Additive cellular automata graded-monadically

Tarmo Uustalu
joint work with Silvio Capobianco

Comonads meetup, 16 Nov. 2022

What is this about?

- Cellular automata (such as Conway's Game of Life) are an archetypical comonadic notion of computationcomputation happens in the coKleisli category of a comonad.
- Cellular automata are also graded comonadic.
- Additive cellular automata are a special class of cellular automata.
- Additive cellular automata are both graded comonadic and graded monadic.
- That is explainable by a theorem about adjoint (graded) comonad-monad pairs.

Outline

- Cellular automata
- Cellular automata as a comonadic notion of computation
- Graded comonads, locally graded (I.g.) categories, the coKleisli, coEM I.g. categories of a graded comonad
- Cellular automata as graded comonadic
- Additive cellular automata
- Adjoint comonad-monad pairs, graded version
- Additive cellular automata as graded monadic

Wolfram＇s Rule 30

| \square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \square | \square | \square | \square | \square | \square | | | | |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | |

Cellular automata

- A cellular automaton is given by
- a monoid $G=\left(G, 1_{G}, \cdot\right)$
(the grid, not necessarily a group),
- sets X and Y
(the source and target alphabets, not necessarily finite, not necessarily the same),
- a local rule.
- A local rule is
- a function $k: X^{6} \rightarrow Y$
such that
- there is a finite $M \subseteq G$ (a neighborhood) such that $k c$ is for all $c: X^{G}$ determined by the X^{M} part of c.
- The local rule determines the output configuration letter $k c: Y$ at node 1_{G} for a given input configuration $c: X^{G}$.
- Rule 30 has $\left(G, 1_{G}, \cdot\right)=(\mathbb{Z}, 0,+), X=Y=$ Bool, $k c=c(-1) \operatorname{xor}(c 0 \vee c 1)$.

Cellular automata

- A global rule is
- a function $f: X^{G} \rightarrow Y^{G}$
such that
- $f\left(c \triangleright_{X} h\right)=f c \triangleright_{Y} h$ for all $c: X^{G}, h: G$ where $\triangleright_{x}: X^{G} \times G \rightarrow X^{G}$ (translation) is defined by $c \triangleright_{x} h=\lambda g: G . c(h \cdot g)$,
- there is a finite $M \subseteq G$ such that $f c h: Y$ is for all $c: X^{G}$ and $h: G$ determined by the $X^{\{h\} \cdot M}$ part of c.
- The global rule determines the whole output configuration $f c: Y^{G}$ for a given input configuration $c: X^{G}$.
- Rule 30 has $f c h=c(h-1) \operatorname{xor}(c h \vee c(h+1))$.
- Local and global rules are in bijection (Curtis, Hedlund).
- Given k, the corresponding f is defined by $f c h=k\left(c \triangleright_{x} h\right)$.
- Given f, the corresponding k is defined by $k c=f c 1_{G}$.

Cellular automata as comonadic

(Capobianco, U., 2010)

- Define a comonad $D=(D, \varepsilon, \delta)$ on Set by
- $D X=X^{G}$, $D(f: X \rightarrow Y)\left(c: X^{G}\right)=f \circ c: Y^{G}$,
- $\varepsilon_{X}\left(c: X^{G}\right)=c 1_{G}: X$,
- $\delta_{x}\left(c: X^{G}\right)=\lambda h: G \cdot c \triangleright_{x} h=\lambda h: G \cdot \lambda g: G \cdot c(h \cdot g):\left(X^{G}\right)^{G}$
(the cowriter comonad for G).
- Ignoring the requirements of uniform continuity,
local rules $k: X^{G} \rightarrow Y$ are exactly coKleisli maps of D, global rules $f: X^{G} \rightarrow Y^{G}$ are exactly cofree coalgebra maps of D, with the identities and composition of the coKleisli and coE-M categories.
- The Curtis-Hedlund theorem is an instance of the isomorphism of the coKleisli category of any comonad D to the full subcategory of the coE-M category of D given by the cofree coalgebras.

Cellular automata as comonadic

- To incorporate uniform continuity, one can switch from Set to the category Unif of uniform spaces, consider the cowriter comonad for G on Unif.
- But one can remain in Set, viewing $M \subseteq G$ as part of the data of a cellular automaton and replacing the comonad with a graded comonad.
- This is the approach of this talk.

