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What is this about?

Cellular automata (such as Conway’s Game of Life) are an
archetypical comonadic notion of computation—

computation happens in the coKleisli category of a comonad.

Cellular automata are also graded comonadic.

Additive cellular automata are a special class of cellular automata.

Additive cellular automata are both graded comonadic and graded
monadic.

That is explainable by a theorem about adjoint (graded)
comonad-monad pairs.
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Wolfram’s Rule 30



Cellular automata

A cellular automaton is given by

a monoid G = (G , 1G , ·)
(the grid, not necessarily a group),
sets X and Y
(the source and target alphabets, not necessarily finite, not
necessarily the same),
a local rule.

A local rule is

a function k : XG → Y

such that

there is a finite M ⊆ G (a neighborhood) such that k c is for all
c : XG determined by the XM part of c.

The local rule determines the output configuration letter k c : Y at
node 1G for a given input configuration c : XG .

Rule 30 has (G , 1G , ·) = (Z, 0,+), X = Y = Bool,
k c = c (−1) xor (c 0 ∨ c 1).



Cellular automata

A global rule is

a function f : XG → Y G

such that

f (c BX h) = f c BY h for all c : XG , h : G
where BX : XG × G → XG (translation) is defined by
c BX h = λg : G . c (h · g),

there is a finite M ⊆ G such that f c h : Y is for all c : XG and h : G
determined by the X {h}·M part of c.

The global rule determines the whole output configuration f c : Y G

for a given input configuration c : XG .

Rule 30 has f c h = c (h − 1) xor (c h ∨ c (h + 1)).

Local and global rules are in bijection (Curtis, Hedlund).

Given k , the corresponding f is defined by f c h = k (c BX h).

Given f , the corresponding k is defined by k c = f c 1G .



Cellular automata as comonadic

(Capobianco, U., 2010)

Define a comonad D = (D, ε, δ) on Set by

DX = XG ,
D(f : X → Y )(c : XG ) = f ◦ c : Y G ,
εX (c : XG ) = c 1G : X ,
δX (c : XG ) = λh : G . c BX h = λh : G . λg : G . c (h · g) : (XG )G

(the cowriter comonad for G ).

Ignoring the requirements of uniform continuity,

local rules k : XG → Y are exactly coKleisli maps of D,
global rules f : XG → Y G are exactly cofree coalgebra maps of D,
with the identities and composition of the coKleisli and coE-M
categories.

The Curtis-Hedlund theorem is an instance of the isomorphism of
the coKleisli category of any comonad D to the full subcategory of
the coE-M category of D given by the cofree coalgebras.



Cellular automata as comonadic

To incorporate uniform continuity, one can switch from Set to the
category Unif of uniform spaces, consider the cowriter comonad for
G on Unif.

But one can remain in Set, viewing M ⊆ G as part of the data of a
cellular automaton and replacing the comonad with a graded
comonad.

This is the approach of this talk.



Graded comonads

(dual of graded monads of Smirnov 2008, Melliès 2012, Katsumata 2014)

Suppose given a pomonoid M = (|M|,≤, 1, ·).

A M-graded comonad is

a family of functors DM : C → C functorial in M
via a family natural transformations DM≤M′ : DM → DM′ ,

a natural transformation ε : D1 → Id (the counit),
a family of natural transformations δN,M : DN·M → DN · DM natural
in N, M (the comultiplication)

such that

DM

δM,1

��

δ1,M // D1 · DM

ε·DM

��
DM · D1

DM ·ε // DM

DP·N·M

δP,N·M

��

δP·N,M // DP·N · DM

δP,N ·DM

��
DP · DN·M

DP ·δN,M// DP · DN · DM

A M-graded comonad is the same as an oplax monoidal functor
from M (as a thin strict monoidal category) to [C, C].



Cellular automata as graded comonadic

Let M = (|M|,≤, 1, ·) be the pomonoid defined by
|M| = Pf(G ), ≤ = ⊇, 1 = {1G}, N ·M = {n ·m | n ∈ N,m ∈ M}.

