

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
ooo

Multiplying large numbers
oo

Algorithms and datastructures II

Lecture 8: Fast Fourier Transform 2/2

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Nov 23 2020

Recall: FFT

●○○○

Butterfly

○○

FFT on real vectors

○○○○

Spectral analysis

○

DCT

○○○

Multiplying large numbers

○○

Polynomials

Definition (Polynomial)

Polynomial is an expression of form

$$P(x) = \sum_{i=0}^{n-1} p_i \cdot x^i.$$

Where x is a **variable** and p_i are some constants called **coefficients**.

We will represent polynomial by a **vector of coefficients** (p_0, \dots, p_{n-1}) .

Number of coefficients is called the **size of the polynomial** and denoted $|P|$.

Normal form of a polynomial is created by removing trailing zero coefficients.

Multiplication of polynomials is defined as:

$$P(x) \cdot Q(x) = \left(\sum_{i=0}^{n-1} p_i \cdot x^i \right) \cdot \left(\sum_{i=0}^{m-1} q_i \cdot x^i \right) = \sum_{i,j} p_i q_j x^{i+j}.$$

Result of the multiplication is a polynomial $R(x)$ with

$$r_k = p_0 q_k + p_1 q_{k-1} + \dots + p_k q_0.$$

Observation

Polynomial $R(x) = P(x) \cdot Q(x)$ can be computed in $\Theta(n^2)$ where $n = |P| = |Q|$.

Recall: FFT

○●○○

Butterfly

○○

FFT on real vectors

○○○○

Spectral analysis

○

DCT

○○○

Multiplying large numbers

○○

Polynomials: identity and vector of values

Polynomials P and Q are **identical**, denoted by $P \equiv Q$, iff they have same coefficients.

Polynomials P and Q are **equivalent**, denoted by $P = Q$, iff $\forall x : P(x) = Q(x)$.

Lemma

Let x_0, \dots, x_d be any sequence of distinct numbers. Let P and Q be polynomials of degree at most d . If $P(x_i) = Q(x_i)$ for every $i = 0, 1, \dots, d$ then P and Q are equivalent.

Recall:

Lemma

Non-zero polynomial R of degree $t \geq 0$ has at most t roots.

division of polynomials: $R(x) \equiv (x - \alpha) \cdot R'(x) + \beta$ for constant β . If α is root then $\beta = 0$.

Now consider $R(x) \equiv P(x) - Q(x)$. Degree of R is at most d and all of x_0, \dots, x_d are roots.

We established **bijection** between polynomials and **vectors of values**.

Recall: FFT

○○●○

Butterfly

○○

FFT on real vectors

○○○○

Spectral analysis

○

DCT

○○○

Multiplying large numbers

○○

Multiplication

Multiply (P, Q)

WLOG assume that $|P| = |Q| = n$ and upper $n/2$ coefficients are 0.

- ① Choose distinct numbers x_0, x_1, \dots, x_{n-1} .
- ② Compute $(P(x_0), \dots, P(x_{n-1}))$ and $(Q(x_0), \dots, Q(x_{n-1}))$.
- ③ Multiply component to determine $(R(x_0), \dots, R(x_{n-1}))$
- ④ Find corresponding coefficients of vector R of length n .

Recall: FFT

○○●

Butterfly

○○

FFT on real vectors

○○○○

Spectral analysis

○

DCT

○○○

Multiplying large numbers

○○

Fast Fourier Transform

FFT($n, \omega, (p_0, \dots, p_{n-1})$)

Assume $n = 2^k$, ω is n -th primitive root of 1.

- ① If $n = 1$: return (p_0) .
- ② $(e_0, \dots, e_{n/2-1}) \leftarrow \text{FFT } (n/2, \omega^2, (p_0, p_2, \dots, p_{n-2}))$
- ③ $(o_0, \dots, o_{n/2-1}) \leftarrow \text{FFT } (n/2, \omega^2, (p_1, p_3, \dots, p_{n-1}))$
- ④ For $j = 0, \dots, n/2 - 1$:
 - ⑤ $y_j \leftarrow e_j + \omega^j \cdot o_j$ (ω^j can be computed incrementally)
 - ⑥ $y_{j+n/2} \leftarrow e_j - \omega^j \cdot o_j$
- ⑦ Return (y_0, \dots, y_{n-1}) .

Time complexity $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$.

