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Decision problems

Definition
A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

Equivalently we can think of a decision problem to be a subset A C {0,1}*

Example (Bipartite matching)

Given a bipartite graph G and a number k € N. We want to decide if there exists matching in G with at least k
edges.

Lets satisfy the definition:
@ We need to encode input in a binary form that can describe every input size.

® Decision problem formally needs to produce result even for malformed inputs.
We can just define answer as 0 in that case.

Can we solve the problem?
Yes: we can “reduce” it to a network flow problem.
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polynomial time relative to |x|. Function f is also called (polynomial time) reduction.
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© Assume that there is an algorithm solving B in O(b) where b is length of the input and k is some constant.
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Properties of reduction

Definition (Reduction)

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A — B) if there exists
function f : {0,1}* — {0, 1}* such that for every x € {0,1}* it holds A(x) = B(f(x)) and f can be computed in
polynomial time relative to |x|. Function f is also called (polynomial time) reduction.

Intuition: A — B implies that B is “at least as hard to solve as A”.

Lemma
If A— B and B can be solved in polynomial time, then A can be solved in polynomial time too.

Proof.

@ Assume that there is an algorithm solving B in O(b¥) where b is length of the input and k is some constant.
@ Let f be a reduction A — B computable in time O(a’) for input of length a.

@ To solve A(x) of length a we first compute g(x) in time O(a’) and we produce output of length O(a*).
Next we compute B(f(x)) in time O((a")?) = O(a**).

0 Overall time is O(a’ + a*)
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“—” can be seen as a binary relation on the set of all problems. It satisfies:

Q@ “— " is reflexive: A — A.
® “—is transitve: A— BandB— C — A — C.

® “—” is not antisymmetric.
@ There exists problems such that A /— B and B /— A.
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NP



Formula ¢ in conjunctive normal form (CNF) consists of
@ clauses separated by Vv (“and”),
@® every clause consist of literals separated by A (“or”),
@ every literal is either variable or its negation.



Formula ¢ in conjunctive normal form (CNF) consists of
@ clauses separated by Vv (“and”),
@® every clause consist of literals separated by A (“or”),
@ every literal is either variable or its negation.

@ Input: formula ¢ in CNF
® Output: 1 if and only if there exists an {0, 1}-assignment to variables such that ¢(...) =1



Formula ¢ in conjunctive normal form (CNF) consists of
@ clauses separated by Vv (“and”),
@® every clause consist of literals separated by A (“or”),
@ every literal is either variable or its negation.

@ Input: formula ¢ in CNF
® Output: 1 if and only if there exists an {0, 1}-assignment to variables such that ¢(...) =1

Examples:
O (XVYVZ)AN(-XVYVZ)AN(XVYyVZ)AN(XVYV-2)



Formula ¢ in conjunctive normal form (CNF) consists of
@ clauses separated by Vv (“and”),
@® every clause consist of literals separated by A (“or”),
@ every literal is either variable or its negation.

@ Input: formula ¢ in CNF
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Same as SAT but every clause has at most 3 literals

3-SAT — SAT

@ Assume that there is some clause with k > 3 literals. Write it as (o VV 3) where « has 2 literals and 3 has k
literals.

@® Replace this clause by two caluses: (o V x) and (—x V 3).

© Repeating steps 1 and 2 decomposes long clause to short in k — 3 steps. This can be done for all long
clauses extending input polynomially.

@ Apply 3 — SAT to solve expanded formula. Original formula is satisfiable <= expanded formula is.
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IndSet: Independent set in graph

Subset A of vertices of G is independent if there is no edge connecting two vertices in A.
IndSet

@ Input: Unoriented graph G and number k.
® 1 if and only if G contains an independent set of size k.

IndSet — SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k.
@ Enumerate vertices as 1, ..., nand create variables vy, ... vp.
v; = 1if v; is in the independent set.
@ For every edge {/,j} add clause —v; vV —v;.
©® We need to test if set is large enough.
Create k x nmatrix X. x; ; will say that i-th element of the independent set is vertex j.
Add following clauses:
@ Every column has at most one 1. Add clauses x;; = —x; ; for every i # .
@ Every row has at most one 1. Add clauses x;; = —x; y for every j # j.
© Every row has at least one 1. Add clauses (X1 V Xj2 V - - - V Xj p).
O Tie matrix and the independent set: Add clauses x;; = V;.
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@ Input: Unoriented graph G and number k.
® 1 if and only if G contains an clique of size k.

IndSet — Clique
Clique — IndSet
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Same as 3-SAT but every variable appears in at most 3 literals.

3-SAT — 3,3-SAT
if variable x appears more than 3 times, replace it by multiple variables x1, xo, . . . X, and add clauses requiring

them to have same values (xy = x2), (X2 = X3), ..., (Xkm1 = Xk), (Xk = X1).
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P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L € Pif and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f(|x|) and A(x) = L(x).

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of lenght at most g(|x|) such that
K(x,y)=1.

You can think of y as a certificate that L(x) = 1.

SAT € NP.

P C NP.

P = NP is open since 1970’s.
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Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

NP-hard problem L is called NP-complete iff it is in P.

SAT is NP-complete.

Given two problems L, M € NP. If L is NP-complete and L — M, then M is NP-complete.

Examples of NP-complete problems:
@ Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean circuit SAT, ...
® Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, ...
® Numerical problems: Finding subset of a given sum, Knapsack, Ax =1, ...
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