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Introduction

Relative monads were introduced by Altenkirch, Chapman, and
Uustalu [ACU10; ACU15] (though various related concepts have been
around in the literature much longer, cf. [Wal70; Die75]). There, the
authors generalised several results about monads and adjunctions
to relative monads. However, there were also many aspects of the
theory of monads and adjunctions that were not treated.

Dylan McDermott and I have been working on extending the theory
of relative monads, to give relative analogues of the various results
category theorists make use of all the time in the non-relative set-
ting [Ark22; AM23a; AM23b].

This talk will be an overview of some aspects of the theory of relative
monads that are not yet well known, but are valuable tools to have
at one’s disposal.
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Relative monads

A relative monad is a generalisation of a monad, where the underlying
functor is permitted to be an arbitrary functor, rather than an
endofunctor.

Definition 1 ([ACU10])

A relative monad comprises

1. a functor j : A → E, the root;
2. a functor t : A → E, the carrier;
3. a natural transformation η : j ⇒ t, the unit;
4. a form † : E(j, t) ⇒ E(t, t), the extension operator,

satisfying unitality and associativity laws.

When j = 1, this is (non-obviously) equivalent to the definition of
monad.
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Extension operators

Explicitly, an extension operator gives an assignment, taking each
morphism

jx
f−→ ty

to a morphism

tx
f†
−→ ty

such that (ηx)
† = 1tx and the following diagrams commute.

tx

jx ty
f

ηx
f†

tx

jx ty

jy tz

f

f†

g

g†

(f ;g†)†
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Examples of relative monads

Relative monads are abundant in category theory.

• Monads.

• Partial monads.

• Graded monads [MU22].

• Cocontinuous monads on cocompletions (e.g. finitary monads
on locally finitely presentable categories).

• Monads arising from monad–theory correspondences.
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Relative monads as monoids
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Distributors

A distributor (a.k.a. profunctor, (bi)module) A −7−→ B is a functor
Bop×A → Set.

While distributors between small categories may be
composed using coends, this is not possible for distributors between
arbitrary locally small categories, so we prefer to avoid composition
of distributors where possible.

For every locally small category A, there is an identity distributor
A(1, 1) : A −7−→ A given by the hom-sets of A, i.e. A(−,−) : Aop ×
A → Set.

Every functor f : A → B between locally small categories defines
both a representable distributor B(1, f) : A −7−→ B by postcomposition:

B(1, f)(b, a) := B(b, fa)

and a corepresentable distributor B(f, 1) : B −7−→ A by precomposition:

B(f, 1)(a, b) := B(fa, b)
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Forms

A form is a multiary notion of transformation between distributors,

An An−1 · · · A1 A0

Bn B0qp

pnp p1ppn−1p p2p
g fϕ

and comprises a function

ϕx0,...,xn : p1(x0, x1)× · · · × pn(xn−1, xn) → q(fx0, gxn)

for each x0 ∈ |A0|, . . . , xn ∈ |An|, satisfying certain naturality laws.

When n = 0 and q is the identity distributor, this is exactly a natural
transformation ϕ : f ⇒ g.
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Multicategories of endo-distributors

For a given locally small category A, the distributors A −7−→ A, together
with forms

A A · · · A A

A Aqp

pnp p1ppn−1p p2p
ϕ

form a multicategory CatJA,AK.

By restricting to representable distributors – i.e. those isomorphic to
a representable distributor A(1, f), for some endofunctor f : A → A
– we obtain a sub-multicategory Cat[A,A].

The multicategory Cat[A,A] is represented by the strict monoidal
category Cat(A,A) of endofunctors and natural transformations.
Consequently, a monoid in Cat[A,A] is precisely a monad on A.
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Skew composition of functors

Let A and E be categories. Given functors

f : A → E g : A → E

there is no hope of forming a “composite” of f and g unless A = E.

However, supposing we had some fixed functor j∗ : E → A, we could
form the composite

A
f−→ E

j∗−→ A
g−→ E

which could be seen as a notion of composite “relative to” j∗.