Recall: FFT
oooo

Butterfly
●○

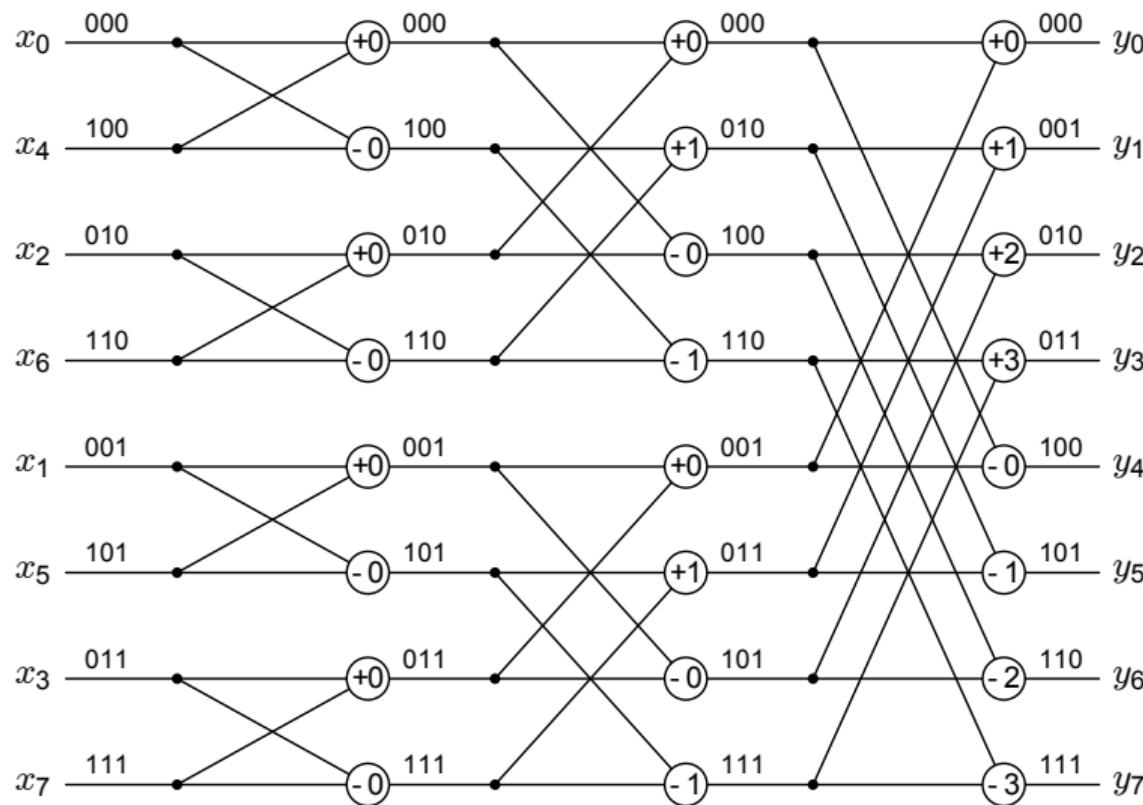
FFT on real vectors
oooo

Spectral analysis
○

DCT
ooo

Multiplying large numbers
oo

FFT as boolean circuit



Fast Fourier Transform without recursion

FFT($n, \omega, (p_0, \dots, p_{n-1})$)

Assume $n = 2^k$, ω is n -th primitive root of 1.

- ① Precompute $\omega^0, \omega^1, \dots, \omega^{n-1}$
- ② For $k = 0, \dots, n-1$ put $y_k \leftarrow x_{r(k)}$
here r is function representing the bit mirroring
- ③ $b \leftarrow 1$
- ④ While $b < n$:
 - ⑤ For $j = 0, \dots, n-1$ with step 2b:
 - ⑥ For $k = 0, \dots, b-1$:
 - ⑦ $\alpha \leftarrow \omega^{(nk/2b) \bmod n}$
 - ⑧ $(y_{j+k}, y_{j+k+b}) \leftarrow (y_{j+k} + \alpha y_{j+k+b}, y_{j+k} - \alpha y_{j+k+b})$
 - ⑨ $b \leftarrow 2b$
 - ⑩ Return (y_0, \dots, y_{n-1})

Recall: FFT

oooo

Butterfly

oo

FFT on real vectors

●ooo

Spectral analysis

○

DCT

ooo

Multiplying large numbers

oo

Antisymmetry

Lemma

For every vector $\vec{x} \in \mathbb{R}^n$ it holds that $\vec{y} = \mathcal{F}(\vec{x})$ is antisymmetric. That is $y_j = \overline{y_{n-j}}$.