Graded comonads

(dual of graded monads of Smirnov 2008, Melliès 2012, Katsumata 2014)

- Suppose given a pomonoid $\mathcal{M}=(|\mathcal{M}|, \leq, 1, \cdot)$.
- A \mathcal{M}-graded comonad is
- a family of functors $D_{M}: \mathcal{C} \rightarrow \mathcal{C}$ functorial in M via a family natural transformations $D_{M \leq M^{\prime}}: D_{M} \rightarrow D_{M^{\prime}}$,
- a natural transformation $\varepsilon: D_{1} \rightarrow \mathrm{Id}$ (the counit),
- a family of natural transformations $\delta_{N, M}: D_{N \cdot M} \rightarrow D_{N} \cdot D_{M}$ natural in N, M (the comultiplication)
such that

- A \mathcal{M}-graded comonad is the same as an oplax monoidal functor from \mathcal{M} (as a thin strict monoidal category) to $[\mathcal{C}, \mathcal{C}]$.

Cellular automata as graded comonadic

- Let $\mathcal{M}=(|\mathcal{M}|, \leq, 1, \cdot)$ be the pomonoid defined by

$$
|\mathcal{M}|=\mathcal{P}_{\mathrm{f}}(G), \leq=\supseteq, 1=\left\{1_{G}\right\}, N \cdot M=\{n \cdot m \mid n \in N, m \in M\} .
$$

- We can define a \mathcal{M}-graded comonad $D=(D, \varepsilon, \delta)$ on Set by
- $D_{M} X=X^{M}$, $D_{M}(f: X \rightarrow Y)\left(c: X^{M}\right)=f \circ c: Y^{M}$,
- $D_{M \leq M^{\prime}, X}\left(c: X^{M}\right)=\left.c\right|_{M^{\prime}}=\lambda m: M^{\prime} . c m: X^{M^{\prime}}$ (note that $M^{\prime} \subseteq M$),
- $\varepsilon_{X}\left(c: X^{1}\right)=c 1_{G}: X$,
- $\delta_{N, M, X}\left(c: X^{N \cdot M}\right)=$

$$
\lambda n: N \cdot c \triangleright_{N, M, X} n=\lambda n: N \cdot \lambda m: M \cdot c(n \cdot m):\left(X^{M}\right)^{N}
$$

(an \mathcal{M}-graded version of the cowriter comonad for G).

- $\left(\triangleright_{N, M, X}: X^{N \cdot M} \times N \rightarrow X^{M}\right.$ is defined by $c \triangleright_{N, M, X} n=\lambda m: M . c(n \cdot m)$.)
- What are coKleisli and cofree coalgebra maps of D like?
- We do not even get maps, but graded maps...

Locally graded categories

(Wood 1976)

- Suppose given a pomonoid $\mathcal{M}=(|\mathcal{M}|, \leq, 1, \cdot)$.
- A locally \mathcal{M}-graded category is given by:
- a set $|\mathcal{C}|$ of objects,
- for any $X, Y \in|\mathcal{C}|$,
a family of sets $\mathcal{C}_{M}(X, Y)$ of maps of grade M
(we write $f: X \rightarrow_{M} Y$ for $f \in \mathcal{C}_{M}(X, Y)$),
- if $M \leq M^{\prime}$, then, for any map $f: X \rightarrow_{M} Y$,
a $\operatorname{map}\left(M \leq M^{\prime}\right)^{*} f: X \rightarrow_{M^{\prime}} Y$ (the coercion)
- for any $X \in|\overline{\mathcal{C}}|$,
a map $\mathrm{id}_{X}: X \rightarrow_{1} X$ (the identity);
- for any maps $f: X \rightarrow_{M} Y, g: Y \rightarrow_{N} Z$,
a map $g \circ f: X \rightarrow_{M \cdot N} Z$ (the composition)
such that
- $(M \leq M)^{*} f=f,\left(M \leq M^{\prime \prime}\right)^{*} f=\left(M^{\prime} \leq M^{\prime \prime}\right)^{*}\left(\left(M \leq M^{\prime}\right)^{*} f\right)$,
- $f \circ \mathrm{id}=f=\mathrm{id} \circ f, h \circ(g \circ f)=(h \circ g) \circ f$,
- $\left(N \leq N^{\prime}\right)^{*} g \circ\left(M \leq M^{\prime}\right)^{*} f=\left(M \cdot N \leq M^{\prime} \cdot N^{\prime}\right)^{*}(g \circ f)$.

