

Algorithms and datastructures II

Lecture 9: Introduction to the complexity theory

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Nov 30 2020

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Lets satisfy the definition:

- ① We need to encode input in a binary form that can describe every input size.

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Lets satisfy the definition:

- ① We need to encode input in a binary form that can describe every input size.
- ② Decision problem formally needs to produce result even for malformed inputs.

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Lets satisfy the definition:

- ① We need to encode input in a binary form that can describe every input size.
- ② Decision problem formally needs to produce result even for malformed inputs.
We can just define answer as 0 in that case.

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Lets satisfy the definition:

- ① We need to encode input in a binary form that can describe every input size.
- ② Decision problem formally needs to produce result even for malformed inputs.
We can just define answer as 0 in that case.

Can we solve the problem?

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Lets satisfy the definition:

- ① We need to encode input in a binary form that can describe every input size.
- ② Decision problem formally needs to produce result even for malformed inputs.
We can just define answer as 0 in that case.

Can we solve the problem?

Yes: we can “reduce” it to a network flow problem.

Decision problems

Definition

A **(decision) problem** if a function from $\{0, 1\}^*$ (the set of all possible inputs) to $\{0, 1\}$.

Equivalently we can think of a decision problem to be a subset $A \subseteq \{0, 1\}^*$

Example (Bipartite matching)

Given a bipartite graph G and a number $k \in \mathbb{N}$. We want to decide if there exists matching in G with at least k edges.

Lets satisfy the definition:

- ① We need to encode input in a binary form that can describe every input size.
- ② Decision problem formally needs to produce result even for malformed inputs.
We can just define answer as 0 in that case.

Can we solve the problem?

Yes: we can “reduce” it to a network flow problem.

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Properties of reduction

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Intuition: $A \rightarrow B$ implies that B is “at least as hard to solve as A ”.

Properties of reduction

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Intuition: $A \rightarrow B$ implies that B is “at least as hard to solve as A ”.

Lemma

If $A \rightarrow B$ and B can be solved in polynomial time, then A can be solved in polynomial time too.

Properties of reduction

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Intuition: $A \rightarrow B$ implies that B is “at least as hard to solve as A ”.

Lemma

If $A \rightarrow B$ and B can be solved in polynomial time, then A can be solved in polynomial time too.

Proof.

- ① Assume that there is an algorithm solving B in $O(b^k)$ where b is length of the input and k is some constant.

Properties of reduction

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Intuition: $A \rightarrow B$ implies that B is “at least as hard to solve as A ”.

Lemma

If $A \rightarrow B$ and B can be solved in polynomial time, then A can be solved in polynomial time too.

Proof.

- ① Assume that there is an algorithm solving B in $O(b^k)$ where b is length of the input and k is some constant.
- ② Let f be a reduction $A \rightarrow B$ computable in time $O(a^\ell)$ for input of length a .

Properties of reduction

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Intuition: $A \rightarrow B$ implies that B is “at least as hard to solve as A ”.

Lemma

If $A \rightarrow B$ and B can be solved in polynomial time, then A can be solved in polynomial time too.

Proof.

- ① Assume that there is an algorithm solving B in $O(b^k)$ where b is length of the input and k is some constant.
- ② Let f be a reduction $A \rightarrow B$ computable in time $O(a^\ell)$ for input of length a .
- ③ To solve $A(x)$ of length a we first compute $g(x)$ in time $O(a^\ell)$ and we produce output of length $O(a^\ell)$. Next we compute $B(f(x))$ in time $O((a^k)^\ell) = O(a^{k\ell})$.

Properties of reduction

Definition (Reduction)

Given problems A and B , we say that A is **(polynomial time) reducible** to B (and write $A \rightarrow B$) if there exists function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every $x \in \{0, 1\}^*$ it holds $A(x) = B(f(x))$ and f can be computed in polynomial time relative to $|x|$. Function f is also called **(polynomial time) reduction**.

Intuition: $A \rightarrow B$ implies that B is “at least as hard to solve as A ”.

Lemma

If $A \rightarrow B$ and B can be solved in polynomial time, then A can be solved in polynomial time too.

Proof.

