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Overview

Graded monads and their algebras
Graded coalgebraic semantics
Generic determinization of coalgebras under graded semantics

Game characterizations of graded semantics, for free
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Graded monads

e In this talk, a graded monad is a lax monoidal action

’//leet—)Set‘

where .# is the discrete category induced by (N, +,0).

e Graded monad M = (M, n, 1) on Set (n,k € N):

M, : Set — Set n:ld — My w ks My My, — M,y

subject to unit and multiplication laws:

Mn k,m
M, My My My, =2 M, Myt
M, M,
y lid Xﬂ un,k}\/[ml lun,(ker)
n,0 0,n (n+k),m
7 7 "
My, My M, MoM,, Mn—i—chm — Mn+k+m
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Examples

Functor iteration
Given a functor G': Set — Set, define Mg by

My:=G" n=I1d3HG0  pnk:=grgh Y gntk

Kleisli distributive laws
Each distributive law \: FT — TF with

(T,n, 1) a monad F': Set — Set a functor

yields a graded monad with M,, := T'F", unit 7, and multiplication

ok = TErp Rk IXNEY, pppn gk B ek

where \": F" T — TF™,

e.g. for a set A, taking M,, = # (A" x —) yields a graded monad
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Graded algebras

e Graded monads admit a notion of graded algebra [FKM16, MPS15]

...generalizing the EM category of ordinary monads

e For n € N, the category Alg,, (M) has

> objects: families of sets (Ay)x<n with structure maps
a™k M, A, — Amak (m+k<n)

compatible with M:

; Mya™"
A, —9 5 AL MMy Ay ——— M¢Apqk
n 2,7YLJ/ J/ L,m+k
attm,
My Ay, Mpym Ay ——— Apymtk

> morphisms: graded algebra homorphisms
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Examples

e Mjy-algebras: EM algebras for (My,n, u®°)
e Mj-algebras: a pair of EM algebras
aO’OZ M()A[) — AO CLO’IZ M0A1 — A1

equipped with a main structure map

‘al’ot MlAO — Al ‘

a0 (MlAO,MOA’I) — (A1,a%!) an My-algebra homom. and

1,0

we 1,0

MlM()AO ; MlAO 2 A1
Mya%0

Proposition [MPS15]

The free M,-algebra on X has carrier (M X )<, and
multiplication u"’k: M, Mp X — My, X as structure.
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Canonical algebras

e The O-part of Mj-algebra (A, a) is the My-algebra (Ag, a*?)
e Taking 0-parts defines a forgetful functor
(—o: Algy (M) — Algy(M), A (Ag,a™?)

An M;-algebra A is canonical if it is free over its O-part w.r.t. (—)o.

Proposition [DMS19]

An M;-algebra A is canonical iff

1,0
ne 1,0
My MgAy ——= M1Ag —— Ay
Mla0,0

is a coequalizer diagram in Alg,(M).

‘e.g. (Mo X, M1 X) is canonical...sometimes(!)‘
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Graded equational theories

Finitary graded monads admit presentations by graded theories:

® graded signature 3: algebraic signature + depth on operations

terms of uniform-depth n with variables in X, denoted T, (X):
> each variable is a term of uniform depth 0;

> given m-ary o € ¥ and tq, ...t € Ty k(X),
then O'(tl, ce ,tm) S TE,d(o’)+k(X)~

® uniform-depth equations: pairs of terms of the same depth

graded theory: pairs T = (3, ), where £ is a set of u.d. equations

Every graded monad is the free-algebra graded monad of a graded
equational theory. In particular, M, X has the form T¥ ,(X)/=¢ for
some (3, &), and Alg(M) = Alg(T).
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Graded theory of trace equivalence

Graded theory of A-traces

® Depth-0: operations/equations of join semilattices

e Depth-1: unary actions a(—) satisfying | a(z + y) = a(x) + a(y)

e The theory above captures the graded monad
with M, X = Z,(A" x X)

e join semilattices ~» convex algebras: theory of prob. traces
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Depth-1 graded monads and theories

e A graded theory is depth-1 if its ops/eqns have depth at most 1.
e M is depth-1 if it is presentable by a depth-1 graded theory
> i.e. Alg(M) = Alg(T) for some depth-1 graded theory T

> almost expressible in terms of a coequalizer [MPS15]

e Depth-1 graded monads have ‘nice’ canonical algebras:

Proposition
Let k € N and let M be depth-1. Then (MX, My1X) is canonical.

e.g. the graded theory of A-traces is depth-1 hence also M,, = Z (A" x —)
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Graded semantics

Graded semantics: framework for spectra of behavioural semantics

‘ coalgebra [system-type] + graded monads [granularity] ‘

Graded semantics on G-coalgebras

A pair (a, M) with M a graded monad and G % M, a natural transformation.