Locally graded functors, natural transformations

- A functor between two locally \mathcal{M}-graded categories \mathcal{C} and \mathcal{D} is
- a mapping $F:|\mathcal{C}| \rightarrow|\mathcal{D}|$,
- for any $X, Y \in|\mathcal{C}|$,
a family of mappings $F: \mathcal{C}_{M}(X, Y) \rightarrow \mathcal{D}_{M}(F X, F Y)$
such that
- $F \mathrm{id}_{X}=\mathrm{id}_{F X}$ and $F(g \circ f)=F g \circ F f$.
- A natural transformation between functors F, G between locally \mathcal{M}-graded categories \mathcal{C}, \mathcal{D} is
- for any $X \in|\mathcal{C}|$,
a map $\tau_{X}: F X \rightarrow_{1} G X$ of \mathcal{D}
such that
- for any map $f: X \rightarrow M Y$ of \mathcal{C}, one has

$$
G f \circ \tau_{X}=\tau_{Y} \circ F f .
$$

CoKleisli

(McDermott 2022)

- The coKleisli locally ($\left.\mathcal{M}^{\mathrm{op}}\right)^{\mathrm{rev}}$-graded category $\operatorname{CoKI}(D)$ of a \mathcal{M}-graded comonad $D=(D, \varepsilon, \delta)$ on \mathcal{C} has as
- objects: objects of \mathcal{C},
- maps of grade M from X to Y : maps $D_{M} X \rightarrow Y$ of \mathcal{C},
- the coercion $X \rightarrow_{M^{\prime}} Y$ of $k: X \rightarrow_{M} Y$ along $M \geq M^{\prime}$:

$$
D_{M^{\prime}} X \xrightarrow{D_{M^{\prime} \leq M}} D_{M} X \xrightarrow{k} Y,
$$

- the identity $X \rightarrow_{1} X$ on X :

$$
D_{1} X \xrightarrow{\varepsilon_{X}} X,
$$

- the composition $X \rightarrow_{M} \cdot$ rev $_{N} Z$ of $k: X \rightarrow_{M} Y$ and $\ell: Y \rightarrow_{N} Z$:

$$
D_{N \cdot M} X \xrightarrow[k_{N}^{\dagger}]{\stackrel{\delta_{N, M, X}}{\longrightarrow} D_{N} D_{M} X \xrightarrow{D_{N} k}} D_{N} Y \xrightarrow{\ell} Z .
$$

- Here $\left(\mathcal{M}^{\mathrm{op}}\right)^{\mathrm{rev}}=\left(|\mathcal{M}|, \geq, 1,{ }^{\text {rev }}\right)$ where $M \geq M^{\prime}$ iff $M^{\prime} \leq M$ and $M{ }^{\text {rev }} N=N \cdot M$.

CoEilenberg-Moore

- A coalgebra of D is
- a functor X from \mathcal{M} to \mathcal{C} with
- a family of maps $\xi_{N, M}: X_{N \cdot M} \rightarrow D_{N} X_{M}$ of \mathcal{C} natural in N, M such that

- A map of grade M between coalgebras (X, ξ) and (Y, χ) is
- a family of maps $f_{N}: X_{N \cdot M} \rightarrow Y_{N}$ of \mathcal{C} natural in N such that

$$
\begin{aligned}
& X_{P \cdot N \cdot M} \xrightarrow{f_{P \cdot N}} Y_{P \cdot N} \\
& \xi_{P, N \cdot M} \mid \\
& D_{P} X_{N \cdot M} \xrightarrow{D_{P} f_{N}}{ }^{\mid \chi_{P, N}} \\
& D_{P} Y_{N}
\end{aligned}
$$

CoEilenberg-Moore

- The coEilenberg-Moore locally ($\left.\mathcal{M}^{\mathrm{op}}\right)^{\text {rev }}$-graded category CoEM(D) of a \mathcal{M}-graded comonad D on \mathcal{C} has as
- objects: coalgebras of D,
- maps of grade M : coalgebra maps of grade M,
- the N-component of the coercion $(X, \xi) \rightarrow_{M^{\prime}}(Y, \chi)$ of $f:(X, \xi) \rightarrow_{M}(Y, \chi)$ along $M \geq M^{\prime}$:

$$
X_{N \cdot M^{\prime}} \xrightarrow{X_{N \cdot M^{\prime} \leq N \cdot M}} X_{N \cdot M} \xrightarrow{f_{N}} Y_{N},
$$