- ① Assume that there is an algorithm solving B in $O(b^k)$ where b is length of the input and k is some constant.
- ② Let f be a reduction $A \rightarrow B$ computable in time $O(a^\ell)$ for input of length a .
- ③ To solve $A(x)$ of length a we first compute $g(x)$ in time $O(a^\ell)$ and we produce output of length $O(a^\ell)$. Next we compute $B(f(x))$ in time $O((a^k)^\ell) = O(a^{k\ell})$.
- ④ Overall time is $O(a^\ell + a^{k\ell})$

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

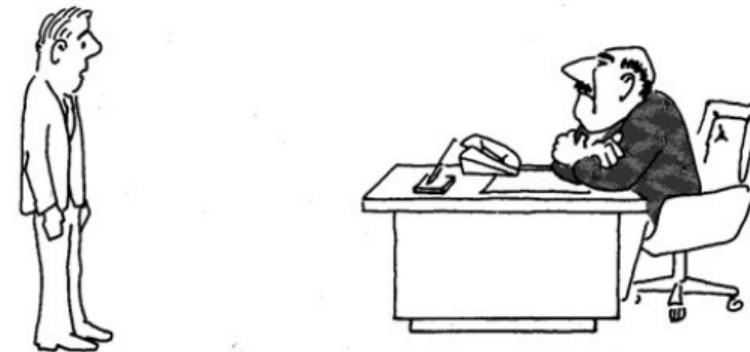
It follows that \rightarrow is a **preorder** (or **quasiorder**).

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \Rightarrow A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

It follows that \rightarrow is a **preorder** (or **quasiorder**).



“I can't find an efficient algorithm, I guess I'm just too dumb.”

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

It follows that \rightarrow is a **preorder** (or **quasiorder**).

“I can't find an efficient algorithm, because no such algorithm is possible!”

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \Rightarrow A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

It follows that \rightarrow is a **preorder** (or **quasiorder**).

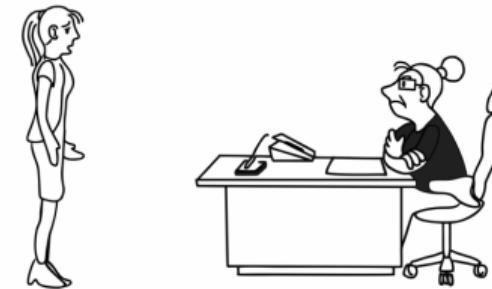
“I can't find an efficient algorithm, but neither can all these famous people.”

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

It follows that \rightarrow is a **preorder** (or **quasiorder**).



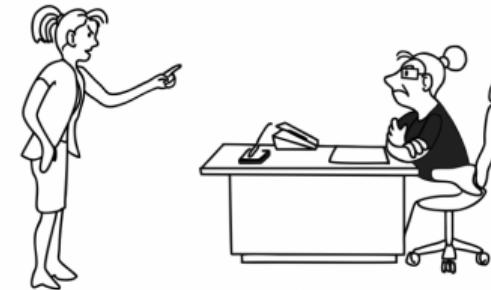
“I can't find an efficient algorithm, I guess I'm just too dumb.”

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \implies A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

It follows that \rightarrow is a **preorder** (or **quasiorder**).



“I can't find an efficient algorithm, because no such algorithm is possible!”

Properties of reduction II

“ \rightarrow ” can be seen as a binary relation on the set of all problems. It satisfies:

- ① “ \rightarrow ” is reflexive: $A \rightarrow A$.
- ② “ \rightarrow ” is transitive: $A \rightarrow B$ and $B \rightarrow C \Rightarrow A \rightarrow C$.
- ③ “ \rightarrow ” is not antisymmetric.
- ④ There exists problems such that $A \not\rightarrow B$ and $B \not\rightarrow A$.

It follows that \rightarrow is a **preorder** (or **quasiorder**).

“I can't find an efficient algorithm, but neither can all these famous people.”

SAT: satisfiability of formulas in CNF

Definition (Conjunctive normal form)

Formula φ in **conjunctive normal form (CNF)** consists of

- ① clauses separated by \vee (“and”),
- ② every clause consist of literals separated by \wedge (“or”),
- ③ every literal is either variable or its negation.

SAT: satisfiability of formulas in CNF

Definition (Conjunctive normal form)

Formula φ in **conjunctive normal form (CNF)** consists of

- ① **clauses** separated by \vee (“and”),
- ② every clause consist of **literals** separated by \wedge (“or”),
- ③ every literal is either variable or its negation.

SAT

- ① Input: formula φ in CNF
- ② Output: **1** if and only if there exists an $\{0, 1\}$ -assignment to variables such that $\varphi(\dots) = 1$

SAT: satisfiability of formulas in CNF

Definition (Conjunctive normal form)

Formula φ in **conjunctive normal form (CNF)** consists of

- ① **clauses** separated by \vee (“and”),
- ② every clause consist of **literals** separated by \wedge (“or”),
- ③ every literal is either variable or its negation.

