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Polynomials

Definition (Polynomial)

Polynomial is an expression of form

P(x) =

n−1∑
i=0

pi · x i .

Where x is a variable and pi are some constants called coefficients.

We will represent polynomial by a vector of coefficients (p0, . . . , pn−1).
Number of coefficients is called the size of the polynomial and denoted |P|.
Normal form of a polynomial is created by removing trailing zero coefficients.
Multiplication of polynomials is defined as:

P(x) · Q(x) =

n−1∑
i=0

pi · x i

 ·
m−1∑

i=0

qi · x i

 =
∑
i,j

pi qj x i+j .

Result of the multiplication is a polynomial R(x) with

rk = p0qk + p1qk−1 + · · ·+ pk q0.

Observation
Polynomial R(x) = P(x) · Q(x) can be computed in Θ(n2) where n = |P| = |Q|.
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Polynomials: identity and vector of values

Polynomials P and Q are identical, denoted by P ≡ Q, iff they have same coefficients.
Polynomials P and Q are equivalent, denoted by P = Q, iff ∀x : P(x) = Q(x).

Lemma
Let x0, . . . , xd by any sequence of distinct numbers. Let P and Q be polynomials of degree at most d. If
P(xi ) = Q(xi ) for every i = 0, 1, . . . d then P and Q are equivalent.

Recall:

Lemma
Non-zero polynomial R of degree t ≥ 0 has at most t roots.

division of polynomials: R(x) ≡ (x − α) · R′(x) + β for constant β. If α is root then β = 0.
Now consider R(x) ≡ P(x)− Q(x). Degree of R is at most d and all of x0, . . . , xd are roots.

We established bijection between polynomials and vectors of values.
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Multiplication

Multiply (P, Q)

WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.

1 Choose distinct numbers x0, x1, . . . , xn−1.

2 Compute (P(x0), . . . ,P(xn−1)) and (Q(x0), . . . ,Q(xn−1)).

3 Multiply component to determine (R(x0), . . . ,R(xn−1))

4 Find corresponding coefficients of vector R of length n.
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Fast Fourier Transform

FFT(n, ω, (p0, . . . , pn−1))

Assume n = 2k , ω is n-th primitive root of 1.

1 If n = 1: return (p0).

2 (e0, . . . , en/2−1)←FFT (n/2, ω2, (p0, p2, . . . , pn−2))

3 (o0, . . . , on/2−1)←FFT (n/2, ω2, (p1, p3, . . . , pn−1))

4 For j = 0, . . . , n/2− 1:

5 yj ← ej + ωj · oj (ωj can be computed incrementally)

6 yj+n/2 ← ej − ωj · oj

7 Return (y0, . . . , yn−1).

Time complexity T (n) = 2T (n/2) + Θ(n) = Θ(n log n).
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FFT as boolean circuit
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Fast Fourier Transform without recursion

FFT(n, ω, (p0, . . . , pn−1))

Assume n = 2k , ω is n-th primitive root of 1.

1 Precompute ω0, ω1, . . . , ωn−1

2 For k = 0, . . . , n − 1 put yk ← xr(k)

here r is function representing the bit mirroring

3 b ← 1

4 While b < n:

5 For j = 0, . . . , n − 1 with step 2b:

6 For k = 0, . . . , b − 1:

7 α← ω(nk/2b) mod n

8 (yj+k , yj+k+b)← (yj+k + αyj+k+b, yj+k − αyj+k+b)

9 b ← 2b

10 Return (y0, . . . , yn−1)
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Antisymetry

Lemma
For every vector ~x ∈ Rn it holds that ~y = F(~x) is antisymetric. That is yj = yn−j .

Proof.

yn−j =
∑

k

xkω
(n−j)k =

∑
k

xkω
nk−jk =

∑
k

xkω
−jk =

∑
k

xkω
jk .

yn−j =
∑

k

xkω
jk

For real values equality follows.

In particular y0 = y0 and yn/2 = yn/2 and thus both are real values.

Lemma
Antisymetric vectors in Cn forms a vector field of dimension n over real numbers.
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Spectral analysis

Fix n and ω = 22πi/n. Denote by ~ek ,~sk ,~ck vectors created by sampling functions e2kπix , sin 2kπx , cos 2kπx at
[0, 1).

s1 s2 s3 s4

c1 c2 c3 c4
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Lemma
For every 0 < k < n/2 it holds:

F(~ek ) = (0, . . . , 0, n, 0, . . . , 0)

F(~sk ) = (0, . . . , 0, n/2i, 0, . . . , 0,−n/2i, 0 . . . , 0)

F(~ck ) = (0, . . . , 0, n/2, 0, . . . , 0, n/2, 0 . . . , 0)

First vector is non-zero in position n − k and other two in positions k and n − k.