Proof.

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
●ooo

Spectral analysis
○

DCT
ooo

Multiplying large numbers
oo

Antisymmetry

Lemma

For every vector $\vec{x} \in \mathbb{R}^n$ it holds that $\vec{y} = \mathcal{F}(\vec{x})$ is antisymmetric. That is $y_j = \overline{y_{n-j}}$.

Proof.

$$y_{n-j} = \sum_k x_k \omega^{(n-j)k} = \sum_k x_k \omega^{nk-jk} = \sum_k x_k \omega^{-jk} = \sum_k x_k \bar{\omega}^{jk}.$$

Recall: FFT
ooooButterfly
ooFFT on real vectors
●oooSpectral analysis
○DCT
oooMultiplying large numbers
oo

Antisymmetry

Lemma

For every vector $\vec{x} \in \mathbb{R}^n$ it holds that $\vec{y} = \mathcal{F}(\vec{x})$ is antisymmetric. That is $y_j = \overline{y_{n-j}}$.

Proof.

$$y_{n-j} = \sum_k x_k \omega^{(n-j)k} = \sum_k x_k \omega^{nk-jk} = \sum_k x_k \omega^{-jk} = \sum_k x_k \overline{\omega^{jk}}.$$

$$\overline{y_{n-j}} = \sum_k \overline{x_k \omega^{jk}}$$

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
●ooo

Spectral analysis
○

DCT
ooo

Multiplying large numbers
oo

Antisymmetry

Lemma

For every vector $\vec{x} \in \mathbb{R}^n$ it holds that $\vec{y} = \mathcal{F}(\vec{x})$ is antisymmetric. That is $y_j = \overline{y_{n-j}}$.

Proof.

$$y_{n-j} = \sum_k x_k \omega^{(n-j)k} = \sum_k x_k \omega^{nk-jk} = \sum_k x_k \omega^{-jk} = \sum_k x_k \overline{\omega^{jk}}.$$

$$\overline{y_{n-j}} = \sum_k \overline{x_k \omega^{jk}}$$

For real values equality follows.

Recall: FFT

oooo

Butterfly

oo

FFT on real vectors

●ooo

Spectral analysis

o

DCT

ooo

Multiplying large numbers

oo

Antisymmetry

Lemma

For every vector $\vec{x} \in \mathbb{R}^n$ it holds that $\vec{y} = \mathcal{F}(\vec{x})$ is antisymmetric. That is $y_j = \overline{y_{n-j}}$.

Proof.

$$y_{n-j} = \sum_k x_k \omega^{(n-j)k} = \sum_k x_k \omega^{nk-jk} = \sum_k x_k \omega^{-jk} = \sum_k x_k \overline{\omega^{jk}}.$$

$$\overline{y_{n-j}} = \sum_k \overline{x_k \omega^{jk}}$$

For real values equality follows. □

In particular $y_0 = \overline{y_0}$ and $y_{n/2} = \overline{y_{n/2}}$ and thus both are real values.

Lemma

Antisymmetric vectors in \mathbb{C}^n forms a vector field of dimension n over real numbers.

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
o●oo

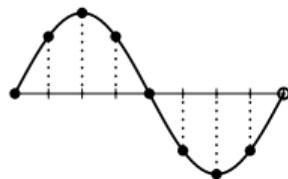
Spectral analysis
o

DCT
ooo

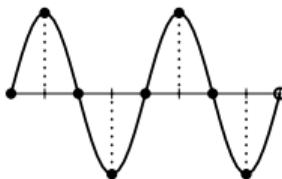
Multiplying large numbers
oo

Spectral analysis

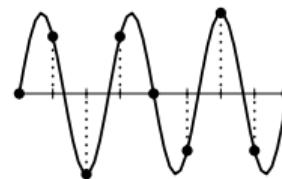
Fix n and $\omega = 2\pi i/n$. Denote by $\vec{e}^k, \vec{s}^k, \vec{c}^k$ vectors created by sampling functions $e^{2k\pi i x}, \sin 2k\pi x, \cos 2k\pi x$ at $[0, 1]$.