SAT

- ① Input: formula φ in CNF
- ② Output: **1** if and only if there exists an $\{0, 1\}$ -assignment to variables such that $\varphi(\dots) = 1$

Examples:

- ① $(x \vee y \vee z) \wedge (\neg x \vee y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee \neg z)$

SAT: satisfiability of formulas in CNF

Definition (Conjunctive normal form)

Formula φ in **conjunctive normal form (CNF)** consists of

- ① **clauses** separated by \vee (“and”),
- ② every clause consist of **literals** separated by \wedge (“or”),
- ③ every literal is either variable or its negation.

SAT

- ① Input: formula φ in CNF
- ② Output: **1** if and only if there exists an $\{0, 1\}$ -assignment to variables such that $\varphi(\dots) = 1$

Examples:

- ① $(x \vee y \vee z) \wedge (\neg x \vee y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee \neg z)$
- ② $(x \vee y) \wedge (x \vee \neg y) \wedge \neg x$

SAT: satisfiability of formulas in CNF

3-SAT

Same as SAT but every clause has at most 3 literals

Observation

3-SAT \rightarrow SAT

Proof.

- ① Assume that there is some clause with $k > 3$ literals. Write it as $(\alpha \vee \beta)$ where α has 2 literals and β has k literals.

SAT: satisfiability of formulas in CNF

3-SAT

Same as SAT but every clause has at most 3 literals

Observation

3-SAT \rightarrow SAT

Proof.

- ① Assume that there is some clause with $k > 3$ literals. Write it as $(\alpha \vee \beta)$ where α has 2 literals and β has k literals.
- ② Replace this clause by two clauses: $(\alpha \vee x)$ and $(\neg x \vee \beta)$.

SAT: satisfiability of formulas in CNF

3-SAT

Same as SAT but every clause has at most 3 literals

Observation

3-SAT \rightarrow SAT

Proof.

- ① Assume that there is some clause with $k > 3$ literals. Write it as $(\alpha \vee \beta)$ where α has 2 literals and β has k literals.
- ② Replace this clause by two clauses: $(\alpha \vee x)$ and $(\neg x \vee \beta)$.
- ③ Repeating steps 1 and 2 decomposes long clause to short in $k - 3$ steps. This can be done for all long clauses extending input polynomially.

SAT: satisfiability of formulas in CNF

3-SAT

Same as SAT but every clause has at most 3 literals

Observation

3-SAT \rightarrow SAT

Proof.

- ① Assume that there is some clause with $k > 3$ literals. Write it as $(\alpha \vee \beta)$ where α has 2 literals and β has k literals.
- ② Replace this clause by two clauses: $(\alpha \vee x)$ and $(\neg x \vee \beta)$.
- ③ Repeating steps 1 and 2 decomposes long clause to short in $k - 3$ steps. This can be done for all long clauses extending input polynomially.
- ④ Apply $3 - SAT$ to solve expanded formula. Original formula is satisfiable \iff expanded formula is.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

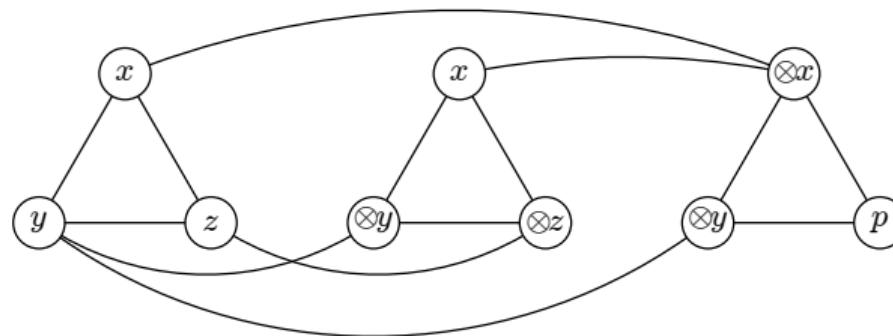
IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

3-SAT \rightarrow IndSet



$$(x \vee y \vee z) \wedge (x \vee \neg y \vee \neg z) \wedge (\neg x \vee \neg y \vee p)$$

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.
- ③ We need to test if set is large enough.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.
- ③ We need to test if set is large enough.
Create $k \times n$ matrix X . $x_{i,j}$ will say that i -th element of the independent set is vertex j .

