Additive cellular automata graded-monadically

Tarmo Uustalu

joint work with Silvio Capobianco

Comonads meetup, 16 Nov. 2022

What is this about?

- Cellular automata (such as Conway's Game of Life) are an archetypical comonadic notion of computation—
 computation happens in the coKleisli category of a comonad.
- Cellular automata are also graded comonadic.
- Additive cellular automata are a special class of cellular automata.
- Additive cellular automata are both graded comonadic and graded monadic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• That is explainable by a theorem about adjoint (graded) comonad-monad pairs.

Outline

Cellular automata

- Cellular automata as a comonadic notion of computation
- Graded comonads, locally graded (l.g.) categories, the coKleisli, coEM l.g. categories of a graded comonad

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Cellular automata as graded comonadic
- Additive cellular automata
- Adjoint comonad-monad pairs, graded version
- Additive cellular automata as graded monadic

Wolfram's Rule 30

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Cellular automata

- A cellular automaton is given by
 - a monoid $G = (G, 1_G, \cdot)$ (the *grid*, not necessarily a group),
 - sets X and Y (the source and target alphabets

(the *source and target alphabets*, not necessarily finite, not necessarily the same),

- a local rule.
- A local rule is
 - a function $k: X^G \to Y$

such that

- there is a finite $M \subseteq G$ (a *neighborhood*) such that k c is for all $c : X^G$ determined by the X^M part of c.
- The local rule determines the output configuration letter *k c* : *Y* at node 1_{*G*} for a given input configuration *c* : *X^G*.

• Rule 30 has
$$(G, 1_G, \cdot) = (\mathbb{Z}, 0, +), X = Y = Bool,$$

 $k c = c (-1) \operatorname{xor} (c \ 0 \lor c \ 1).$

Cellular automata

- A global rule is
 - a function $f: X^G \to Y^G$

such that

- $f(c \triangleright_X h) = f c \triangleright_Y h$ for all $c : X^G$, h : Gwhere $\triangleright_X : X^G \times G \to X^G$ (*translation*) is defined by $c \triangleright_X h = \lambda g : G.c(h \cdot g)$,
- there is a finite M ⊆ G such that f c h : Y is for all c : X^G and h : G determined by the X^{{h}·M} part of c.
- The global rule determines the whole output configuration $f c : Y^G$ for a given input configuration $c : X^G$.
- Rule 30 has $f c h = c (h 1) \operatorname{xor} (c h \lor c (h + 1)).$
- Local and global rules are in bijection (Curtis, Hedlund).
- Given k, the corresponding f is defined by $f c h = k (c \triangleright_X h)$.
- Given f, the corresponding k is defined by $k c = f c 1_G$.

Cellular automata as comonadic

(Capobianco, U., 2010)

• Define a comonad $D = (D, \varepsilon, \delta)$ on Set by

•
$$DX = X^G$$
,
 $D(f : X \rightarrow Y)(c : X^G) = f \circ c : Y^G$,
• $\varepsilon_X(c : X^G) = c \mathbf{1}_G : X$,
• $\delta_X(c : X^G) = \lambda h : G . c \triangleright_X h = \lambda h : G . \lambda g : G . c (h \cdot g) : (X^G)^G$
(the cowriter comonad for G).

- Ignoring the requirements of uniform continuity, local rules $k : X^G \to Y$ are exactly coKleisli maps of D, global rules $f : X^G \to Y^G$ are exactly cofree coalgebra maps of D, with the identities and composition of the coKleisli and coE-M categories.
- The Curtis-Hedlund theorem is an instance of the isomorphism of the coKleisli category of any comonad *D* to the full subcategory of the coE-M category of *D* given by the cofree coalgebras.

Cellular automata as comonadic

- To incorporate uniform continuity, one can switch from Set to the category Unif of uniform spaces, consider the cowriter comonad for *G* on Unif.
- But one can remain in Set, viewing M ⊆ G as part of the data of a cellular automaton and replacing the comonad with a graded comonad.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• This is the approach of this talk.

Graded comonads

(dual of graded monads of Smirnov 2008, Melliès 2012, Katsumata 2014)

- Suppose given a pomonoid $\mathcal{M} = (|\mathcal{M}|, \leq, 1, \cdot).$
- A *M*-graded comonad is
 - a family of functors $D_M : \mathcal{C} \to \mathcal{C}$ functorial in Mvia a family natural transformations $D_{M < M'} : D_M \to D_{M'}$,
 - a natural transformation $\varepsilon: D_1 \rightarrow \mathsf{Id}$ (the *counit*),
 - a family of natural transformations δ_{N,M} : D_{N⋅M} → D_N ⋅ D_M natural in N, M (the comultiplication)

such that

(日) (日) (日) (日) (日) (日) (日) (日)

 A *M*-graded comonad is the same as an oplax monoidal functor from *M* (as a thin strict monoidal category) to [*C*, *C*].