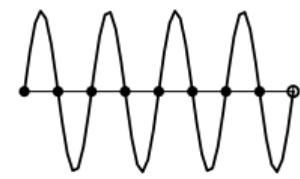
s^1



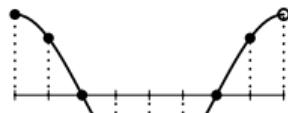
s^2



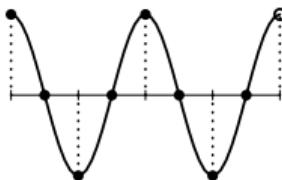
s^3



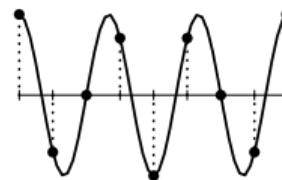
s^4



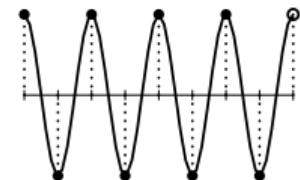
c^1



c^2



c^3



c^4

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oo●o

Spectral analysis
o

DCT
ooo

Multiplying large numbers
oo

Lemma

For every $0 < k < n/2$ it holds:

$$\mathcal{F}(\vec{e}^k) = (0, \dots, 0, n, 0, \dots, 0)$$

$$\mathcal{F}(\vec{s}^k) = (0, \dots, 0, n/2i, 0, \dots, 0, -n/2i, 0, \dots, 0)$$

$$\mathcal{F}(\vec{c}^k) = (0, \dots, 0, n/2, 0, \dots, 0, n/2, 0, \dots, 0)$$

First vector is non-zero in position $n - k$ and other two in positions k and $n - k$.

Recall: FFT
ooooButterfly
ooFFT on real vectors
oo●oSpectral analysis
oDCT
oooMultiplying large numbers
oo

Lemma

For every $0 < k < n/2$ it holds:

$$\mathcal{F}(\vec{e}^k) = (0, \dots, 0, n, 0, \dots, 0)$$

$$\mathcal{F}(\vec{s}^k) = (0, \dots, 0, n/2i, 0, \dots, 0, -n/2i, 0, \dots, 0)$$

$$\mathcal{F}(\vec{c}^k) = (0, \dots, 0, n/2, 0, \dots, 0, n/2, 0, \dots, 0)$$

First vector is non-zero in position $n - k$ and other two in positions k and $n - k$.

- ① For \vec{e}^k the formula holds for $k = 0$ and $k = n/2$.
- ② \vec{s}^0 and $\vec{s}^{n/2}$ are zero vectors.
- ③ $\vec{c}^0 = (n, 0, \dots, 0)$ and $\vec{c}^{n/2} = (0, \dots, 0, n, 0, \dots, 0)$.

Lemma

For every $0 < k < n/2$ it holds:

$$\mathcal{F}(\vec{e}^k) = (0, \dots, 0, n, 0, \dots, 0)$$

$$\mathcal{F}(\vec{s}^k) = (0, \dots, 0, n/2i, 0, \dots, 0, -n/2i, 0, \dots, 0)$$

$$\mathcal{F}(\vec{c}^k) = (0, \dots, 0, n/2, 0, \dots, 0, n/2, 0, \dots, 0)$$

First vector is non-zero in position $n - k$ and other two in positions k and $n - k$.

- ① For \vec{e}^k the formula holds for $k = 0$ and $k = n/2$.
- ② \vec{s}^0 and $\vec{s}^{n/2}$ are zero vectors.
- ③ $\vec{c}^0 = (n, 0, \dots, 0)$ and $\vec{c}^{n/2} = (0, \dots, 0, n, 0, \dots, 0)$.

Proof.

$$e_j^k = e^{2k\pi ij/n} = e^{jk2\pi i/n} = \omega^{jk}$$

t -th element of Fourier transform is

$$\sum_j = \omega^{jk} \omega^{jt} = \sum_j \omega^{j(k+t)}$$

We can again apply the observation about geometric sequence as while computing the inverse. □

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
ooo●

Spectral analysis
o

DCT
ooo

Multiplying large numbers
oo

Theorem

For every $\vec{x} \in \mathbb{R}^n$ there exists real values $\alpha_0, \dots, \alpha_{n/2}$ and $\beta_0, \dots, \beta_{n/2}$ such that

$$x = \sum_{k=0}^{n/2} (\alpha_k c^k + \beta_k s^k)$$

These coefficients can be determined from

$$\vec{y} = \mathcal{F}(\vec{x}) = (a_0 + b_0 i, \dots, a_{n-1} + b_{n-1} i)$$

by:

$$\alpha_0 = a_0/n$$

$$\alpha_j = 2a_j/n \quad \text{for } j = 1, \dots, n/2 - 1$$

$$\alpha_{n/2} = a_{n/2}/n$$

$$\beta_0 = \beta_{n/2} = 0$$

$$\beta_j = -2b_j/n \quad \text{for } j = 1, \dots, n/2 - 1$$

Recall: FFT
ooooButterfly
ooFFT on real vectors
ooo●Spectral analysis
oDCT
oooMultiplying large numbers
oo