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.
- ③ We need to test if set is large enough.

Create $k \times n$ matrix X . $x_{i,j}$ will say that i -th element of the independent set is vertex j .

Add following clauses:

- Every column has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i',j}$ for every $i' \neq i$.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.
- ③ We need to test if set is large enough.

Create $k \times n$ matrix X . $x_{i,j}$ will say that i -th element of the independent set is vertex j .

Add following clauses:

- ① Every column has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i',j}$ for every $i' \neq i$.
- ② Every row has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i,j'}$ for every $j' \neq j$.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.
- ③ We need to test if set is large enough.

Create $k \times n$ matrix X . $x_{i,j}$ will say that i -th element of the independent set is vertex j .

Add following clauses:

- ① Every column has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i',j}$ for every $i' \neq i$.
- ② Every row has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i,j'}$ for every $j' \neq j$.
- ③ Every row has at least one 1. Add clauses $(x_{i,1} \vee x_{i,2} \vee \dots \vee x_{i,n})$.

IndSet: Independent set in graph

Subset A of vertices of G is **independent** if there is no edge connecting two vertices in A .

IndSet

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an independent set of size k .

IndSet \rightarrow SAT

Given G and k we want to write formula that is satisfied iff G has independent set of size k .

- ① Enumerate vertices as $1, \dots, n$ and create variables v_1, \dots, v_n .
 $v_i = 1$ if v_i is in the independent set.
- ② For every edge $\{i, j\}$ add clause $\neg v_i \vee \neg v_j$.
- ③ We need to test if set is large enough.

Create $k \times n$ matrix X . $x_{i,j}$ will say that i -th element of the independent set is vertex j .

Add following clauses:

- ① Every column has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i',j}$ for every $i' \neq i$.
- ② Every row has at most one 1. Add clauses $x_{i,j} \implies \neg x_{i,j'}$ for every $j' \neq j$.
- ③ Every row has at least one 1. Add clauses $(x_{i,1} \vee x_{i,2} \vee \dots \vee x_{i,n})$.
- ④ Tie matrix and the independent set: Add clauses $x_{i,j} \implies v_j$.

Clique: Clique in a graph

Clique

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an clique of size k .

Clique: Clique in a graph

Clique

- ① Input: Unoriented graph G and number k .
- ② 1 if and only if G contains an clique of size k .

IndSet \rightarrow Clique

Clique \rightarrow IndSet

3,3-SAT

3-SAT

Same as 3-SAT but every variable appears in at most 3 literals.

3,3-SAT

3-SAT

Same as 3-SAT but every variable appears in at most 3 literals.

3-SAT \rightarrow 3,3-SAT

3,3-SAT

3-SAT

Same as 3-SAT but every variable appears in at most 3 literals.

3-SAT \rightarrow 3,3-SAT

if variable x appears more than 3 times, replace it by multiple variables x_1, x_2, \dots, x_k and add clauses requiring them to have same values $(x_1 \Rightarrow x_2), (x_2 \Rightarrow x_3), \dots, (x_{k-1} \Rightarrow x_k), (x_k \Rightarrow x_1)$.

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

$L \in P$ if and only if there exists algorithm A and polynomial f such that for every input x running $A(x)$ will finish in time at most $f(|x|)$ and $A(x) = L(x)$.

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

$L \in P$ if and only if there exists algorithm A and polynomial f such that for every input x running $A(x)$ will finish in time at most $f(|x|)$ and $A(x) = L(x)$.

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem $K \in P$ and a polynomial g such that for every input x it holds that $L(x) = 1$ iff there exists $y \in \{0, 1\}^*$ of lenght at most $g(|x|)$ such that $K(x, y) = 1$.

You can think of y as a **certificate** that $L(x) = 1$.

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

$L \in P$ if and only if there exists algorithm A and polynomial f such that for every input x running $A(x)$ will finish in time at most $f(|x|)$ and $A(x) = L(x)$.

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem $K \in P$ and a polynomial g such that for every input x it holds that $L(x) = 1$ iff there exists $y \in \{0, 1\}^*$ of lenght at most $g(|x|)$ such that $K(x, y) = 1$.

You can think of y as a **certificate** that $L(x) = 1$.

Observation

$SAT \in NP$.

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

$L \in P$ if and only if there exists algorithm A and polynomial f such that for every input x running $A(x)$ will finish in time at most $f(|x|)$ and $A(x) = L(x)$.

