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What is this about?

Cellular automata (such as Conway's Game of Life) are an
archetypical comonadic notion of computation—

computation happens in the coKleisli category of a comonad.
Cellular automata are also graded comonadic.
Additive cellular automata are a special class of cellular automata.

Additive cellular automata are both graded comonadic and graded
monadic.

That is explainable by a theorem about adjoint (graded)
comonad-monad pairs.



Outline

o Cellular automata
@ Cellular automata as a comonadic notion of computation

@ Graded comonads, locally graded (l.g.) categories,
the coKleisli, coEM I.g. categories of a graded comonad

@ Cellular automata as graded comonadic
@ Additive cellular automata

@ Adjoint comonad-monad pairs, graded version

o Additive cellular automata as graded monadic
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Cellular automata

@ A cellular automaton is given by
e a monoid G = (G, 1¢, )
(the grid, not necessarily a group),
o sets X and Y
(the source and target alphabets, not necessarily finite, not
necessarily the same),
e a local rule.

@ A local ruleis
o a function k: X¢ > Y
such that

o there is a finite M C G (a neighborhood) such that k ¢ is for all
¢ : X¢ determined by the XM part of c.

@ The local rule determines the output configuration letter kc: Y at
node 1¢ for a given input configuration ¢ : X¢.

@ Rule 30 has (G, 1¢,) =(Z,0,+), X = Y = Bool,
kc=c(—1)xor(cOVcl).



Cellular automata

o A global rule is
e a function f : X¢ — Y©
such that

o f(c>xh)=fc>yhforallc: X® h:G
where >x : X© x G — X (translation) is defined by
c>xh=Xg:G.c(h-g),

o there is a finite M C G such that fch: Yisforallc: X® and h: G
determined by the X{"*™ part of c.

The global rule determines the whole output configuration f ¢ : Y©
for a given input configuration ¢ : X©.

Rule 30 has fch=c(h—1)xor (chV c(h+1)).

Local and global rules are in bijection (Curtis, Hedlund).
Given k, the corresponding f is defined by f ch = k(c>x h).

Given f, the corresponding k is defined by kc = f c1¢.



Cellular automata as comonadic

(Capobianco, U., 2010)
@ Define a comonad D = (D, ¢, ) on Set by
o DX = X°,
D(f : X = Y)(c:X®)=foc:YC,
° Ex(CZXG):C].G:X,
0 ox(c:X®)=Ah:G.coxh=XMh:G.\g:G.c(h-g):(X°)°
(the cowriter comonad for G).

@ Ignoring the requirements of uniform continuity,

local rules k : X¢ — Y are exactly coKleisli maps of D,

global rules f : X¢ — Y are exactly cofree coalgebra maps of D,
with the identities and composition of the coKleisli and coE-M
categories.

@ The Curtis-Hedlund theorem is an instance of the isomorphism of
the coKleisli category of any comonad D to the full subcategory of
the coE-M category of D given by the cofree coalgebras.



Cellular automata as comonadic

@ To incorporate uniform continuity, one can switch from Set to the
category Unif of uniform spaces, consider the cowriter comonad for
G on Unif.

@ But one can remain in Set, viewing M C G as part of the data of a
cellular automaton and replacing the comonad with a graded
comonad.

@ This is the approach of this talk.



Graded comonads

(dual of graded monads of Smirnov 2008, Mellies 2012, Katsumata 2014)
@ Suppose given a pomonoid M = (JM|, <, 1,-).
o A M-graded comonad is
e a family of functors Dy : C — C functorial in M
via a family natural transformations Dy<p : Dy — Dy,
e a natural transformation € : D1 — Id (the counit),

e a family of natural transformations dn,m : Dn.m — Dy - Dy natural
in N, M (the comultiplication)

such that
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Dy ———— Dy - Dy Dp.y.y ———— Dp.y - Dy
5M,1\L \ iE‘DM 5P,N~M\L \L‘;P,N‘DM
Dy-e Dp-dn,m
Dm-D1—>DM DP-DN.MHDP-DN-DM

o A M-graded comonad is the same as an oplax monoidal functor
from M (as a thin strict monoidal category) to [C,C].