...However, in cases of interest, we typically have a chosen functor
j : A → E, which faces in the wrong direction.
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Skew composition of distributors

Instead, we shall make use of distributors. The pair f, g : A → E
induce representable distributors

E(1, f) : A −7−→ E E(1, g) : A −7−→ E

whilst the functor j : A → E induces a corepresentable distributor

E(j, 1) : E −7−→ A

We may thus form a chain of distributors

A
E(1,f)−−7−−→ E

E(j,1)−−7−−→ A
E(1,g)−−7−−→ E

which acts as a notion of composite relative to j. (Note that we never
actually form the composite distributor: it is enough to consider the
chain.)
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Skew-multicategories of distributors

For functor j : A → E between locally small categories, the distribu-
tors A −7−→ E, together with forms

A E A · · · E A E

A Eqp

pn−1p p2ppnp
E(j,1)
p p1p

E(j,1)
p

ϕ

form a skew-multicategory1 CatJjK.

By restricting to representable distributors – i.e. those isomorphic
to a representable distributor E(1, f), for some functor f : A → E –
we obtain a sub-skew-multicategory Cat[j].

Question. What is a monoid in Cat[j]?

1In the sense of [AM23a], which generalises the skew-multicategories of
Bourke [Bou17].
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Intuition for Cat[j]

Conceptually, we can think of Cat[j] as being forms between functors
A → E, where we facilitate the “composition” of two functors
A → E by inserting a j∗ := E(j, 1) where necessary.

A E A · · · E A E

A Eg

fn−1 f2fn j∗p f1j∗p
ϕ

It is easy to see that this recovers our multicategory Cat[A,A] when
we specialise to j = 1A.
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Monoids in Cat[j]

A monoid in Cat[j] comprises

1. a functor t : A → E, the carrier;

2. a natural transformation η : j ⇒ t, the unit;

3. a form µ : E(1, t), E(j, 1), E(1, t) ⇒ E(1, t), the
multiplication,

satisfying unitality and associativity laws.

This looks remarkably similar to the definition of a relative monad.

†

j t

t t

Extension operator

µ

t j t

t

Multiplication
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The calculus of (co)representable distributors

The representable and corepresentable distributors associated to a
functor f : A → E are adjoint to one another as distributors: i.e.
E(1, f) ⊣ E(f, 1) in Dist. From a string diagrammatic perspective,
this allows us to bend arrows corresponding to representables and
corepresentables (so long as they never point left).

We may define an extension operator from a multiplication and vice
versa by bending strings:

µ

j t

t t

†

t j t

t
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Relative monads as monoids

Theorem 2

The category of monoids in the skew-multicategory Cat[j] is
isomorphic to the category RMnd(j) of j-relative monads.

Note that we require no assumptions on the functor j : A → E.

We may ask when the skew-multicategory Cat[j] is represented by
a skew-monoidal category.

Theorem 3

Suppose that (pointwise) left extensions along j exist. Then
Cat[j] is representable.

We thus recover the characterisation of relative monads as monoids
in a skew-monoidal category due to [ACU15].
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Skewness and density

In fact, in many cases, it is not necessary to work with skew-
multicategories. When j is dense, relative monads are monoids
in an ordinary multicategory (which is a sub-(skew)-multicategory of
Cat[j]).

Recall that a functor j : A → E is dense if the nerve functor (a.k.a.
restricted Yoneda embedding)

nj := E(j−,−) : E → Â

is fully faithful. In practice, this assumption is usually satisfied.

This is a first indication that density of j is a useful simplifying
condition for the theory of relative monads.
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Relative monads as cocontinuous monads

Lemma 4 ([ACU10])

Suppose that (pointwise) left extensions along j exist. Then:

1. Cat[j] is left-normal if j is dense.
2. Cat[j] is right-normal if j is fully faithful.
3. Cat[j] is associative-normal if left extensions along j are

j-absolute.

Theorem 5

Let Φ be a class of weights and let A be a locally small cat-
egory admitting a Φ-cocompletion A ↪→ ΦA. The category
of (A ↪→ ΦA)-relative monads is equivalent to the category of
Φ-cocontinuous monads on ΦA.

42



Relative monads as cocontinuous monads

Lemma 4 ([ACU10])

Suppose that (pointwise) left extensions along j exist. Then:

1. Cat[j] is left-normal if j is dense.
2. Cat[j] is right-normal if j is fully faithful.
3. Cat[j] is associative-normal if left extensions along j are

j-absolute.

Theorem 5

Let Φ be a class of weights and let A be a locally small cat-
egory admitting a Φ-cocompletion A ↪→ ΦA. The category
of (A ↪→ ΦA)-relative monads is equivalent to the category of
Φ-cocontinuous monads on ΦA.

