrSch }:=s, t: E \rightarrow V
\end{aligned}
$$

Structured decompositions

For any category C, a C-valued structured decomposition of shape G is a diagram

$$
d: \int G \rightarrow C
$$

where G is a graph

$$
\begin{aligned}
G: \text { GrSch } \rightarrow \text { FinSet } \\
\text { GrSch }:=s, t: E \rightarrow V
\end{aligned}
$$

Structured decompositions

Structured decompositions

For any graph class \mathscr{G}, there is a category

$$
\mathfrak{D}_{\mathscr{G}} \mathrm{C} \hookrightarrow \text { Diag C }
$$

of C -valued structured decompositions with shapes in \mathscr{G}.

Structured decompositions

For any graph class \mathscr{G}, there is a category

$$
\mathfrak{D}_{\mathscr{G}} \mathrm{C} \hookrightarrow \operatorname{Diag} \mathrm{C}
$$

of C -valued structured decompositions with shapes in \mathscr{G}.
Objects: $d: \int G \rightarrow C$ with $G \in \mathscr{G}$

Structured decompositions

For any graph class \mathscr{G}, there is a category

$$
\mathfrak{D}_{\mathscr{G}} \mathrm{C} \hookrightarrow \operatorname{Diag} \mathrm{C}
$$

of C -valued structured decompositions with shapes in \mathscr{G}.
Objects: $d: \int G \rightarrow C$ with $G \in \mathscr{G}$
Morphisms: $(F, \eta):\left(d: \int G \rightarrow C\right) \rightarrow\left(d^{\prime}: \int G^{\prime} \rightarrow C\right)$
where $F: \int G \rightarrow \int G^{\prime}$ and $\eta: d \Rightarrow d^{\prime} \circ F$

Structured decompositions (of graphs)

$$
d: \int T \rightarrow \mathrm{Gr}
$$

A graph G.

Structured decompositions (of graphs)

$$
d: \int T \rightarrow \mathrm{Gr}
$$

A graph G.

Defining Width Measures

Defining Width Measures

Aim: use decompositions to define a measure of structural complexity
Recall "completions vs decompositions"

Defining Width Measures

Aim: use decompositions to define a measure of structural complexity
Recall "completions vs decompositions"
monos into chordal graphs

Defining Width Measures

Idea: pick out some "atomic building blocks" from C

$$
\Omega: K \rightarrow C
$$

Defining Width Measures

Idea: pick out some "atomic building blocks" from C

$$
\Omega: K \rightarrow C
$$

Construct "maximally dense" compositional structures

$$
\mathfrak{D K} \xrightarrow{\mathfrak{D} \Omega} \mathfrak{D C} \xrightarrow{\text { colim }} \mathrm{C}
$$

Defining Width Measures

Idea: pick out some "atomic building blocks" from C

$$
\Omega: K \rightarrow C
$$

Construct "maximally dense" compositional structures

$$
\mathfrak{D K} \xrightarrow{\mathfrak{D}} \mathfrak{D C} \xrightarrow{\text { colim }} \mathrm{C}
$$

Def: a (\mathscr{G}, Ω)-completion of some $c \in \mathrm{C}$ is a mono

$$
c \hookrightarrow(\operatorname{colim} \circ \mathfrak{D} \Omega) d .
$$

Say that $c \in \mathrm{C}$ has (\mathscr{G}, Ω)-width at most K if it admits a (\mathscr{G}, Ω)-completion

Defining Width Measures

Defining Width Measures

Aim: use decompositions to define a measure of structural complexity
Recall "completions vs decompositions"

Defining Width Measures

Aim: use decompositions to define a measure of structural complexity
Recall "completions

vs decompositions"

Defining Width Measures

Aim: use decompositions to define a measure of structural complexity Recall "completions

vs decompositions"

Lemma 5.10. Let \mathbf{C} be an adhesive category, \mathbf{J} be a non-empty category with finitely-many objects and whose arrows are monic, $\mathbf{D}: \mathbf{J} \rightarrow \mathbf{C}$ be a diagram in \mathbf{C} which preserves monomorphisms, Λ be a colimit conone over D and $\delta: X \rightarrow$ colim D be an arrow. Then X is the colimit of the diagram $D_{X}: J \rightarrow \mathbf{C}$ obtained by pullback of Λ along δ as in the following diagram.