Cellular automata as graded comonadic

• Let
$$\mathcal{M} = (|\mathcal{M}|, \leq, 1, \cdot)$$
 be the pomonoid defined by $|\mathcal{M}| = \mathcal{P}_{f}(G), \leq = \supseteq, 1 = \{1_{G}\}, N \cdot M = \{n \cdot m \mid n \in N, m \in M\}.$

• We can define a \mathcal{M} -graded comonad $D = (D, \varepsilon, \delta)$ on Set by

•
$$D_M X = X^M$$
,
 $D_M(f: X \to Y)(c: X^M) = f \circ c: Y^M$,
• $D_{M \leq M', X}(c: X^M) = c|_{M'} = \lambda m: M'. c m: X^{M'}$
(note that $M' \subseteq M$),
• $\varepsilon_X(c: X^1) = c 1_G: X$,
• $\delta_{N,M,X}(c: X^{N\cdot M}) = \lambda n: N. \lambda m: M. c (n \cdot m): (X^M)^N$
(an \mathcal{M} -graded version of the cowriter comonad for G).

• $(\triangleright_{N,M,X} : X^{N \cdot M} \times N \to X^M$ is defined by $c \triangleright_{N,M,X} n = \lambda m : M. c (n \cdot m).$

- What are coKleisli and cofree coalgebra maps of D like?
- We do not even get maps, but graded maps...

Locally graded categories

(Wood 1976)

- Suppose given a pomonoid $\mathcal{M} = (|\mathcal{M}|, \leq, 1, \cdot).$
- A locally *M*-graded category is given by:
 - $\bullet \mbox{ a set } |\mathcal{C}| \mbox{ of } \textit{objects},$
 - for any X, Y ∈ |C|,
 a family of sets C_M(X, Y) of maps of grade M
 (we write f : X →_M Y for f ∈ C_M(X, Y)),
 - if $M \leq M'$, then, for any map $f: X \rightarrow_M Y$, a map $(M \leq M')^* f: X \rightarrow_{M'} Y$ (the coercion)
 - for any $X \in |\mathcal{C}|$, a map id_X : $X \to_1 X$ (the *identity*);
 - for any maps $f: X \rightarrow_M Y$, $g: Y \rightarrow_N Z$, a map $g \circ f: X \rightarrow_{M \cdot N} Z$ (the composition)

such that

•
$$(M \le M)^* f = f, (M \le M'')^* f = (M' \le M'')^* ((M \le M')^* f),$$

• $f \circ id = f = id \circ f, h \circ (\sigma \circ f) = (h \circ \sigma) \circ f$

• $(N \le N')^* g \circ (M \le M')^* f = (M \cdot N \le M' \cdot N')^* (g \circ f).$

Locally graded functors, natural transformations

- \bullet A functor between two locally $\mathcal M\text{-}\mathsf{graded}$ categories $\mathcal C$ and $\mathcal D$ is
 - a mapping $F: |\mathcal{C}| \to |\mathcal{D}|$,
 - for any $X, Y \in |\mathcal{C}|$,

a family of mappings $F : \mathcal{C}_M(X, Y) \to \mathcal{D}_M(FX, FY)$

such that

- $Fid_X = id_{FX}$ and $F(g \circ f) = Fg \circ Ff$.
- A *natural transformation* between functors *F*, *G* between locally \mathcal{M} -graded categories \mathcal{C}, \mathcal{D} is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• for any
$$X \in |\mathcal{C}|$$
,
a map $au_X : FX o_1 GX$ of \mathcal{D}

such that

• for any map $f: X \to_M Y$ of C, one has $Gf \circ \tau_X = \tau_Y \circ Ff$.