43



Relative monads as monads in Dist

Theorem 6

Suppose that j : A → E is dense. Then the category of j-
relative monads is isomorphic to the category of monads in
Dist whose underlying distributor is j-representable – i.e. of
the form E(j, t), for some functor t : A → E.

In other words, when j is dense, a j-relative monad is equivalently
specified by

1. a functor t : A → E;

2. a natural transformation η : j ⇒ t;

3. a form µ : E(j, t), E(j, t) ⇒ E(j, t),

satisfying unitality and associativity laws.

This recovers Diers’s characterisation of relative monads [Die75].
44



Relative adjunctions
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Relative adjunctions

The concept of relative adjunction is a generalisation of the concept
of adjunction, where the domain of the left adjoint is permitted to
be different to the codomain of the right adjoint.

Definition 7 ([Ulm68])

A relative adjunction comprises

1. a functor j : A → E, the root;
2. a functor ℓ : A → C, the left relative adjoint;
3. a functor r : C → E, the right relative adjoint;
4. an isomorphism of the form C(ℓ, 1) ∼= E(j, r).

C

A E

ℓ r

j

⊣
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Examples of relative adjunctions

Relative adjunctions are abundant in category theory.

• Adjunctions.

• Partial adjunctions.

• Multi-adjunctions.

• Weighted colimits.

• Nerves.

• Algebraic theories and their various generalisations [Ark22].
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Properties of relative adjoints

Most of the fundamental properties of adjunctions carry across (with
some modification) to relative adjunctions.

Proposition 8 ([Ulm68])

Left relative adjoints are unique up to isomorphism. Right j-
relative adjoints are unique up to isomorphism if j is dense.

Proposition 9 ([Ulm68])

A j-relative left adjoint preserves those colimits that j preserves.

Proposition 10 ([Ulm68])

A j-relative right adjoint preserves limits when j is dense.

53



Properties of relative adjoints

Most of the fundamental properties of adjunctions carry across (with
some modification) to relative adjunctions.

Proposition 8 ([Ulm68])

Left relative adjoints are unique up to isomorphism. Right j-
relative adjoints are unique up to isomorphism if j is dense.

Proposition 9 ([Ulm68])

A j-relative left adjoint preserves those colimits that j preserves.

Proposition 10 ([Ulm68])

A j-relative right adjoint preserves limits when j is dense.

54



Properties of relative adjoints

Most of the fundamental properties of adjunctions carry across (with
some modification) to relative adjunctions.

Proposition 8 ([Ulm68])

Left relative adjoints are unique up to isomorphism. Right j-
relative adjoints are unique up to isomorphism if j is dense.

Proposition 9 ([Ulm68])

A j-relative left adjoint preserves those colimits that j preserves.

Proposition 10 ([Ulm68])

A j-relative right adjoint preserves limits when j is dense.

55



Properties of relative adjoints

Most of the fundamental properties of adjunctions carry across (with
some modification) to relative adjunctions.

Proposition 8 ([Ulm68])

Left relative adjoints are unique up to isomorphism. Right j-
relative adjoints are unique up to isomorphism if j is dense.

Proposition 9 ([Ulm68])

A j-relative left adjoint preserves those colimits that j preserves.

Proposition 10 ([Ulm68])

A j-relative right adjoint preserves limits when j is dense.

56



Constructing relative adjoints

Proposition 11

Let j : A → E and ℓ : A → C be functors, and suppose that j
is fully faithful.

B

A E

ℓ ℓ�· j

j

⊣

1. Suppose that the left extension ℓ�· j exists and is
j-absolute. Then ℓ j⊣ ℓ�· j.

2. Suppose that j is dense and that ℓ has a right j-adjoint r.
Then r exhibits the left extension ℓ�· j and this extension
is j-absolute.
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Relative adjunctions and relative monads

Proposition 12

Every relative adjunction induces a relative monad. Furthermore,
this process extends to functors

;j : RAdjL(j)
op → RMnd(j)

⊘j : RAdjR(j) → RMnd(j)

RAdjL(j) (respectively RAdjR) is the category of j-relative ad-
junctions and left-morphisms (respectively right-morphisms).