We can define a M-graded comonad D = (D, ε, δ) on Set by

DMX = XM ,
DM(f : X → Y )(c : XM) = f ◦ c : YM ,

DM≤M′,X (c : XM) = c|M′ = λm : M ′. c m : XM′

(note that M ′ ⊆ M),
εX (c : X 1) = c 1G : X ,
δN,M,X (c : XN·M) =
λn : N. c BN,M,X n = λn : N. λm : M. c (n ·m) : (XM)N

(an M-graded version of the cowriter comonad for G ).

(BN,M,X : XN·M ×N → XM is defined by c BN,M,X n = λm : M. c (n ·m).)

What are coKleisli and cofree coalgebra maps of D like?

We do not even get maps, but graded maps. . .



Locally graded categories

(Wood 1976)

Suppose given a pomonoid M = (|M|,≤, 1, ·).

A locally M-graded category is given by:

a set |C| of objects,
for any X ,Y ∈ |C|,

a family of sets CM(X ,Y ) of maps of grade M
(we write f : X →M Y for f ∈ CM(X ,Y )),
if M ≤ M ′, then, for any map f : X →M Y ,

a map (M ≤ M ′)∗f : X →M′ Y (the coercion)
for any X ∈ |C|,

a map idX : X →1 X (the identity);
for any maps f : X →M Y , g : Y →N Z ,

a map g ◦ f : X →M·N Z (the composition)

such that

(M ≤ M)∗f = f , (M ≤ M ′′)∗f = (M ′ ≤ M ′′)∗((M ≤ M ′)∗f ),
f ◦ id = f = id ◦ f , h ◦ (g ◦ f ) = (h ◦ g) ◦ f ,
(N ≤ N ′)∗g ◦ (M ≤ M ′)∗f = (M · N ≤ M ′ · N ′)∗(g ◦ f ).



Locally graded functors, natural transformations

A functor between two locally M-graded categories C and D is

a mapping F : |C| → |D|,
for any X ,Y ∈ |C|,

a family of mappings F : CM(X ,Y )→ DM(FX ,FY )

such that

F idX = idFX and F (g ◦ f ) = Fg ◦ Ff .

A natural transformation between functors F , G between locally
M-graded categories C, D is

for any X ∈ |C|,
a map τX : FX →1 GX of D

such that

for any map f : X →M Y of C, one has
Gf ◦ τX = τY ◦ Ff .



CoKleisli

(McDermott 2022)

The coKleisli locally (Mop)rev-graded category CoKl(D) of a
M-graded comonad D = (D, ε, δ) on C has as

objects: objects of C,
maps of grade M from X to Y : maps DMX → Y of C,

the coercion X →M′ Y of k : X →M Y along M ≥ M ′:

DM′X
DM′≤M // DMX

k // Y ,

the identity X →1 X on X :

D1X
εX // X ,

the composition X →M·revN Z of k : X →M Y and ` : Y →N Z :

DN·MX
δN,M,X //

k
†
N

44DNDMX
DNk // DNY

` // Z .

Here (Mop)rev = (|M|,≥, 1, ·rev) where M ≥ M ′ iff M ′ ≤ M and
M ·rev N = N ·M.



CoEilenberg-Moore

A coalgebra of D is

a functor X from M to C with
a family of maps ξN,M : XN·M → DNXM of C natural in N,M

such that

XM

ξ1,M // D1XM

εXM

��
XM

XP·N·M

ξP,N·M

��

ξP·N,M // DP·NXM

δP,N,XM

��
DPXN·M

DPξN,M// DPDNXM

A map of grade M between coalgebras (X , ξ) and (Y , χ) is

a family of maps fN : XN·M → YN of C natural in N

such that

XP·N·M

ξP,N·M

��

fP·N // YP·N

χP,N

��
DPXN·M

DP fN // DPYN



CoEilenberg-Moore

The coEilenberg-Moore locally (Mop)rev-graded category CoEM(D)
of a M-graded comonad D on C has as

objects: coalgebras of D,
maps of grade M: coalgebra maps of grade M,

the N-component of the coercion (X , ξ)→M′ (Y , χ) of
f : (X , ξ)→M (Y , χ) along M ≥ M ′:

XN·M′
XN·M′≤N·M// XN·M

fN // YN ,

the M-component of identity (X , ξ)→1 (X , ξ) on (X , ξ):

XM

idXM // XM ,
the P-component of the composition (X , ξ)→N·revM (Z , ζ) of
f : (X , ξ)→M (Y , χ) and g : (Y , χ)→N (Z , ζ):

XP·N·M
fP·N // YP·N

gP // ZP .