1 For ~ek the formula holds for k = 0 and k = n/2.
2 ~s0 and ~sn/2 are zero vectors.
3 ~c0 = (n, 0, . . . , 0) and ~cn/2 = (0, . . . , 0, n, 0, . . . , 0).

Proof.

ek
j = e2kπij/n = ejk2πi/n = ωjk

t-th element of Fourier transform is ∑
j

= ωjkωjt =
∑

j

ωj(k+t)

We can again apply the observation about geometric sequence as while computing the inverse.
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Theorem
For every ~x ∈ Rn there exists real values α0, . . . , αn/2
and β0, . . . , βn/2 such that

x =

n/2∑
k=0

(αk ck + βk sk )

These coefficients can be determined from

~y = F(~x) = (a0 + b0i, . . . , an−1 + bn−1i)

by:

α0 = a0/n

αj = 2aj/n for j = 1, . . . , n/2− 1

αn/2 = an/2/n

β0 = βn/2 = 0

βj = −2bj/n for j = 1, . . . , n/2− 1

For every 0 < k < n/2 it holds:

F(~sk ) = (0, . . . , 0, n/2i, 0, . . . , 0,−n/2i, 0 . . . , 0)

F(~ck ) = (0, . . . , 0, n/2, 0, . . . , 0, n/2, 0 . . . , 0)

Vectors are non-zero in positions k and n − k .
~s0 and ~sn/2 are zero vectors.
~c0 = (n, 0, . . . , 0) and ~cn/2 = (0, . . . , 0, n, 0, . . . , 0).

Proof.
Because F has inverse we need only to check that

~y = F(

n/2∑
k=0

(αk~ck + βk~sk ))

=

n/2∑
k=0

(αkF(~ck ) + βkF(~sk )).

We only need to set up values to match elements
0, . . . , n/2 + 1. Rest follows from anti-symmetry.

aj + bj i = (2aj/n)n/2− (2bj/n)n/2i = αj~c j + βj~sj

.
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Spectral analysis

Recall that α cos x + β sin x = A sin(x + ϕ) for some A and ϕ. It means that we can, using FFT, decompose
every sound to sum of basic sinusoid waves of different amplitudes A and phase shifts ϕ.
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Discrete Cosine transform

Discrete cosine transform
Discrete cosine transform is a spectral analysis of vector (x0, . . . , xn/2−1, xn/2, xn/2−1, . . . , xx1 ). This is real
antisymetric vector and its Fourier transform is also real and antisymmetric
(y0, . . . , yn/2−1, yn/2, yn/2−1, . . . , yy1 ).
We can thus write vector (x0, . . . xn/2) as a combination of vectors ~c0, . . . ,~cn/2.

DCT-II:

yk =

n−1∑
j=0

xj cos

(
π(j + 1/2)

n
k
)

Inverse of DCT-II is DCT-III multiplied by 2/n.
DCT-III:

yk =
1
2

x0 +

n−1∑
j=1

xj cos

(
π(k + 1/2)

n
j
)

2-dimensional DCT-2:

yk1,k2 =

n−1∑
j1=0

n−1∑
j2=0

xj1,j2 cos

(
π(j1 + 1/2)

n
k1

)
cos

(
π(j2 + 1/2)

n
k2

)
2-dimensional DCT can be computed by applying 1-dimensional DCT on every row and then 1-dimensional DCT
to every column.
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2-dimensional DCT and JPEG compression
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2-dimensional DCT and JPEG compression



Recall: FFT Butterfly FFT on real vectors Spectral analysis DCT Multiplying large numbers

JPEG artifacts
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Multiplying large numbers

Observation
It is possible to apply FFT in a finite field assuming that there is an n-th primitive root of 1.

Computing modp for prime p = 2k + 1 we have 22k = 1 mod p and 20, . . . 2k−1 mutually different.
Sadly 2k is unlikely to be power of 2.

Lemma
Every multiplicative group of Zp is cyclic.

It follows that all p − 1 element can be written as powers of some g (generator of a group).
It follows that g is primitive (p − 1)-st root of 1.
For example we can use:

1 p = 216 + 1 = 65537, g = 3, ω = 32, n = 215

2 p = 15 · 227 + 1 = 2013265921, g = 31, ω = 440564289, n = 227

3 p = 3 · 230 + 1 = 3221225473, g = 5, ω = 125, n = 230
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