C ′

A C E
ℓ r

ℓ′ c r′

λ

C ′

A C E
ℓ r

ℓ′ c r′

ρ
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Precomposition

Proposition 13

Every relative adjunction of the form:

C

A B D

ℓ r

j

ℓ′ ⊣

induces a relative adjunction of the form:

C

A D

ℓ′;ℓ r

ℓ′;j

⊣
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Pasting

Relative adjunctions satisfy a pasting law similar to that for pullbacks.

Proposition 14

Consider the following diagram.

C

D

A E

r

j

r′
ℓ′

ℓ

⊣

The left triangle is a relative adjunction (i.e. ℓ ℓ′⊣ r) if and only
if the outer triangle is a relative adjunction (i.e. ℓ j⊣ r ; r′).

For instance, taking j = (ℓ′ ; r′) and r′ fully faithful, this allows us
to postcompose any relative adjunction by a fully faithful functor.
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Resoluteness

A particularly useful consequence of the pasting lemma (taking
ℓ′ = ℓ ; r) gives us a way to move a functor from the left-hand side
of a relative adjunction to the right-hand side.

Corollary 15

Let (ℓ1 ; ℓ2) j⊣ r be a j-adjunction. Then ℓ1 j⊣ (ℓ2 ; r) if and
only if ℓ1 ℓ1;ℓ2⊣ ℓ2. In this case, the two induced j-monads are
isomorphic.

C

A E
j

rℓ1;ℓ2

⊣

B

A E
j

ℓ2;rℓ1

⊣

This is satisfied, for instance, if ℓ2 is fully faithful.
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Composition

Applying first the precomposition law, and then the pasting law, we
obtain a general composition result for relative adjunctions.

Corollary 16

Let ℓ j⊣ r and ℓ′ ; j j′⊣ r′ be relative adjunctions as below.

C

B D

A E

ℓ r

j

ℓ′

j′

r′
ℓ′;j

⊣

⊣

Then ℓ′ ; ℓ j′⊣ r ; r′.
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The counit of a relative adjunction

There are several different formulations of non-relative adjunctions.
In addition to the usual hom-set formulation, there is also the unit–
counit formulation. At first glance, an analogous formulation for
relative adjunctions does not seem possible: while every relative
adjunction has a unit η : j ⇒ (ℓ ; r), it is unclear how to express a
counit, since we cannot compose r : C → E with ℓ : A → C.

However, our insight for considering relative monads as monoids
turns out to be helpful here too. While we may not compose r with ℓ
directly, we may “compose” r with ℓ, relative to the corepresentable
distributor E(j, 1) : E −7−→ A.

A j-relative adjunction is then equivalently specified by functors
ℓ : A → C and r : C → E, together with a unit natural transforma-
tion η : j ⇒ (ℓ ; r), and a counit form ε : C(1, ℓ), E(j, 1), E(1, r) ⇒
C(1, 1), satisfying two triangle laws.
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Algebras and opalgebras
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Eilenberg–Moore categories

Definition 17 ([ACU10])

Let T be a (j : A → E)-relative monad. The Eilenberg–Moore
category for T has as objects pairs (e,⋊) of an object e ∈ E and
a form ⋊ : E(j, e) ⇒ E(t, e) satisfying unitality and extension
operator laws. Morphisms are morphisms of E commuting with
the algebra structures.

The Eilenberg–Moore category for a relative monad induces a relative
adjunction,

EM(T )

A E

fT uT

j

⊣

where fT = a 7→ ta and uT = (e,⋊) 7→ e.
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The universal property of the Eilenberg–Moore category

Theorem 18

The construction of the Eilenberg–Moore category for a j-
relative monad is right adjoint to the construction of a j-monad
from a relative adjunction.

RAdjL(j) RMnd(j)op
;j

f(−) j⊣ u(−)

⊣

Corollary 19 ([ACU10])

The Eilenberg–Moore resolution fT j⊣ uT is the terminal reso-
lution of T .
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Relative monad morphisms and slices

Corollary 20

The functor u(−) : RMnd(j)op → CAT/E is fully faithful.

In other words, relative monad morphisms T → T ′ are (contravari-
antly) in natural bijection with functors between their categories of
algebras, commuting with the forgetful functors.

EM(T ′) EM(T )

E

uT ′ uT
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Algebras

While we typically think of algebras for monads as being objects of
a category, there is a more general notion of algebra structure on a
functor (this notion of algebra is also called a left-module).

There is
a corresponding generalisation for relative monads.

Definition 21

A T -algebra (a.k.a. left T -module) is a functor e : D → E
equipped with a form ⋊ : E(j, e) ⇒ E(t, e) satisfying unitality
and extension operator laws.