CoKleisli

(McDermott 2022)

- The coKleisli locally $(\mathcal{M}^{\mathrm{op}})^{\mathrm{rev}}$ -graded category CoKl(D) of a \mathcal{M} -graded comonad $D = (D, \varepsilon, \delta)$ on \mathcal{C} has as
 - \bullet objects: objects of $\mathcal{C},$
 - maps of grade M from X to Y: maps $D_M X \to Y$ of \mathcal{C} ,
 - the coercion $X \to_{M'} Y$ of $k : X \to_M Y$ along $M \ge M'$: $D_{M'} X \xrightarrow{D_{M'} \le M} D_M X \xrightarrow{k} Y$,
 - the identity $X \rightarrow_1 X$ on X:

 $D_1X \xrightarrow{\varepsilon_X} X$,

• the composition $X \rightarrow_{M^{\operatorname{rev}} N} Z$ of $k : X \rightarrow_M Y$ and $\ell : Y \rightarrow_N Z$:

$$D_{N\cdot M}X \xrightarrow{\delta_{N,M,X}} D_N D_M X \xrightarrow{D_N k} D_N Y \xrightarrow{\ell} Z .$$

• Here $(\mathcal{M}^{\mathrm{op}})^{\mathrm{rev}} = (|\mathcal{M}|, \geq, 1, \cdot^{\mathrm{rev}})$ where $M \geq M'$ iff $M' \leq M$ and $M \cdot^{\mathrm{rev}} N = N \cdot M$.

CoEilenberg-Moore

- A coalgebra of D is
 - a functor X from \mathcal{M} to \mathcal{C} with

• a family of maps $\xi_{N,M}:X_{N\cdot M}\to D_NX_M$ of ${\mathcal C}$ natural in N,M such that

A map of grade M between coalgebras (X, ξ) and (Y, χ) is
 a family of maps f_N : X_{N·M} → Y_N of C natural in N such that

$$\begin{array}{c|c} X_{P \cdot N \cdot M} \xrightarrow{f_{P \cdot N}} Y_{P \cdot N} \\ \downarrow \\ \xi_{P, N \cdot M} & & \downarrow \\ D_P X_{N \cdot M} \xrightarrow{D_P f_N} D_P Y_N \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

CoEilenberg-Moore

- The coEilenberg-Moore locally (M^{op})^{rev}-graded category CoEM(D) of a M-graded comonad D on C has as
 - objects: coalgebras of D,
 - maps of grade M: coalgebra maps of grade M,

• the *N*-component of the coercion $(X, \xi) \rightarrow_{M'} (Y, \chi)$ of $f : (X, \xi) \rightarrow_{M} (Y, \chi)$ along $M \ge M'$: $X_{N \cdot M'} \xrightarrow{X_{N \cdot M'} \le N \cdot M} X_{N \cdot M} \xrightarrow{f_N} Y_N$,

• the *M*-component of identity $(X,\xi) \rightarrow_1 (X,\xi)$ on (X,ξ) :

$$X_M \xrightarrow{\operatorname{id}_{X_M}} X_M$$
,

• the *P*-component of the composition $(X, \xi) \rightarrow_{N, \operatorname{rev} M} (Z, \zeta)$ of $f : (X, \xi) \rightarrow_M (Y, \chi)$ and $g : (Y, \chi) \rightarrow_N (Z, \zeta)$: $X_{P \cdot N \cdot M} \xrightarrow{f_{P \cdot N}} Y_{P \cdot N} \xrightarrow{g_P} Z_P$.

The comparison functor

- The coKleisli and coEilenberg-Moore locally graded categories define the initial and final resolutions of the graded comonad.
- The unique map between these resolutions is the locally graded functor E : CoKI(D) → CoEM(D) defined by
 - $EX = (D_-X, \delta_{-,-,X})$ (the cofree coalgebra on X),
 - $E(k: X \rightarrow_M Y) = k^{\dagger}: (D_-X, \delta_{-,-,X}) \rightarrow_M (D_-Y, \delta_{-,-,Y})$ (note that $k: D_M X \rightarrow Y$, so $k_N^{\dagger}: D_{N \cdot M} X \rightarrow D_N Y$).

• This functor (the comparison functor) is fully-faithful.

Cellular automata as graded comonadic

- Recall the pomonoid $\mathcal{M} = (|\mathcal{M}|, \leq, 1, \cdot)$ is defined by $|\mathcal{M}| = \mathcal{P}_{f}(G), \leq = \supseteq, 1 = \{1_{G}\}, N \cdot M = \{n \cdot m \mid n \in N, m \in M\}$
- and the \mathcal{M} -graded comonad $D = (D, \varepsilon, \delta)$ on Set is defined by
 - $D_M X = X^M$, $D_M(f: X \to Y)(c: X^M) = f \circ c: Y^M$, • $D_{M \leq M', X}(c: X^M) = c|_{M'} = \lambda m: M'. cm: X^{M'}$ (note that $M' \subseteq M$). • $\varepsilon_X(c: X^1) = c1_G: X$, • $\delta_{N,M,X}(c: X^{N \cdot M}) = \lambda n: N. \lambda m: M. c(n \cdot m): (X^M)^N$.
- CoKleisli maps of grade M are functions $k: X^M \to Y$.
- Cofree coalgebra maps of grade M are families of functions $f_N : X^{N \cdot M} \to Y^N$ such that