Cellular automata as graded comonadic

o Let M = (JM|,<,1,-) be the pomonoid defined by
M| =P(G), <=2,1={lg}, N-M={n-m|ne N, me M}.

@ We can define a M-graded comonad D = (D, ¢, ) on Set by
o DuX = X",
Du(f: X = Y)c: XMy=foc:YM,
° DMSM’,X(C : XM) = C|M/ = m:M.cm: XMI
(note that M" C M),
o ex(c: X)) =clg: X,
-] (SN,Myx(C . XN'M) =
An:N.coymxn=An: N xm: M.c(n-m): (X")V
(an M-graded version of the cowriter comonad for G).

o (Bumx: XM x N — XMis defined by ¢ >nmx n=Am: M.c(n-m).)

@ What are coKleisli and cofree coalgebra maps of D like?

@ We do not even get maps, but graded maps. ..



Locally graded categories

(Wood 1976)
@ Suppose given a pomonoid M = (JM|, <, 1,-).
o A locally M-graded category is given by:
e a set |C| of objects,
e forany X,Y €]C|,
a family of sets Cy(X, Y) of maps of grade M
(we write f : X = Y for f € Cu(X,Y)),
o if M < M’, then, forany map f : X —un Y,
amap (M < M')*f: X = Y (the coercion)
e for any X € [C|,
a map idx : X —1 X (the identity);
o foranymaps f : X —»-m Y, g:Y —n Z,
amap gof : X —umn Z (the composition)
such that
o (MM f=Ff (MIM"F=(M<MY)(MM)F),
o foid=f=idof, ho(gof)=(hog)of,
o (NS N)go(M<M)f=(M-N<M-N)(gof).



Locally graded functors, natural transformations

@ A functor between two locally M-graded categories C and D is
e a mapping F : |C| — |D|,
e forany X,Y €]C|,
a family of mappings F : Cu(X,Y) — Du(FX, FY)
such that
e Fidx =idex and F(gof) = Fgo Ff.

@ A natural transformation between functors F, G between locally
M-graded categories C, D is

e for any X € [C|,
amap 7x : FX =1 GX of D
such that

o for any map f : X —u Y of C, one has
GfOTX:TyOFf.



CoKleisli

(McDermott 2022)

o The coKleisli locally (M°P)**V-graded category CoKI(D) of a
M-graded comonad D = (D, ¢,6) on C has as
o objects: objects of C,
e maps of grade M from X to Y: maps DyX — Y of C,
o the coercion X —pr Y of k: X —p Y along M > M’:

M <M k

D
D X DuX Y,

o the identity X —1 X on X:
DiX > X,

o the composition X —pyrevy Zof k: X -y Y and £: Y —py Z:

)
DX —M% pyDuX 2 pyy —- s 7 .

T
kn

@ Here (M°P)e¥ = (JM|,>,1,-"") where M > M’ iff M’ < M and
M IYN=N-M.



CoEilenberg-Moore

@ A coalgebra of D is

e a functor X from M to C with
o a family of maps &wv.m : Xn.m — DyXum of C natural in N, M

such that
ISWYi Ep.n,m
Xy —— D1 Xum Xp.n-m Dp.nyXm
N e e
Dpén,m
XM DPXN-M DPDNXM

e A map of grade M between coalgebras (X, ) and (Y, x) is
o a family of maps fy : Xn.m — Yn of C natural in N

such that

fe.n
Xp.n-m ———= Yp.n

5P,N~Ml \LXP,N

Dp Xy 225 Dp Yy



CoEilenberg-Moore

o The coEilenberg-Moore locally (M°P)"V-graded category CoEM(D)
of a M-graded comonad D on C has as
o objects: coalgebras of D,
e maps of grade M: coalgebra maps of grade M,

o the N-component of the coercion (X, &) —m (Y, x) of
f:(X,8) —m(Y,x) along M > M":
Xyt .
XN~M’ %MXN.M L YN y

o the M-component of identity (X, &) —1 (X, &) on (X,&):
id
Xy — Xu |
o the P-component of the composition (X, &) —n.revy (Z,¢) of
£ (X,€) —m (Y,x) and g : (Y, x) —w (Z,0):

fp.n gp
Xp.N-M Ye.n Zp .