Theorem 22

The Eilenberg–Moore category for a relative monad T is the
universal T -algebra.
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Kleisli categories

Definition 23 ([ACU10])

Let T be a (j : A → E)-relative monad. The Kleisli category for
T has the same objects as A, and Kl(T )(a, a′) := E(ja, ta′).

The Kleisli category for a relative monad induces a relative adjunction,

Kl(T )

A E

kT vT

j

⊣

where kT is identity-on-objects and vT = a 7→ ta.
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The universal property of the Kleisli category

Theorem 24

The construction of the Kleisli category for a j-relative monad
is left adjoint to the construction of a j-monad from a relative
adjunction.

RAdjR(j) RMnd(j)
⊘j

k(−) j⊣ v(−)

⊣

Corollary 25 ([ACU10])

The Kleisli resolution kT j⊣ vT is the initial resolution of T .
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Relative monad morphisms and coslices

Corollary 26

If j is dense, then the functor k(−) : RMnd(j) → A/CAT is
fully faithful.

In other words, for a dense functor j, j-relative monad morphisms
T → T ′ are in natural bijection with functors between their Kleisli
categories, commuting with the inclusion functors.

A

Kl(T ) Kl(T ′)

kT kT ′
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A

Kl(T ) Kl(T ′)

kT kT ′
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Opalgebras

Just as the notion of algebra admits a generalisation from objects to
functors, so too does the notion of opalgebra (i.e. an object of the
Kleisli category) admit a generalisation from objects to functors.

Definition 27

A T -opalgebra (a.k.a. right T -module) is a functor a : A → B
equipped with a form ⋉ : E(j, t) ⇒ B(a, a) satisfying unitality
and extension operator laws.

Theorem 28

The Kleisli category for a relative monad T is the universal
T -opalgebra.
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Relative (op)monadicity
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Relative monadicity

Definition 29

Let j : A → E be a functor. A colimit in E is j-absolute if it is
preserved by the nerve functor nj := E(j−,−) : E → Â.

Theorem 30

Let j : A → E be a dense functor. A functor r : D → E exhibits
its domain as isomorphic to the Eilenberg–Moore category for a
j-relative monad if and only if it admits a left j-relative adjoint
and strictly creates j-absolute colimits.

(This is a Paré-style monadicity theorem [Par71], rather than a Beck-
style monadicity theorem [Bec66].)
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Monadic pasting

Theorem 31

Consider the following diagram, in which ℓ′ j⊣ r′ is j-monadic.

C

D

A E

r

j

r′
ℓ′

ℓ

⊣

Then the left triangle is ℓ′-monadic if and only if the outer
triangle is j-monadic.

In many situations of interest, this result allows us to deduce that
algebraic functors (i.e. concrete functors between Eilenberg–Moore
categories for relative monads) are themselves monadic.
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Relative opmonadicity

While the monadicity theorem is very well known in category theory,
the corresponding characterisation of opmonadic functors (i.e. those
isomorphic to the Kleisli inclusion of a monad) appears less well
known.

Theorem 32

A functor ℓ : A → B exhibits its codomain as isomorphic to the
Kleisli category for a j-relative monad if and only if it admits a
right j-relative adjoint and is bijective-on-objects.

Notably, in contrast to the relative monadicity theorem, this charac-
terisation does not rely on j, apart from in the form of adjointness.
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Trivial relative monads

Every functor j : A → E may be viewed as a trivial j-relative monad.
In fact, this is the initial j-monad. While we might expect trivial
relative monads to be uninteresting, just as trivial monads, this is
far from being the case.

Algebras for trivial relative monads are uninteresting: they are simply
objects of the codomain. However, opalgebras are a different matter.

The Kleisli category for the trivial j-monad is precisely the factori-
sation of j into a bijective-on-objects functor, followed by a fully
faithful functor: i.e. the full image factorisation. This has a useful
consequence.

Proposition 33

Let T be a j-monad admitting a resolution ℓ j⊣ r. Then Kl(T )
is isomorphic to the Kleisli category of the trivial ℓ-monad Kl(ℓ).
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The Kleisli resolution

In other words, let T be a j-relative monad with a resolution:

C

A E

ℓ r

j

⊣

Then the (bijective-on-objects, fully faithful)-factorisation of ℓ is the
Kleisli category of T .