[Bumpus, Kocsis, Master]

Defining Width Measures

Summary:

- Pick out "atomic" objects to be viewed as "complex"
- This, together with completions \rightarrow define structural complexity
- From any completion we can recover a genuine decomposition

The Nitty-Gritty PT2.
Compositional algorithms: deciding sheaves on presheaves

Algorithms

$\mathrm{C} \longrightarrow \mathcal{F} \longrightarrow$ finset $^{o p} \longrightarrow \operatorname{dec}^{o p} \longrightarrow \mathbf{2}^{o p}$

Algorithms

$\mathrm{C} \longrightarrow \mathcal{F} \longrightarrow$ finset $^{o p} \longrightarrow \operatorname{dec}^{o p} \longrightarrow \mathbf{2}^{o p}$

Our aim:

Our aim:

Our aim:

Dynamic
Programming

Our aim:

Obtain Algorithmic meta-theorem:
Deciding Sheaves in linear time
on "nicely" decomposable classes of inputs

Algorithms

Structured decomps. yield Grothendieck topologies on adhesive categories
w/ sufficiently many colimits...

Algorithms

Structured decomps. yield Grothendieck topologies on adhesive categories w/ sufficiently many colimits...

Theorem 3.5. If C is a small adhesively cocomplete category, then the functor Dcmp (defined below) is a subfunctor of subMon.

$$
\begin{aligned}
& \text { Dcmp : } \mathrm{C}^{o p} \rightarrow \text { Set } \\
& \text { Dcmp : } c \mapsto\{d \mid \operatorname{colim} d=c \text { and } d \in \mathfrak{D C \}} \\
& \text { Dcmp : }(f: a \rightarrow b) \mapsto\left(f^{*}:(d \in \operatorname{subMon} b) \mapsto\left(d_{f} \in \operatorname{subMon} a\right)\right) .
\end{aligned}
$$

Furthermore, for any such C , we have that $(\mathrm{C}, \mathrm{Dcmp})$ and $\left(\mathrm{C}_{\text {mono }}, \mathrm{Dcmp}_{\mathrm{C}_{\text {mono }}}\right)$ are sites.

Algorithms

Structured decomps. yield Grothendieck topologies on adhesive categories
w/ sufficiently many colimits...

Algorithms

Structured decomps. yield Grothendieck topologies on adhesive categories w/ sufficiently many colimits...
... we can speak of sheaves with respect to the decomposition topology

Algorithms

Algorithms

Recap

Recap

Recap

Structured decompositions represent compositional data.
 $$
d: \int G \rightarrow C
$$

\& yield Grothendieck topologies

Recap

$\begin{aligned} & \text { Structured decompositions represent } \\ & \text { compositional data. }\end{aligned} \quad d: \int G \rightarrow \mathrm{C}$ \& yield Grothendieck topologies

Shaves represent compositional problems
$\mathrm{C} \xrightarrow{\mathscr{F}} \mathrm{FinSet}^{o p} \xrightarrow{\text { dec } o p} \mathbf{2}^{o p}$

Recap

Structured decompositions represent compositional data.

$$
d: \int G \rightarrow \mathrm{C}
$$

 \& yield Grothendieck topologies

Shaves represent compositional problems
$\mathrm{C} \xrightarrow{\mathscr{F}} \mathrm{FinSet}^{o p} \xrightarrow{\text { dec }}{ }^{o p} \mathbf{2}^{o p}$

We obtain a fast dynamic programming algorithm for problems encoded as sheaves w.r.t. decomposition topology

What next?

1. Structured decomps $d: \int G \rightarrow C$, but with G another kind of C-set?
2. Obstructions to categorial decompositions (tangles, brambles, etc.)
3. Applications of decompositions to other areas of math / CS?
4. How does this relate to your work?
5. Get in touch to get involved!

Thanks!

Blog: bmbumpus.com
Twitter: @BenMBumpus

Thanks!

Blog: bmbumpus.com
Twitter: @BenMBumpus