• if
$$N' \subseteq N$$
, then $(f_N c)|_{N'} = f_{N'}(c|_{N' \cdot M}) : Y^{N'}$ for all $c : X^{N \cdot M}$

• $f_{P \cdot N} c \triangleright_{P,N,Y} p = f_N (c \triangleright_{P,N \cdot M,X} p)$ for all $c : X^{P \cdot N \cdot M}, p : P$.

• These are local and global rules made resource-aware!

Additive cellular automata

- An additive CA has commutative monoids (X, 0_X, +_X), (Y, 0_Y, +_Y) instead of just sets X, Y as input and output alphabets.
- An additive CA local rule is a CA local rule k : X^G → Y for the underlying sets X and Y that is additive (a commutative monoid homomorphism), i.e., k 0_{X^G} = 0_Y and k (c +_{X^G} c') = k c +_Y k c'.
- Ditto for additive CA global rules: they are additive global functions for the underlying sets.
- Evidently, local and global rules of additive CA are precisely coKleisli maps and cofree coalgebra maps of the cowriter comonad for *G* on UnifCommMon.
- Also, resource-sensitive versions thereof are precisely coKleisli maps and cofree coalgebra maps of the *M*-graded cowriter comonad for *G* on CommMon.
- But there is more!

An observation

• Suppose given a finite $M \subseteq G$.

- An additive function $k: X^M \to Y$ is fully determined by what it does on relevant *point configurations*, i.e., configurations of the form $[m \mapsto x]_M : X^M$ defined by $[m \mapsto x]_M = \lambda m' : M$. if m' = m then x else 0_X (for m: M, x: X).
- Indeed, if k is additive, then, for any $c : X^M$, one has

$$k c = \bigoplus_{m:M} k [m \mapsto c m]$$

(As M is finite and addition is commutative, this sum is well-defined.)

- It follows readily that additive functions $k : X^M \to Y$ are in bijection with additive functions $\ell : X \to Y^M$.
- Given k, the corresp. ℓ is defined by $\ell x = \lambda m : M. k [m \mapsto x]_M$.
- Given ℓ , the corresp. k is defined by $k c = \bigoplus_{m:M} \ell(c m) m$.

An observation

• Consider
$$(G, 1_G, \cdot) = (\mathbb{Z}, 0, +),$$

 $(X, 0_X, +_X) = (Y, 0_Y, +_Y) = (\mathbb{Q}, 0, +).$

• Let
$$M = \{-1, 0\}$$
, $k c = \frac{1}{3} * c (-1) + \frac{2}{3} * c 0$.

• Here is an evolution:

	0	0	1	0	0	0	0	
	0	0	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	
	0	0	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$	0	0	
	0	0	$\frac{8}{27}$	$\frac{12}{27}$	$\frac{6}{27}$	$\frac{1}{27}$	0	
	0	0	$\frac{16}{81}$	$\frac{32}{81}$	$\frac{24}{81}$	$\frac{8}{81}$	$\frac{1}{81}$	
				÷				

•
$$\ell x (-1) = \frac{1}{3} * x, \ \ell x = \frac{2}{3} * x.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Additive CA as graded monadic?

• Define a family of endofunctors T_M on CommMon by

•
$$T_M X = X^M (= D_M X).$$

- We have just seen that $D_M \dashv T_M$.
- (So far there was no good reason for the new name T_M . But wait.)
- Define a family of natural transformations $T_{M'\geq M}: T_{M'} \to T_M$ by
 - $T_{M' \ge M}(s : Y^{M'}) = s|^M = \lambda m : M$ if $m \in M'$ then s m else $0_Y : Y^M$ (note that $M' \subseteq M$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- This makes T into a functor from M^{op} = (|M|, ≥) while D was a functor from M = (|M|, ≤).
- Moreover, it turns out that $D_{M \leq M'} \dashv T_{M' \geq M}$.
- We can apply a graded version of a folklore result.

Adjoint natural transformations

- Suppose given functors $L, L' : C \to D$ and $R, R' : D \to C$ such that $L \dashv R$ and $L' \dashv R'$.
- Then a nat. transf. $\tau: L' \to L$ is said to be left adjoint to a nat. transf. $\theta: R \to R'$ if

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• for any $f: LX \to Y$, $(f \circ \tau_X)^* = \theta_Y \circ f^*: X \to R'Y$.