The comparison functor

The coKleisli and coEilenberg-Moore locally graded categories define
the initial and final resolutions of the graded comonad.

The unique map between these resolutions is the locally graded
functor E : CoKl(D)→ CoEM(D) defined by

EX = (D−X , δ−,−,X ) (the cofree coalgebra on X ),
E(k : X →M Y ) = k† : (D−X , δ−,−,X )→M (D−Y , δ−,−,Y )
(note that k : DMX → Y , so k†N : DN·MX → DNY ).

This functor (the comparison functor) is fully-faithful.



Cellular automata as graded comonadic

Recall the pomonoid M = (|M|,≤, 1, ·) is defined by
|M| = Pf(G ), ≤ = ⊇, 1 = {1G}, N ·M = {n ·m | n ∈ N,m ∈ M}

and the M-graded comonad D = (D, ε, δ) on Set is defined by
DMX = XM ,
DM(f : X → Y )(c : XM) = f ◦ c : YM ,

DM≤M′,X (c : XM) = c|M′ = λm : M ′. c m : XM′

(note that M ′ ⊆ M).
εX (c : X 1) = c 1G : X ,
δN,M,X (c : XN·M) =
λn : N. c BN,M,X n = λn : N. λm : M. c (n ·m) : (XM)N .

CoKleisli maps of grade M are functions k : XM → Y .

Cofree coalgebra maps of grade M are families of functions
fN : XN·M → Y N such that

if N ′ ⊆ N, then (fN c)|N′ = fN′ (c|N′·M) : Y N′ for all c : XN·M ,
fP·N c BP,N,Y p = fN (c BP,N·M,X p) for all c : XP·N·M , p : P.

These are local and global rules made resource-aware!



Additive cellular automata

An additive CA has commutative monoids (X , 0X ,+X ), (Y , 0Y ,+Y )
instead of just sets X , Y as input and output alphabets.

An additive CA local rule is a CA local rule k : XG → Y for the
underlying sets X and Y that is additive (a commutative monoid
homomorphism), i.e., k 0XG = 0Y and k (c +XG c ′) = k c +Y k c ′.

Ditto for additive CA global rules: they are additive global functions
for the underlying sets.

Evidently, local and global rules of additive CA are precisely coKleisli
maps and cofree coalgebra maps of the cowriter comonad for G on
UnifCommMon.

Also, resource-sensitive versions thereof are precisely coKleisli maps
and cofree coalgebra maps of the M-graded cowriter comonad for G
on CommMon.

But there is more!



An observation

Suppose given a finite M ⊆ G .

An additive function k : XM → Y is fully determined by what it
does on relevant point configurations, i.e., configurations of the form
[m 7→ x ]M : XM defined by
[m 7→ x ]M = λm′ : M. if m′ = m then x else 0X (for m : M, x : X ).

Indeed, if k is additive, then, for any c : XM , one has

k c =
⊕

m:Mk [m 7→ c m]

(As M is finite and addition is commutative, this sum is
well-defined.)

It follows readily that additive functions k : XM → Y are in bijection
with additive functions ` : X → YM .

Given k , the corresp. ` is defined by ` x = λm : M. k [m 7→ x ]M .

Given `, the corresp. k is defined by k c =
⊕

m:M ` (c m)m.



An observation

Consider (G , 1G , ·) = (Z, 0,+),
(X , 0X ,+X ) = (Y , 0Y ,+Y ) = (Q, 0,+).

Let M = {−1, 0}, k c = 1
3 ∗ c (−1) + 2

3 ∗ c 0.

Here is an evolution:

. . . 0 0 1 0 0 0 0 . . .

. . . 0 0 2
3

1
3 0 0 0 . . .

. . . 0 0 4
9

4
9

1
9 0 0 . . .

. . . 0 0 8
27

12
27

6
27

1
27 0 . . .

. . . 0 0 16
81

32
81

24
81

8
81

1
81 . . .

...

` x (−1) = 1
3 ∗ x , ` x 0 = 2

3 ∗ x .



Additive CA as graded monadic?