Kl(T ) C

A E

ℓ
r

j

kT

[]

⊣

This gives a particularly convenient method to check whether two
relative adjunctions induce the same relative monad.
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The pullback theorem

Theorem 34

Let j : A → E be a dense functor. There is a pullback in Cat
as follows.

EM(T ) EM(T ; nj) K̂l(T )

E Â

k̂T

nj

uT

∼=

uT ;nj

⌟

Corollary 35

The comparison functor iT : Kl(T ) → EM(T ) is dense.
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Duality
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Relative coadjunctions

Unlike the notion of adjunction, the notion of relative adjunction is
not self-dual.

Definition 36 ([Ulm68])

A relative coadjunction comprises

1. a functor i : Z → V , the coroot;
2. a functor ℓ : X → V , the left relative coadjoint;
3. a functor r : Z → X, the right relative coadjoint;
4. an isomorphism of the form V (ℓ, i) ∼= X(1, r).

Z V

X

r ℓ

i

⊣
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Relative comonads

Just as with monads, comonads also have a generalisation to arbitrary
functors.

Definition 37

A relative comonad comprises

1. a functor i : Z → V , the coroot;
2. a functor d : Z → V , the underlying functor;
3. a natural transformation ε : d ⇒ i, the counit;
4. a form †

: V (d, i) ⇒ V (d, d), the coextension operator,

satisfying counitality and coassociativity laws.

Proposition 38

Every relative coadjunction induces a relative comonad.
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The monad–theory correspondence
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Algebraic theories and monads

It is well known that the category of finitary algebraic theories is
equivalent to the category of finitary monads on Set (cf. [Lin66;
Die75; Pow99]). Traditionally, the proof is somewhat involved, and
usually proceeds via a monadicity theorem.

However, the monad–theory correspondence is actually a direct
consequence of some of the properties of relative adjunctions and
relative monads that we have discussed. That is, it fits within the
general theory of relative monads.

This demonstrates that these abstract results about relative monads
can have applications to interesting and long-standing questions in
category theory.
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Algebraic theories are relative adjoints

Definition 39

Denote by F the free category with strict finite coproducts on a
single object. A finitary algebraic theory is an identity-on-objects
functor from F that preserves finite coproducts.

Lemma 40

A functor from F preserves finite coproducts if and only if it is
left adjoint relative to F ↪→ Set.

Corollary 41

A functor from F is a finitary algebraic theory if and only if it is
the Kleisli inclusion for a (F ↪→ Set)-relative monad.
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Algebraic theories and relative monads

Definition 42

A morphism of finitary algebraic theories is a morphism of
coslices under F.

F

L L′

ℓ ℓ′

f

Theorem 43

The category of finitary algebraic theories is equivalent to the
category of (F ↪→ Set)-relative monads.
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Algebraic theories and monads

Theorem 44

The category of finitary algebraic theories is equivalent to the
category of finitary monads on Set.

Corollary 45

Let ℓ : F → L be a finitary algebraic theory. The category of
algebras for the induced relative monad is given by the following
pullback in Cat.

Cart(Lop,Set) L̂

Cart(Fop,Set) F̂
ℓ̂Cart(ℓop,Set) ⌟
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The formal theory
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Enriched relative monads

Everything I have described is true more generally for categories
enriched in a monoidal category V.

In fact, the setting in which we
work is even more general than enriched category theory: we work in
the context of formal category theory.

The 2-dimensional structure that axiomatises the behaviour of (en-
riched) categories, functors, distributors, and forms is called a virtual
equipment [CS10]. This is the setting in which we work in [AM23a;
AM23b]. This permits us to capture ordinary relative monads, en-
riched relative monads, internal relative monads, strong relative
monads, and so on, in a single framework.

However, in our papers, we spell out examples of interest in V-Cat,
so it should be approachable even for those readers not interested in
the formal aspects.
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Summary

This has been a very quick overview of some of the fundamental
aspects of the theory of relative (co)monads. The hope is that this
gives you an idea of the tools at your disposal for working with
relative (co)monads and relative (co)adjunctions, and also gives a
taste for how powerful these techniques are for proving theorems of
practical interest.

The first two papers in our series are:

1. The formal theory of relative monads

2. Relative monadicity

Some of the results I have mentioned may also be found in my thesis:

3. Monadic and Higher-Order Structure

Keep an eye out for the next installments...
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