Adjoint comonad-monad pairs

(folklore?, Kleiner 1990)

- Suppose given two endofunctors D and T on a category C such that $D \dashv T$.
- If D carries a comonad structure (ε, δ), then T carries a monad structure (η, μ).
- If T carries a monad structure (η, μ), then D carries a comonad structure (ε, δ).
- In both cases, $\varepsilon \dashv \eta$ and $\delta \dashv \mu$.
- The two constructions form a bijection between adjoint comonad structures on *D* and monad structures on *T*.
- For corresponding comonad structures on *D* and monad structures on *T*, the categories CoKI(*D*) and KI(*T*) are isomorphic.
- On objects, the isomorphism is identity. On maps, it is the bijection between maps $DX \rightarrow Y$ and $X \rightarrow TY$ provided by the transposes.

A version for graded comonad-monad pairs

- Suppose given a pomonoid $\mathcal{M} = (|\mathcal{M}|, \leq, 1, \cdot)$ and two functors $D : \mathcal{M} \to [\mathcal{C}, \mathcal{C}]$ and $T : \mathcal{M}^{\mathrm{op}} \to [\mathcal{C}, \mathcal{C}]$ such that $D_M \dashv T_M$ and $D_{M' \leq M} \dashv T_{M \geq M'}$ (notice that $D_{M' \leq M} : D_{M'} \to D_M$ and $T_{M \geq M'} : T_M \to T_{M'}$).
- If D carries an M-graded comonad structure, then T carries a right adjoint (M^{op})^{rev}-graded monad structure.
- If T carries an $(\mathcal{M}^{\mathrm{op}})^{\mathrm{rev}}$ -graded monad structure, then D carries a left adjoint \mathcal{M} -graded comonad structure.
- The two constructions form a bijection between adjoint \mathcal{M} -graded comonad and $(\mathcal{M}^{\mathrm{op}})^{\mathrm{rev}}$ -graded monad structures on D and T.
- For corresponding comonad and monad structures on D and T, the locally (M^{op})^{rev}-graded categories CoKI(D) and KI(T) are isomorphic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An aside: adjoint monad-comonad pairs

(Eilenberg, Moore 1964)

- Suppose $T \dashv D$ instead.
- Then, similarly, there is a bijection of adjoint monad structures on *T* and comonad structures on *D*.

- But in this case, it is EM(T) and CoEM(D) (not KI(T) and CoKI(D)!) that are isomorphic for the corresponding monad and comonad structures on T and D.
- This theorem, too, admits a graded version.

Additive CA as graded monadic

- Recall that $D_M \dashv T_M$ and $D_{M \leq M'} \dashv T_{M' \geq M}$.
- By the theorem, T carries a $(\mathcal{M}^{\mathrm{op}})^{\mathrm{rev}}$ -graded monad structure η , μ .
- Explicitly, it is defined by

•
$$\eta_X(x:X) = \lambda_{-}.x:X^1$$
,
• $\mu_{N,M,X}(s:(X^M)^N) = \lambda p: M \cdot N$. $\bigoplus_{m:N,n:N,p=m\cdot n} s \, n \, m: X^{N^{\operatorname{rev}}M}$.

- Kleisli maps of grade M of T are maps ℓ : X → Y^M that we saw to be in bijection with maps k : X^M → Y, ie. coKleisli maps of grade M of D.
- Free algebra maps of grade M are families of maps $h: X^N \to Y^{M \cdot N}$ such that

• if
$$N' \subseteq N$$
, then $(h_{N'}s)|^{M\cdot N} = h_N(s|^N) : Y^{M\cdot N}$ for $s : X^{N'}$,
• $\lambda r : M \cdot N \cdot P . \bigoplus_{o:M \cdot N, p:P, r=o \cdot p} h(sp) o : Y^{M \cdot N \cdot P} = h_{N \cdot P} (\lambda q : N \cdot P . \bigoplus_{n:N, p:P, q=n \cdot p} spn)$ for $s : (X^N)^P$.

- It is useful to think of $s : X^M$ as formal polynomials (assignments of coefficients from X to exponents from M).
- T is a graded version of the polynomial monad.

Takeaway

- CA are a nice example of a comonadic notion of computation, but they exemplify more!
- It is natural to consider grading in this example.
- The CA example helps with intuitions for the complications present in the locally graded coKleisli and coEM constructions.
- Additive CA (but also linear CA) are among the rare examples of notions of computation that are both (graded) comonadic and monadic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●