Theorem

For every $\vec{x} \in \mathbb{R}^n$ there exists real values $\alpha_0, \dots, \alpha_{n/2}$ and $\beta_0, \dots, \beta_{n/2}$ such that

$$x = \sum_{k=0}^{n/2} (\alpha_k c^k + \beta_k s^k)$$

These coefficients can be determined from

$$\vec{y} = \mathcal{F}(\vec{x}) = (a_0 + b_0 i, \dots, a_{n-1} + b_{n-1} i)$$

by:

$$\alpha_0 = a_0/n$$

$$\alpha_j = 2a_j/n \quad \text{for } j = 1, \dots, n/2 - 1$$

$$\alpha_{n/2} = a_{n/2}/n$$

$$\beta_0 = \beta_{n/2} = 0$$

$$\beta_j = -2b_j/n \quad \text{for } j = 1, \dots, n/2 - 1$$

For every $0 < k < n/2$ it holds:

$$\mathcal{F}(\vec{s}^k) = (0, \dots, 0, n/2i, 0, \dots, 0, -n/2i, 0, \dots, 0)$$

$$\mathcal{F}(\vec{c}^k) = (0, \dots, 0, n/2, 0, \dots, 0, n/2, 0, \dots, 0)$$

Vectors are non-zero in positions k and $n - k$.

\vec{s}^0 and $\vec{s}^{n/2}$ are zero vectors.

$\vec{c}^0 = (n, 0, \dots, 0)$ and $\vec{c}^{n/2} = (0, \dots, 0, n, 0, \dots, 0)$.

Theorem

For every $\vec{x} \in \mathbb{R}^n$ there exists real values $\alpha_0, \dots, \alpha_{n/2}$ and $\beta_0, \dots, \beta_{n/2}$ such that

$$x = \sum_{k=0}^{n/2} (\alpha_k c^k + \beta_k s^k)$$

These coefficients can be determined from

$$\vec{y} = \mathcal{F}(\vec{x}) = (a_0 + b_0 i, \dots, a_{n-1} + b_{n-1} i)$$

by:

$$\alpha_0 = a_0/n$$

$$\alpha_j = 2a_j/n \quad \text{for } j = 1, \dots, n/2 - 1$$

$$\alpha_{n/2} = a_{n/2}/n$$

$$\beta_0 = \beta_{n/2} = 0$$

$$\beta_j = -2b_j/n \quad \text{for } j = 1, \dots, n/2 - 1$$

For every $0 < k < n/2$ it holds:

$$\mathcal{F}(\vec{s}^k) = (0, \dots, 0, n/2i, 0, \dots, 0, -n/2i, 0, \dots, 0)$$

$$\mathcal{F}(\vec{c}^k) = (0, \dots, 0, n/2, 0, \dots, 0, n/2, 0, \dots, 0)$$

Vectors are non-zero in positions k and $n - k$.

\vec{s}^0 and $\vec{s}^{n/2}$ are zero vectors.

$\vec{c}^0 = (n, 0, \dots, 0)$ and $\vec{c}^{n/2} = (0, \dots, 0, n, 0, \dots, 0)$.

Proof.

Because \mathcal{F} has inverse we need only to check that

$$\begin{aligned} \vec{y} &= \mathcal{F}\left(\sum_{k=0}^{n/2} (\alpha_k \vec{c}^k + \beta_k \vec{s}^k)\right) \\ &= \sum_{k=0}^{n/2} (\alpha_k \mathcal{F}(\vec{c}^k) + \beta_k \mathcal{F}(\vec{s}^k)). \end{aligned}$$

We only need to set up values to match elements $0, \dots, n/2 + 1$. Rest follows from anti-symmetry.

$$a_j + b_j i = (2a_j/n)n/2 - (2b_j/n)n/2i = \alpha_j \vec{c}^j + \beta_j \vec{s}^j$$