- the M-component of identity $(X, \xi) \rightarrow_{1}(X, \xi)$ on (X, ξ) :

$$
x_{M} \xrightarrow{\mathrm{id}_{X_{M}}} x_{M},
$$

- the P-component of the composition $(X, \xi) \rightarrow_{N \cdot \operatorname{rev}}^{M}(Z, \zeta)$ of

$$
\begin{aligned}
& f:(X, \xi) \rightarrow M(Y, \chi) \text { and } g:(Y, \chi) \rightarrow N(Z, \zeta): \\
& X_{P \cdot N \cdot M} \xrightarrow{f_{P \cdot N}} Y_{P \cdot N} \xrightarrow{g_{P}} Z_{P} .
\end{aligned}
$$

The comparison functor

- The coKleisli and coEilenberg-Moore locally graded categories define the initial and final resolutions of the graded comonad.
- The unique map between these resolutions is the locally graded functor $E: \operatorname{CoKI}(D) \rightarrow \operatorname{CoEM}(D)$ defined by
- $E X=\left(D_{-} X, \delta_{-,-, x}\right)$ (the cofree coalgebra on $\left.X\right)$,
- $E\left(k: X \rightarrow_{M} Y\right)=k^{\dagger}:\left(D_{-} X, \delta_{-,-, X}\right) \rightarrow_{M}\left(D_{-} Y, \delta_{-,-, Y}\right)$ (note that $k: D_{M} X \rightarrow Y$, so $k_{N}^{\dagger}: D_{N \cdot M} X \rightarrow D_{N} Y$).
- This functor (the comparison functor) is fully-faithful.

Cellular automata as graded comonadic

- Recall the pomonoid $\mathcal{M}=(|\mathcal{M}|, \leq, 1, \cdot)$ is defined by

$$
|\mathcal{M}|=\mathcal{P}_{\mathrm{f}}(G), \leq=\supseteq, 1=\left\{1_{G}\right\}, N \cdot M=\{n \cdot m \mid n \in N, m \in M\}
$$

- and the \mathcal{M}-graded comonad $D=(D, \varepsilon, \delta)$ on Set is defined by
- $D_{M} X=X^{M}$,

$$
D_{M}(f: X \rightarrow Y)\left(c: X^{M}\right)=f \circ c: Y^{M},
$$

- $D_{M \leq M^{\prime}, X}\left(c: X^{M}\right)=\left.c\right|_{M^{\prime}}=\lambda m: M^{\prime} . c m: X^{M^{\prime}}$ (note that $M^{\prime} \subseteq M$).
- $\varepsilon x\left(c: X^{1}\right)=c 1_{G}: X$,
- $\delta_{N, M, X}\left(c: X^{N \cdot M}\right)=$

$$
\lambda n: N . c \triangleright_{N, M, X} n=\lambda n: N . \lambda m: M . c(n \cdot m):\left(X^{M}\right)^{N} .
$$

- CoKleisli maps of grade M are functions $k: X^{M} \rightarrow Y$.
- Cofree coalgebra maps of grade M are families of functions $f_{N}: X^{N \cdot M} \rightarrow Y^{N}$ such that
- if $N^{\prime} \subseteq N$, then $\left.\left(f_{N} c\right)\right|_{N^{\prime}}=f_{N^{\prime}}\left(\left.c\right|_{N^{\prime} \cdot M}\right): Y^{N^{\prime}}$ for all $c: X^{N \cdot M}$,
- $f_{P \cdot N} \subset \triangleright_{P, N, Y} p=f_{N}\left(c \triangleright_{P, N \cdot M, X} p\right)$ for all $c: X^{P \cdot N \cdot M}, p: P$.
- These are local and global rules made resource-aware!

Additive cellular automata

- An additive CA has commutative monoids $\left(X, 0_{X},+X\right),\left(Y, 0_{Y},+_{Y}\right)$ instead of just sets X, Y as input and output alphabets.
- An additive CA local rule is a CA local rule $k: X^{G} \rightarrow Y$ for the underlying sets X and Y that is additive (a commutative monoid homomorphism $)$, i.e., $k 0_{X^{G}}=0_{Y}$ and $k\left(c+x^{G} c^{\prime}\right)=k c+y k c^{\prime}$.
- Ditto for additive CA global rules: they are additive global functions for the underlying sets.
- Evidently, local and global rules of additive CA are precisely coKleisli maps and cofree coalgebra maps of the cowriter comonad for G on UnifCommMon.
- Also, resource-sensitive versions thereof are precisely coKleisli maps and cofree coalgebra maps of the \mathcal{M}-graded cowriter comonad for G on CommMon.
- But there is more!

