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Problems and reductions Examples NP

Decision problems

Definition
A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Equivalently we can think of a decision problem to be a subset A ⊆ {0, 1}∗

Example (Bipartite matching)

Given a bipartite graph G and a number k ∈ N. We want to decide if there exists matching in G with at least k
edges.

Lets satisfy the definition:
1 We need to encode input in a binary form that can describe every input size.
2 Decision problem formally needs to produce result even for malformed inputs.

We can just define answer as 0 in that case.
Can we solve the problem?
Yes: we can “reduce” it to a network flow problem.

Definition (Reduction)

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A −→ B) if there exists
function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗ it holds A(x) = B(f (x)) and f can be computed in
polynomial time relative to |x |. Function f is also called (polynomial time) reduction.
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Properties of reduction

Definition (Reduction)

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A −→ B) if there exists
function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗ it holds A(x) = B(f (x)) and f can be computed in
polynomial time relative to |x |. Function f is also called (polynomial time) reduction.

Intuition: A −→ B implies that B is “at least as hard to solve as A”.

Lemma
If A −→ B and B can be solved in polynomial time, then A can be solved in polynomial time too.

Proof.

1 Assume that there is an algorithm solving B in O(bk ) where b is length of the input and k is some constant.

2 Let f be a reduction A −→ B computable in time O(a`) for input of length a.

3 To solve A(x) of length a we first compute g(x) in time O(a`) and we produce output of length O(a`).
Next we compute B(f (x)) in time O((ak )`) = O(ak`).

4 Overall time is O(a` + ak`)
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Properties of reduction II

“−→” can be seen as a binary relation on the set of all problems. It satisfies:
1 “−→” is reflexive: A −→ A.

2 “−→” is transitive: A −→ B and B −→ C =⇒ A −→ C.
3 “−→” is not antisymmetric.
4 There exists problems such that A 6−→ B and B 6−→ A.

It follows that −→ is a preorder (or quasiorder).
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Michael Garey and David S. Johnson “Computers and Intractability: A Guide to the Theory of NP-Completeness” (1979)
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SAT: satisfiability of formulas in CNF

Definition (Conjuctive normal form)

Formula ϕ in conjunctive normal form (CNF) consists of

1 clauses separated by ∨ (“and”),

2 every clause consist of literals separated by ∧ (“or”),

3 every literal is either variable or its negation.

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an {0, 1}-assignment to variables such that ϕ(. . .) = 1

Examples:

1 (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

2 (x ∨ y) ∧ (x ∨ ¬y) ∧ ¬x



Problems and reductions Examples NP

SAT: satisfiability of formulas in CNF

Definition (Conjuctive normal form)

Formula ϕ in conjunctive normal form (CNF) consists of

1 clauses separated by ∨ (“and”),

2 every clause consist of literals separated by ∧ (“or”),

3 every literal is either variable or its negation.

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an {0, 1}-assignment to variables such that ϕ(. . .) = 1

Examples:

1 (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

2 (x ∨ y) ∧ (x ∨ ¬y) ∧ ¬x



Problems and reductions Examples NP

SAT: satisfiability of formulas in CNF

Definition (Conjuctive normal form)

Formula ϕ in conjunctive normal form (CNF) consists of

1 clauses separated by ∨ (“and”),

2 every clause consist of literals separated by ∧ (“or”),

3 every literal is either variable or its negation.

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an {0, 1}-assignment to variables such that ϕ(. . .) = 1

Examples:

1 (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

2 (x ∨ y) ∧ (x ∨ ¬y) ∧ ¬x



Problems and reductions Examples NP

SAT: satisfiability of formulas in CNF

Definition (Conjuctive normal form)

Formula ϕ in conjunctive normal form (CNF) consists of

1 clauses separated by ∨ (“and”),

2 every clause consist of literals separated by ∧ (“or”),

3 every literal is either variable or its negation.

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an {0, 1}-assignment to variables such that ϕ(. . .) = 1

Examples:

1 (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

2 (x ∨ y) ∧ (x ∨ ¬y) ∧ ¬x



Problems and reductions Examples NP

SAT: satisfiability of formulas in CNF

3-SAT
Same as SAT but every clause has at most 3 literals

Observation
3-SAT −→ SAT

Proof.

1 Assume that there is some clause with k > 3 literals. Write it as (α ∨ β) where α has 2 literals and β has k
literals.

2 Replace this clause by two caluses: (α ∨ x) and (¬x ∨ β).
3 Repeating steps 1 and 2 decomposes long clause to short in k − 3 steps. This can be done for all long

clauses extending input polynomially.

4 Apply 3− SAT to solve expanded formula. Original formula is satisfiable ⇐⇒ expanded formula is.
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IndSet: Independent set in graph

Subset A of vertices of G is independent if there is no edge connecting two vertices in A.

IndSet

1 Input: Unoriented graph G and number k .

2 1 if and only if G contains an independent set of size k .
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IndSet

1 Input: Unoriented graph G and number k .

2 1 if and only if G contains an independent set of size k .

3-SAT −→ IndSet

y z

x

¬y ¬z

x

¬y p

¬x

(x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ p)
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IndSet: Independent set in graph

Subset A of vertices of G is independent if there is no edge connecting two vertices in A.

IndSet

1 Input: Unoriented graph G and number k .

2 1 if and only if G contains an independent set of size k .

IndSet −→ SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .
1 Enumerate vertices as 1, . . . , n and create variables v1, . . . vn.

vi = 1 if vi is in the independent set.
2 For every edge {i, j} add clause ¬vi ∨ ¬vj .
3 We need to test if set is large enough.

Create k × n matrix X . xi,j will say that i-th element of the independent set is vertex j .
Add following clauses:

1 Every column has at most one 1. Add clauses xi,j =⇒ ¬xi′,j for every i′ 6= i .
2 Every row has at most one 1. Add clauses xi,j =⇒ ¬xi,j′ for every j′ 6= j .
3 Every row has at least one 1. Add clauses (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n).
4 Tie matrix and the independent set: Add clauses xi,j =⇒ vj .
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vi = 1 if vi is in the independent set.

2 For every edge {i, j} add clause ¬vi ∨ ¬vj .
3 We need to test if set is large enough.

Create k × n matrix X . xi,j will say that i-th element of the independent set is vertex j .
Add following clauses:

1 Every column has at most one 1. Add clauses xi,j =⇒ ¬xi′,j for every i′ 6= i .
2 Every row has at most one 1. Add clauses xi,j =⇒ ¬xi,j′ for every j′ 6= j .
3 Every row has at least one 1. Add clauses (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n).
4 Tie matrix and the independent set: Add clauses xi,j =⇒ vj .
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Clique: Clique in a graph

Clique

1 Input: Unoriented graph G and number k .

2 1 if and only if G contains an clique of size k .

IndSet −→ Clique
Clique −→ IndSet
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3,3-SAT

3-SAT
Same as 3-SAT but every variable appears in at most 3 literals.

3-SAT −→ 3,3-SAT
if variable x appears more than 3 times, replace it by multiple variables x1, x2, . . . xk and add clauses requiring
them to have same values (x1 =⇒ x2), (x2 =⇒ x3), . . . , (xk−1 =⇒ xk ), (xk =⇒ x1).
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Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L ∈ P if and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f (|x |) and A(x) = L(x).

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of lenght at most g(|x |) such that
K (x , y) = 1.

You can think of y as a certificate that L(x) = 1.

Observation
SAT ∈ NP.

Observation
P ⊆ NP.

P = NP is open since 1970’s.
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NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean circuit SAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .
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