Given X > GX, define Ay X — M, 1:

NORSES'GUNS VS QLI VS|

o (n) Ln
NP QRN V5 QUG Vo) VA QLN VS |

T~ aM) Y = ™) (2) = 4" (y) for all n € N
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Examples of graded semantics

Coalgebraic behavioural equivalence
Recall that M has M,, = G™. Then for (Id,M¢) we see:
e 7(": X — M,1 form the canonical cone into the final chain:

YO =x b1 4= x X ax S grly

e G finitary implies ~ (g n,) 1S coalgebraic behavioural equivalence

v

Trace equivalence on LTS
Let v: X = Z(A x X) be an LTS.
> Trace equivalence is the relation defined for all z,y € X by

x ~T Y = Trp(x) = Trp(y) for all n € w

> Trace equivalence captured by M, X = &Z;(A" x X) and o = id.
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(Pre-)determinization

Assumption: (a, M) a depth-1 graded semantics on G-coalgebras

e Bach My-algebra (Ag, a®?) extends to a canonical algebra EA:

1,0

B )
M1MOA0 ﬁ MlAO L> A1
Mlao,o

e This assignment is part of a functor E: Algy(M) — Alg; (M)
e Define

T = Algy(M) 2 Alg, (M) 2 Alg,y (M)

e For instance,
M (Mo X, 1) = (My X, ™)
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e Thus, where F' 41U : Algy(M) — Set:
My (MoX, 1°°) = (M X, u®Y) = UMF =M,
e Given v: X — M1 X = UM, FX, we obtain
v*: FX — M FX
via adjoint transposition. Explicitly:

. 0,1
A = MoX MO poMy X B My X

The predeterminization of v: X — GX is the M;-coalgebra v7.

Suppose that Mol = 1. Then  ~(, ) v iff n(z) and n(y) are

finite-depth M;j-behaviourally equivalent.
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The n-round equivalence game G,

Gy, captures (a, M)-equivalence at depth n on

v: X - GX

=X L GX 5 MX)

...starting from n(z) = n(y) for target states z,y:

Position Player Admissible Moves
(s,t) € (MpX)? D {Z C (MyX)? | Z 1y sy =17}
7Z C (MpX)? S Z ={(s,t) € (MgX)?| (s,t) € Z}
Play of G, : (s,t) Z1 (s1,t1) ... Zn | (Sn,tn)

Slogan: equivalence games play out equational proofs in graded theories ‘
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Main theorem

Suppose (a, M) is depth-1 such that Mj preserves monos. Then:

T ~e@m Y <= D wins the n-round S-game for all n € w

Currently, restricted to graded semantics in Set:
e We use that the EM category of a monad on Set is regular...

e ..ensuring that for the kernel pair p,q: Z — X of a
map f: X — Y we have m monic below

ZﬁX—C>C’
q //

1
’
Y
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Bisimilarity game

Position Player Admissible Moves
(5,t) € (MoX)? D {Z C (MyX)?| Z 1 sy =17}
7 C (MpX)? S Z ={(s,t) € (MoX)?| (s,t) € Z}

Our bisimilarity game is somewhat non-standard:

o (id, Mg, (ax—)) captures bisimilarity on f.b. LTS

Positions for D are state pairs in a LTS v: X — GX since My = Id

Z is admissible for D at (z,y) if it is a local bisimulation at (x,y)

Given Z, S picks the next state pair to continue the game

D wins every full play because the Myl =1
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Trace equivalence game

X
N
Yo Y1
| e
20 21 /

At (z,2), D plays Z1 := {yo +y1 = yo}
admissible: Z1 F1 a(yo) + a(y1) = a(yh)?

At position Z1, S must play (yo +vy1 = yo) € Z1

At (yo+y1,¥), D plays Zs := {20 = 20,21 = 21}
admissibile: Zs b1 b(20) + c(21) = b(2)) + c(21)?

S plays a challenge from Z5 inducing‘ (x,2") Z1 (yo + y1,90) Z2 (2, 2})

D wins because * = x is valid in JSL
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Concluding remarks

See here for our arXiv preprint:

e Graded semantics: framework for capturing spectra of behavioural
semantics based on coalgebra and graded monads

e In this talk:
> a generic determinization construction under graded semantics

> game characterizations of graded behavioural equivalences for free

e Many interesting problems for future work:
> extensions beyond Set (e.g. games for preorders, metrics, etc.)

> minimization under graded semantics (...learning algorithms)
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https://arxiv.org/abs/2203.15467
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