The comparison functor

@ The coKleisli and coEilenberg-Moore locally graded categories define
the initial and final resolutions of the graded comonad.

@ The unique map between these resolutions is the locally graded
functor E : CoKI(D) — CoEM(D) defined by
o EX = (D_X,0-,— x) (the cofree coalgebra on X),
o E(k: X =m Y)=k :(D-X,0__x)—=m (D-Y,5_ _y)
(note that k : DuX — Y, so ki, : Dy.uX — DyY).

@ This functor (the comparison functor) is fully-faithful.



Cellular automata as graded comonadic

@ Recall the pomonoid M = (M|, <, 1,-) is defined by
M| =Pe(G), <=2,1={1¢}, N-M={n-m|neN,me M}

@ and the M-graded comonad D = (D, e,0) on Set is defined by

o DX =X",

Du(f : X = Y)(c: X"Y=foc:Y",
o Dy<m x(c: X" =cly =Im:M.cm: XM

(note that M’ C M).
o ex(c: X)) =clg: X,
o dnmx(c: XVM) =

An:N.cymxn=in: NAm: M.c(n-m): (X"

e CoKleisli maps of grade M are functions k : XM — Y.
o Cofree coalgebra maps of grade M are families of functions
fy: XNM 5 YN guch that
o if N/ C N, then (fuc)|w = fw (clwrm) : YV for all c: XMV,

e fp.yC >pNy P = fn (C >p N-M,X p) for all c: XP‘N'M, p:P.

@ These are local and global rules made resource-aware!



Additive cellular automata

An additive CA has commutative monoids (X, 0x,+x), (Y,0y, +y)
instead of just sets X, Y as input and output alphabets.

An additive CA local rule is a CA local rule k : X¢ — Y for the
underlying sets X and Y that is additive (a commutative monoid
homomorphism), i.e., kOxc =0y and k(¢ +xc ¢’) = kc+y kc'.
Ditto for additive CA global rules: they are additive global functions
for the underlying sets.

Evidently, local and global rules of additive CA are precisely coKleisli
maps and cofree coalgebra maps of the cowriter comonad for G on
UnifCommMon.

Also, resource-sensitive versions thereof are precisely coKleisli maps
and cofree coalgebra maps of the M-graded cowriter comonad for G
on CommMon.

But there is more!



An observation

Suppose given a finite M C G.

An additive function k : X™ — Y is fully determined by what it
does on relevant point configurations, i.e., configurations of the form
[m — x]p : XM defined by

[m—= x]p = Am’ : M.if m" = m then x else Ox (for m: M, x : X).

Indeed, if k is additive, then, for any c: XM one has
kc=@, . mklm— cm]
(As M is finite and addition is commutative, this sum is

well-defined.)

It follows readily that additive functions k : X™ — Y are in bijection
with additive functions £: X — YM.

Given k, the corresp. £ is defined by £ x = Am : M. k [m — x]um.
Given /, the corresp. k is defined by kc = @D,,.,, £ (c m) m.



An observation

e Consider (G,1¢,-) = (Z,0,+),

(X70X7+X) - (Y;OYa+Y) = (@707+)
o Let M={-1,0}, kc=3xc(—1)+3xcO.

@ Here is an evolution:

001 0 0 0 0
00 35 3 0 0 O
00 2 2 5 0 0
00 5 5 5 %z O
0 0 & & & & &

° Ex(—l):%*x,ﬁxO:%*x.



Additive CA as graded monadic?

@ Define a family of endofunctors Ty, on CommMon by
o TuX =XM (= DuX).
@ We have just seen that Dy, < Ty.

@ (So far there was no good reason for the new name Ty,. But wait.)