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem $K \in P$ and a polynomial g such that for every input x it holds that $L(x) = 1$ iff there exists $y \in \{0, 1\}^*$ of lenght at most $g(|x|)$ such that $K(x, y) = 1$.

You can think of y as a **certificate** that $L(x) = 1$.

Observation

$SAT \in NP$.

Observation

$P \subseteq NP$.

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

$L \in P$ if and only if there exists algorithm A and polynomial f such that for every input x running $A(x)$ will finish in time at most $f(|x|)$ and $A(x) = L(x)$.

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem $K \in P$ and a polynomial g such that for every input x it holds that $L(x) = 1$ iff there exists $y \in \{0, 1\}^*$ of lenght at most $g(|x|)$ such that $K(x, y) = 1$.

You can think of y as a **certificate** that $L(x) = 1$.

Observation

$SAT \in NP$.

Observation

$P \subseteq NP$.

$P = NP$ is open since 1970's.

NP-completeness

Definition (NP-hardness)

Problem L is **NP-hard** if every problem from **NP** can be reduced to L .

NP-completeness

Definition (NP-hardness)

Problem L is **NP-hard** if every problem from NP can be reduced to L .

Lemma

If some NP-hard problem L is in P then $P = NP$.

NP-completeness

Definition (*NP*-hardness)

Problem L is ***NP-hard*** if every problem from ***NP*** can be reduced to L .

Lemma

*If some ***NP-hard*** problem L is in ***P*** then $P = NP$.*

Definition (*NP*-completeness)

NP-hard problem L is called ***NP-complete*** iff it is in ***P***.

Theorem (Cook's theorem or Cook-Levin theorem)

*SAT is ***NP-complete***.*

NP-completeness

Definition (*NP*-hardness)

Problem L is ***NP-hard*** if every problem from ***NP*** can be reduced to L .

Lemma

*If some ***NP-hard*** problem L is in ***P*** then $P = NP$.*

Definition (*NP*-completeness)

NP-hard problem L is called ***NP-complete*** iff it is in ***P***.

Theorem (Cook's theorem or Cook-Levin theorem)

SAT is ***NP-complete***.

Lemma

*Given two problems $L, M \in NP$. If L is ***NP-complete*** and $L \rightarrow M$, then M is ***NP-complete***.*

NP-completeness

Definition (*NP*-hardness)

Problem L is ***NP-hard*** if every problem from ***NP*** can be reduced to L .

Lemma

*If some ***NP-hard*** problem L is in ***P*** then $P = NP$.*

Definition (*NP*-completeness)

NP-hard problem L is called ***NP-complete*** iff it is in ***P***.

Theorem (Cook's theorem or Cook-Levin theorem)

SAT is ***NP-complete***.

Lemma

*Given two problems $L, M \in NP$. If L is ***NP-complete*** and $L \rightarrow M$, then M is ***NP-complete***.*

Examples of ***NP-complete*** problems:

- ① Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean circuit SAT, ...

NP-completeness

Definition (*NP*-hardness)

Problem L is ***NP-hard*** if every problem from ***NP*** can be reduced to L .

Lemma

*If some ***NP-hard*** problem L is in ***P*** then $P = NP$.*

Definition (*NP*-completeness)

NP-hard problem L is called ***NP-complete*** iff it is in ***P***.

Theorem (Cook's theorem or Cook-Levin theorem)

SAT is ***NP-complete***.

Lemma

*Given two problems $L, M \in NP$. If L is ***NP-complete*** and $L \rightarrow M$, then M is ***NP-complete***.*

Examples of ***NP-complete*** problems:

- ① Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean circuit SAT, ...
- ② Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, ...

NP-completeness

Definition (*NP*-hardness)

Problem L is ***NP-hard*** if every problem from ***NP*** can be reduced to L .

Lemma

*If some ***NP-hard*** problem L is in ***P*** then $P = NP$.*

Definition (*NP*-completeness)

NP-hard problem L is called ***NP-complete*** iff it is in ***P***.

Theorem (Cook's theorem or Cook-Levin theorem)

SAT is ***NP-complete***.

Lemma

*Given two problems $L, M \in NP$. If L is ***NP-complete*** and $L \rightarrow M$, then M is ***NP-complete***.*

Examples of ***NP-complete*** problems:

- ① Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean circuit SAT, ...
- ② Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, ...
- ③ Numerical problems: Finding subset of a given sum, Knapsack, $Ax = 1$, ...