Define a family of endofunctors TM on CommMon by

TMX = XM (= DMX ).

We have just seen that DM a TM .

(So far there was no good reason for the new name TM . But wait.)

Define a family of natural transformations TM′≥M : TM′ → TM by

TM′≥M(s : YM′) = s|M = λm : M. if m ∈ M ′ then s m else 0Y : YM

(note that M ′ ⊆ M).

This makes T into a functor from Mop = (|M|,≥) while D was a
functor from M = (|M|,≤).

Moreover, it turns out that DM≤M′ a TM′≥M .

We can apply a graded version of a folklore result.



Adjoint natural transformations

Suppose given functors L, L′ : C → D and R,R ′ : D → C such that
L a R and L′ a R ′.

Then a nat. transf. τ : L′ → L is said to be left adjoint to a nat.
transf. θ : R → R ′ if

for any f : LX → Y , (f ◦ τX )∗ = θY ◦ f ∗ : X → R ′Y .



Adjoint comonad-monad pairs

(folklore?, Kleiner 1990)

Suppose given two endofunctors D and T on a category C such that
D a T .

If D carries a comonad structure (ε, δ), then T carries a monad
structure (η, µ).

If T carries a monad structure (η, µ), then D carries a comonad
structure (ε, δ).

In both cases, ε a η and δ a µ.

The two constructions form a bijection between adjoint comonad
structures on D and monad structures on T .

For corresponding comonad structures on D and monad structures
on T , the categories CoKl(D) and Kl(T ) are isomorphic.

On objects, the isomorphism is identity. On maps, it is the bijection
between maps DX → Y and X → TY provided by the transposes.



A version for graded comonad-monad pairs

Suppose given a pomonoid M = (|M|,≤, 1, ·)
and two functors D :M→ [C, C] and T :Mop → [C, C] such that
DM a TM and DM′≤M a TM≥M′

(notice that DM′≤M : DM′ → DM and TM≥M′ : TM → TM′).

If D carries an M-graded comonad structure, then T carries a right
adjoint (Mop)rev-graded monad structure.

If T carries an (Mop)rev-graded monad structure, then D carries a
left adjoint M-graded comonad structure.

The two constructions form a bijection between adjoint M-graded
comonad and (Mop)rev-graded monad structures on D and T .

For corresponding comonad and monad structures on D and T , the
locally (Mop)rev-graded categories CoKl(D) and Kl(T ) are
isomorphic.



An aside: adjoint monad-comonad pairs

(Eilenberg, Moore 1964)

Suppose T a D instead.

Then, similarly, there is a bijection of adjoint monad structures on T
and comonad structures on D.

But in this case, it is EM(T ) and CoEM(D) (not Kl(T ) and
CoKl(D)!) that are isomorphic for the corresponding monad and
comonad structures on T and D.

This theorem, too, admits a graded version.



Additive CA as graded monadic

Recall that DM a TM and DM≤M′ a TM′≥M .

By the theorem, T carries a (Mop)rev-graded monad structure η, µ.

Explicitly, it is defined by

ηX (x : X ) = λ . x : X 1,
µN,M,X (s : (XM)N) = λp : M · N.

⊕
m:N,n:N,p=m·n s nm : XN·revM .

Kleisli maps of grade M of T are maps ` : X → YM that we saw to
be in bijection with maps k : XM → Y , ie. coKleisli maps of grade
M of D.

Free algebra maps of grade M are families of maps h : XN → YM·N

such that

if N ′ ⊆ N, then (hN′s)|M·N = hN(s|N) : YM·N for s : XN′ ,
λr : M · N · P.

⊕
o:M·N,p:P,r=o·p h (s p) o : YM·N·P =

hN·P (λq : N · P.
⊕

n:N,p:P,q=n·p s p n) for s : (XN)P .

It is useful to think of s : XM as formal polynomials (assignments of
coefficients from X to exponents from M).

T is a graded version of the polynomial monad.



Takeaway

CA are a nice example of a comonadic notion of computation, but
they exemplify more!

It is natural to consider grading in this example.

The CA example helps with intuitions for the complications present
in the locally graded coKleisli and coEM constructions.

Additive CA (but also linear CA) are among the rare examples of
notions of computation that are both (graded) comonadic and
monadic.