An observation

- Suppose given a finite $M \subseteq G$.
- An additive function $k: X^{M} \rightarrow Y$ is fully determined by what it does on relevant point configurations, i.e., configurations of the form $[m \mapsto x]_{M}: X^{M}$ defined by $[m \mapsto x]_{M}=\lambda m^{\prime}: M$. if $m^{\prime}=m$ then x else 0_{X} (for $m: M, x: X$).
- Indeed, if k is additive, then, for any $c: X^{M}$, one has

$$
k c=\bigoplus_{m: M} k[m \mapsto c m]
$$

(As M is finite and addition is commutative, this sum is well-defined.)

- It follows readily that additive functions $k: X^{M} \rightarrow Y$ are in bijection with additive functions $\ell: X \rightarrow Y^{M}$.
- Given k, the corresp. ℓ is defined by $\ell x=\lambda m: M . k[m \mapsto x]_{M}$.
- Given ℓ, the corresp. k is defined by $k c=\bigoplus_{m: M} \ell(c m) m$.

An observation

- Consider $\left(G, 1_{G}, \cdot\right)=(\mathbb{Z}, 0,+)$, $\left(X, 0_{X},+X\right)=\left(Y, 0_{Y},+{ }_{Y}\right)=(\mathbb{Q}, 0,+)$.
- Let $M=\{-1,0\}, k c=\frac{1}{3} * c(-1)+\frac{2}{3} * c 0$.
- Here is an evolution:

\ldots	0	0	1	0	0	0	0	\ldots
\ldots	0	0	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	\ldots
\ldots	0	0	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$	0	0	\ldots
\ldots	0	0	$\frac{8}{27}$	$\frac{12}{27}$	$\frac{6}{27}$	$\frac{1}{27}$	0	\ldots
\ldots	0	0	$\frac{16}{81}$	$\frac{32}{81}$	$\frac{24}{81}$	$\frac{8}{81}$	$\frac{1}{81}$	\ldots

- $\ell x(-1)=\frac{1}{3} * x, \ell \times 0=\frac{2}{3} * x$.

Additive CA as graded monadic?

- Define a family of endofunctors T_{M} on CommMon by
- $T_{M} X=X^{M}\left(=D_{M} X\right)$.
- We have just seen that $D_{M} \dashv T_{M}$.
- (So far there was no good reason for the new name T_{M}. But wait.)
- Define a family of natural transformations $T_{M^{\prime} \geq M}: T_{M^{\prime}} \rightarrow T_{M}$ by
- $T_{M^{\prime} \geq M}\left(s: Y^{M^{\prime}}\right)=\left.s\right|^{M}=\lambda m: M$. if $m \in M^{\prime}$ then $s m$ else $0_{Y}: Y^{M}$ (note that $M^{\prime} \subseteq M$).
- This makes T into a functor from $\mathcal{M}^{\text {op }}=(|\mathcal{M}|, \geq)$ while D was a functor from $\mathcal{M}=(|\mathcal{M}|, \leq)$.
- Moreover, it turns out that $D_{M \leq M^{\prime}} \dashv T_{M^{\prime} \geq M}$.
- We can apply a graded version of a folklore result.

Adjoint natural transformations

- Suppose given functors $L, L^{\prime}: \mathcal{C} \rightarrow \mathcal{D}$ and $R, R^{\prime}: \mathcal{D} \rightarrow \mathcal{C}$ such that $L \dashv R$ and $L^{\prime} \dashv R^{\prime}$.
- Then a nat. transf. $\tau: L^{\prime} \rightarrow L$ is said to be left adjoint to a nat. transf. $\theta: R \rightarrow R^{\prime}$ if
- for any $f: L X \rightarrow Y,\left(f \circ \tau_{X}\right)^{*}=\theta_{Y} \circ f^{*}: X \rightarrow R^{\prime} Y$.

Adjoint comonad-monad pairs

(folklore?, Kleiner 1990)

- Suppose given two endofunctors D and T on a category \mathcal{C} such that $D \dashv T$.
- If D carries a comonad structure (ε, δ), then T carries a monad structure (η, μ).
- If T carries a monad structure (η, μ), then D carries a comonad structure (ε, δ).
- In both cases, $\varepsilon \dashv \eta$ and $\delta \dashv \mu$.
- The two constructions form a bijection between adjoint comonad structures on D and monad structures on T.
- For corresponding comonad structures on D and monad structures on T, the categories $\operatorname{CoKI}(D)$ and $\mathrm{KI}(T)$ are isomorphic.
- On objects, the isomorphism is identity. On maps, it is the bijection between maps $D X \rightarrow Y$ and $X \rightarrow T Y$ provided by the transposes.