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

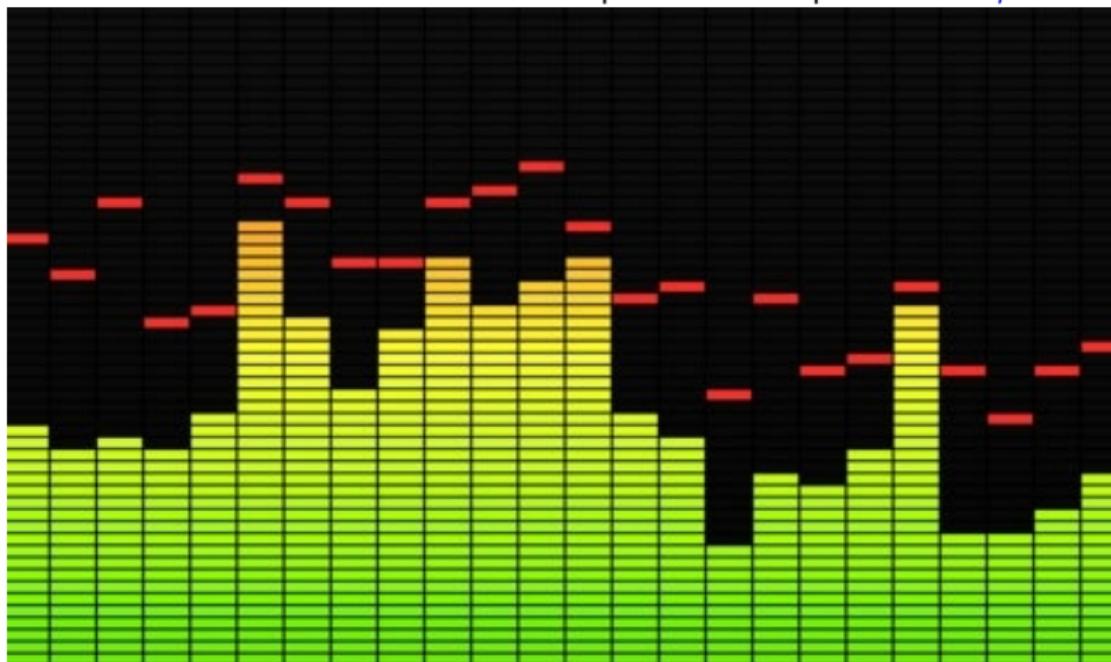
Spectral analysis
●

DCT
ooo

Multiplying large numbers
oo

Spectral analysis

Recall that $\alpha \cos x + \beta \sin x = A \sin(x + \varphi)$ for some A and φ . It means that we can, using FFT, decompose every sound to sum of basic sinusoid waves of different amplitudes A and phase shifts φ .



Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
●oo

Multiplying large numbers
oo

Discrete Cosine transform

Discrete cosine transform

Discrete cosine transform is a spectral analysis of vector $(x_0, \dots, x_{n/2-1}, x_{n/2}, x_{n/2-1}, \dots, x_1)$. This is real antisymmetric vector and its Fourier transform is also real and antisymmetric $(y_0, \dots, y_{n/2-1}, y_{n/2}, y_{n/2-1}, \dots, y_1)$.

We can thus write vector $(x_0, \dots, x_{n/2})$ as a combination of vectors $\vec{c}^0, \dots, \vec{c}^{n/2}$.

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
●oo

Multiplying large numbers
oo

Discrete Cosine transform

Discrete cosine transform

Discrete cosine transform is a spectral analysis of vector $(x_0, \dots, x_{n/2-1}, x_{n/2}, x_{n/2-1}, \dots, x_1)$. This is real antisymmetric vector and its Fourier transform is also real and antisymmetric $(y_0, \dots, y_{n/2-1}, y_{n/2}, y_{n/2-1}, \dots, y_1)$.

We can thus write vector $(x_0, \dots, x_{n/2})$ as a combination of vectors $\vec{c}^0, \dots, \vec{c}^{n/2}$.

DCT-II:

$$y_k = \sum_{j=0}^{n-1} x_j \cos \left(\frac{\pi(j+1/2)}{n} k \right)$$

Inverse of DCT-II is DCT-III multiplied by $2/n$.

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
●oo

Multiplying large numbers
oo

Discrete Cosine transform

Discrete cosine transform

Discrete cosine transform is a spectral analysis of vector $(x_0, \dots, x_{n/2-1}, x_{n/2}, x_{n/2-1}, \dots, x_1)$. This is real antisymmetric vector and its Fourier transform is also real and antisymmetric $(y_0, \dots, y_{n/2-1}, y_{n/2}, y_{n/2-1}, \dots, y_1)$.