@ Define a family of natural transformations Tap>nm @ Ty — Ty by

o Tyrsm(s: YM) =M = Am: M.if m € M’ then s m else Oy : Y™
(note that M’ C M).

@ This makes T into a functor from M = (|]M|, >) while D was a
functor from M = (M|, <).

@ Moreover, it turns out that Dy<pr = Tpr>m.

@ We can apply a graded version of a folklore result.



Adjoint natural transformations

@ Suppose given functors L, : C — D and R, R’ : D — C such that
L4Rand 'R

@ Then a nat. transf. 7: I’ — L is said to be left adjoint to a nat.
transf. 6 : R — R’ if

o forany f:LX =Y, (forx)* =0yof*: X > R'Y.



Adjoint comonad-monad pairs

(folklore?, Kleiner 1990)

@ Suppose given two endofunctors D and T on a category C such that
DAT.

o If D carries a comonad structure (g, ), then T carries a monad
structure (7, u).

e If T carries a monad structure (7, 1), then D carries a comonad
structure (e, 9).

@ In both cases, ¢ 47 and § - p.

@ The two constructions form a bijection between adjoint comonad
structures on D and monad structures on T.

@ For corresponding comonad structures on D and monad structures
on T, the categories CoKI(D) and KI(T) are isomorphic.

@ On objects, the isomorphism is identity. On maps, it is the bijection
between maps DX — Y and X — TY provided by the transposes.



A version for graded comonad-monad pairs

@ Suppose given a pomonoid M = (M|, <, 1,-)
and two functors D : M — [C,C] and T : M°P — [C,C] such that
DM - TM and DM’SM - TMZM’
(notice that DM’gM : Dy — Dy and TMZM’ Ty — TM/).

@ If D carries an M-graded comonad structure, then T carries a right
adjoint (M°P)**V-graded monad structure.

o If T carries an (M°P)"V-graded monad structure, then D carries a
left adjoint M-graded comonad structure.

@ The two constructions form a bijection between adjoint M-graded
comonad and (M°P)"¥-graded monad structures on D and T.

@ For corresponding comonad and monad structures on D and T, the
locally (M°P)"*V-graded categories CoKI(D) and KI(T) are
isomorphic.



An aside: adjoint monad-comonad pairs

(Eilenberg, Moore 1964)
@ Suppose T - D instead.

@ Then, similarly, there is a bijection of adjoint monad structures on T
and comonad structures on D.

@ But in this case, it is EM(T) and CoEM(D) (not KI(T) and
CoKI(D)!") that are isomorphic for the corresponding monad and
comonad structures on T and D.

@ This theorem, too, admits a graded version.



Additive CA as graded monadic

Recall that Dy, - Ty and DMgM’ - TM’EM-

@ By the theorem, T carries a (M°P)"*V-graded monad structure 7, pu.

o Explicitly, it is defined by

onx(X:X):)\,.x:Xl, ]
o pnmx(s: (X"MNy=Xp: M- N. D v N pemnSHM: XNTM

Kleisli maps of grade M of T are maps £: X — YM that we saw to
be in bijection with maps k : XM — Y, ie. coKleisli maps of grade
M of D.
Free algebra maps of grade M are families of maps h: XV — yMN
such that

o if N C N, then (hys)[M"N = hy(s|V) : YN for s : XV,

o Ar:M-N-P. D, ynpp,r—0ph(sp)o: yMN-P —

hn.p(Ag: N-P. P spn) for s : (XV)P.

n:N,p:P,q=n-p

It is useful to think of s : XM as formal polynomials (assignments of
coefficients from X to exponents from M).

T is a graded version of the polynomial monad.



Takeaway

@ CA are a nice example of a comonadic notion of computation, but
they exemplify more!

@ It is natural to consider grading in this example.

@ The CA example helps with intuitions for the complications present
in the locally graded coKleisli and coEM constructions.

o Additive CA (but also linear CA) are among the rare examples of
notions of computation that are both (graded) comonadic and
monadic.