A version for graded comonad-monad pairs

- Suppose given a pomonoid $\mathcal{M}=(|\mathcal{M}|, \leq, 1, \cdot)$ and two functors $D: \mathcal{M} \rightarrow[\mathcal{C}, \mathcal{C}]$ and $T: \mathcal{M}^{\mathrm{op}} \rightarrow[\mathcal{C}, \mathcal{C}]$ such that $D_{M} \dashv T_{M}$ and $D_{M^{\prime} \leq M} \dashv T_{M \geq M^{\prime}}$ (notice that $D_{M^{\prime} \leq M}: D_{M^{\prime}} \rightarrow D_{M}$ and $T_{M \geq M^{\prime}}: T_{M} \rightarrow T_{M^{\prime}}$).
- If D carries an \mathcal{M}-graded comonad structure, then T carries a right adjoint $\left(\mathcal{M}^{\mathrm{op}}\right)^{\text {rev }}$-graded monad structure.
- If T carries an $\left(\mathcal{M}^{\mathrm{op}}\right)^{\mathrm{rev}}$-graded monad structure, then D carries a left adjoint \mathcal{M}-graded comonad structure.
- The two constructions form a bijection between adjoint \mathcal{M}-graded comonad and $\left(\mathcal{M}^{\mathrm{op}}\right)^{\mathrm{rev}}$-graded monad structures on D and T.
- For corresponding comonad and monad structures on D and T, the locally $\left(\mathcal{M}^{\mathrm{op}}\right)^{\text {rev }}$-graded categories $\operatorname{CoKI}(D)$ and $\mathrm{KI}(T)$ are isomorphic.

An aside: adjoint monad-comonad pairs

(Eilenberg, Moore 1964)

- Suppose $T \dashv D$ instead.
- Then, similarly, there is a bijection of adjoint monad structures on T and comonad structures on D.
- But in this case, it is $\operatorname{EM}(T)$ and $\operatorname{CoEM}(D)$ (not $\mathrm{KI}(T)$ and $\operatorname{CoKI}(D)!$) that are isomorphic for the corresponding monad and comonad structures on T and D.
- This theorem, too, admits a graded version.

Additive CA as graded monadic

- Recall that $D_{M} \dashv T_{M}$ and $D_{M \leq M^{\prime}} \dashv T_{M^{\prime} \geq M}$.
- By the theorem, T carries a $\left(\mathcal{M}^{\text {op }}\right)^{\text {rev }}$-graded monad structure η, μ.
- Explicitly, it is defined by
- $\eta_{X}(x: X)=\lambda_{-.} x: X^{1}$,
- $\mu_{N, M, X}\left(s:\left(X^{M}\right)^{N}\right)=\lambda p: M \cdot N . \bigoplus_{m: N, n: N, p=m \cdot n} s n m: X^{N^{\text {rev }} M}$.
- Kleisli maps of grade M of T are maps $\ell: X \rightarrow Y^{M}$ that we saw to be in bijection with maps $k: X^{M} \rightarrow Y$, ie. coKleisli maps of grade M of D.
- Free algebra maps of grade M are families of maps $h: X^{N} \rightarrow Y^{M \cdot N}$ such that
- if $N^{\prime} \subseteq N$, then $\left.\left(h_{N^{\prime}} s\right)\right|^{M \cdot N}=h_{N}\left(\left.s\right|^{N}\right): Y^{M \cdot N}$ for $s: X^{N^{\prime}}$,
- $\lambda r: M \cdot N \cdot P \cdot \bigoplus_{o: M \cdot N, p: P, r=o \cdot p} h(s p) o: Y^{M \cdot N \cdot P}=$

$$
h_{N \cdot P}\left(\lambda q: N \cdot P \cdot \bigoplus_{n: N, p: P, q=n \cdot p} s p n\right) \text { for } s:\left(X^{N}\right)^{P} .
$$

- It is useful to think of $s: X^{M}$ as formal polynomials (assignments of coefficients from X to exponents from M).
- T is a graded version of the polynomial monad.

Takeaway

- CA are a nice example of a comonadic notion of computation, but they exemplify more!
- It is natural to consider grading in this example.
- The CA example helps with intuitions for the complications present in the locally graded coKleisli and coEM constructions.
- Additive CA (but also linear CA) are among the rare examples of notions of computation that are both (graded) comonadic and monadic.