We can thus write vector $(x_0, \dots, x_{n/2})$ as a combination of vectors $\vec{c}^0, \dots, \vec{c}^{n/2}$.

DCT-II:

$$y_k = \sum_{j=0}^{n-1} x_j \cos \left(\frac{\pi(j+1/2)}{n} k \right)$$

Inverse of DCT-II is DCT-III multiplied by $2/n$.

DCT-III:

$$y_k = \frac{1}{2} x_0 + \sum_{j=1}^{n-1} x_j \cos \left(\frac{\pi(k+1/2)}{n} j \right)$$

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
●oo

Multiplying large numbers
oo

Discrete Cosine transform

Discrete cosine transform

Discrete cosine transform is a spectral analysis of vector $(x_0, \dots, x_{n/2-1}, x_{n/2}, x_{n/2-1}, \dots, x_1)$. This is real antisymmetric vector and its Fourier transform is also real and antisymmetric $(y_0, \dots, y_{n/2-1}, y_{n/2}, y_{n/2-1}, \dots, y_1)$.

We can thus write vector $(x_0, \dots, x_{n/2})$ as a combination of vectors $\vec{c}^0, \dots, \vec{c}^{n/2}$.

DCT-II:

$$y_k = \sum_{j=0}^{n-1} x_j \cos \left(\frac{\pi(j+1/2)}{n} k \right)$$

Inverse of DCT-II is DCT-III multiplied by $2/n$.

DCT-III:

$$y_k = \frac{1}{2} x_0 + \sum_{j=1}^{n-1} x_j \cos \left(\frac{\pi(k+1/2)}{n} j \right)$$

2-dimensional DCT-2:

$$y_{k_1, k_2} = \sum_{j_1=0}^{n-1} \sum_{j_2=0}^{n-1} x_{j_1, j_2} \cos \left(\frac{\pi(j_1+1/2)}{n} k_1 \right) \cos \left(\frac{\pi(j_2+1/2)}{n} k_2 \right)$$

2-dimensional DCT can be computed by applying 1-dimensional DCT on every row and then 1-dimensional DCT to every column.

Recall: FFT

oooo

Butterfly

oo

FFT on real vectors

oooo

Spectral analysis

o

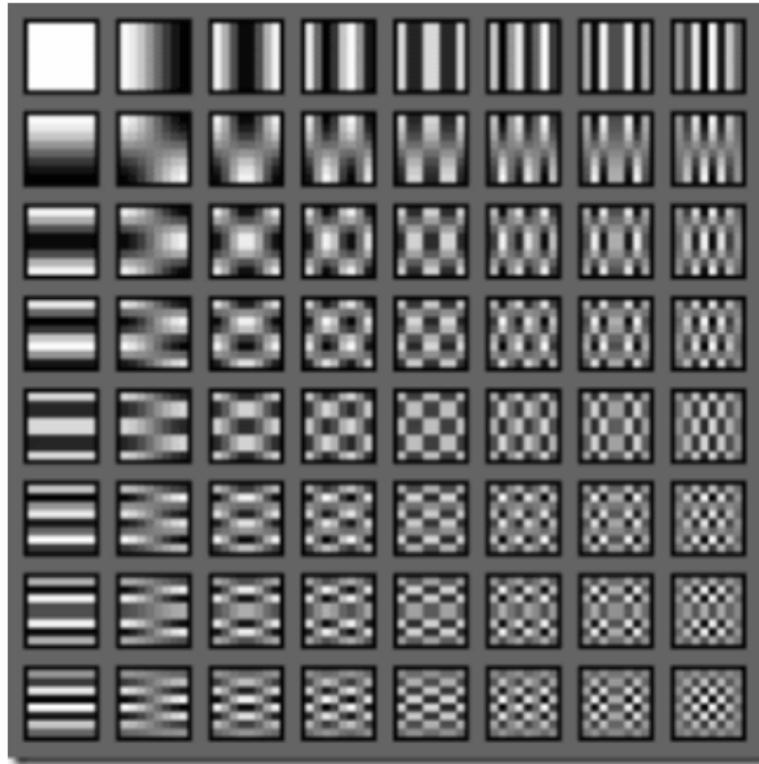
DCT

o●o

Multiplying large numbers

oo

2-dimensional DCT and JPEG compression



Recall: FFT
oooo

Butterfly
oo

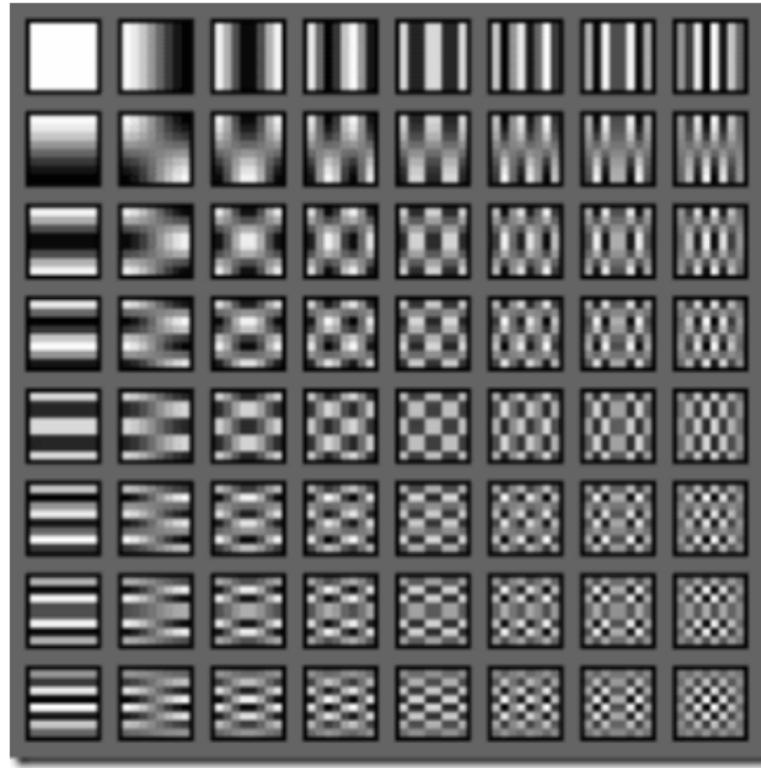
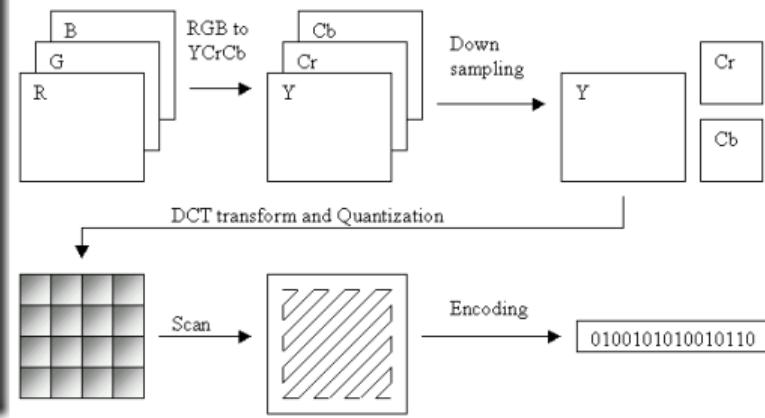
FFT on real vectors
oooo

Spectral analysis
o

DCT
o•o

Multiplying large numbers
oo

2-dimensional DCT and JPEG compression



Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
oo●

Multiplying large numbers
oo

JPEG artifacts

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
ooo

Multiplying large numbers
●○

Multiplying large numbers

Observation

It is possible to apply FFT in a finite field assuming that there is an n -th primitive root of 1.

Computing modp for prime $p = 2^k + 1$ we have $2^{2k} = 1 \pmod{p}$ and $2^0, \dots, 2^{k-1}$ mutually different.
Sadly $2k$ is unlikely to be power of 2.

Lemma

Every multiplicative group of \mathbb{Z}_p is cyclic.

It follows that all $p - 1$ element can be written as powers of some g (generator of a group).

It follows that g is primitive $(p - 1)$ -st root of 1.

For example we can use:

- ① $p = 2^{16} + 1 = 65537, g = 3, \omega = 3^2, n = 2^{15}$
- ② $p = 15 \cdot 2^{27} + 1 = 2013265921, g = 31, \omega = 440564289, n = 2^{27}$
- ③ $p = 3 \cdot 2^{30} + 1 = 3221225473, g = 5, \omega = 125, n = 2^{30}$

Recall: FFT
oooo

Butterfly
oo

FFT on real vectors
oooo

Spectral analysis
o

DCT
ooo

Multiplying large numbers
oo●