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Polynomial is an expression of form

n—1
P(x)=> pi-x.
=0
Where x is a variable and p; are some constants called coefficients.

We will represent polynomial by a vector of coefficients (pg, ..., pPn—1)-
Number of coefficients is called the size of the polynomial and denoted |P|.
Normal form of a polynomial is created by removing trailing zero coefficients.
Multiplication of polynomials is defined as:

n—1 m—1
PX)-Qx)= > pi-x" |- | D ai-x| =D pigx™.
i=0 i=0 ij
Result of the multiplication is a polynomial R(x) with
Tk = PoQk + P1Gk—1 + -+ PkQo-

Polynomial R(x) = P(x) - Q(x) can be computed in ©(n?) where n = |P| = |Q)|.



Polynomials P and Q are identical, denoted by P = Q, iff they have same coefficients.
Polynomials P and Q are equivalent, denoted by P = Q, iff Vx : P(x) = Q(x).

Let X, . .., Xg by any sequence of distinct numbers. Let P and Q be polynomials of degree at most d. If
P(x;) = Q(x;) foreveryi =0,1,...d then P and Q are equivalent.

Recall:

Non-zero polynomial R of degree t > 0 has at most t roots.

division of polynomials: R(x) = (x — «) - R’(x) + B for constant 3. If a is root then 3 = 0.
Now consider R(x) = P(x) — Q(x). Degree of R is at most d and all of xp, .. . , X4 are roots.

We established bijection between polynomials and vectors of values.



WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.
@ Choose distinct numbers xg, X1, ..., Xp_1.
® Compute (P(xp), ..., P(x,—1)) and (Q(xp), - - ., Q(Xp—1))-
® Multiply component to determine (R(Xp), - - ., R(Xn—1))
@ Find corresponding coefficients of vector R of length n.



Assume n = 2k, w is n-th primitive root of 1.
@ If n=1:return (pp).
® (€0, .-, enj2_1) <FFT (n/2, w2, (Po, P2, - - -, Pn—2))
© (00,---,0n/2_1) <FFT (n/2, 02, (P1,P3,---,Pn—1))
@ Forj=0,...,n/2—1:
6 Y+ 6 +uw o («/ can be computed incrementally)

6 y/'+n/2<_ei_wj'ol'
9 Return (y07 e 7Yn—1 )

Time complexity T(n) =2T(n/2) + ©(n) = ©(nlog n).
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Assume n = 2K, w is n-th primitive root of 1.
© Precompute %, w!, ... w"!

@® Fork =0,...,n—1put yx < Xk
here r is function representing the bit mirroring

® b+ 1

©® While b < n:
(5] Forj=0,...,n— 1 with step 2b:
Fork=0,...,b—1:
a <_w(nk/2b) mod n

b <+ 2b

(6]
(7]
o (Vjrk Yirkab) < Ytk + Yjrkrbs Yirk — OYjrktb)
(]
® Return (yo,...,¥n—1)



For every vector X € R" it holds that y = F(X) is antisymetric. Thatis y; = Y,_;.
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For every vector X € R" it holds that y = F(X) is antisymetric. Thatis y; = Y,_;.
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For every vector X € R" it holds that y = F(X) is antisymetric. Thatis y; = Y,_;.

Proof.
Vg = 3 DK = 37 kK = 3 o = 3 sk,
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Vj = DT
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For real values equality follows.



For every vector X € R" it holds that y = F(X) is antisymetric. Thatis y; = Y,_;.

Proof.
Yoo = 3" el = 5 K = 7 s = 57 s
k k k k

Vnj =D %
k

For real values equality follows. O

In particular yo = yo and y,/2 = ¥,/2 and thus both are real values.

Antisymetric vectors in C" forms a vector field of dimension n over real numbers.



Fix nand w = 227//7_ Denote by &k, 5, ¥ vectors created by sampling functions e2k™ sin 2kzx, cos 2kmx at
[0, 1).
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For every 0 < k < n/2 it holds:

F@E) = (0,...,0,n,0,...,0)
F(E) = (0,...,0,n/2i,0,...,0,—n/2i,0...,0)
F(@E) = (0,...,0,n/2,0,...,0,n/2,0...,0)

First vector is non-zero in position n — k and other two in positions k and n — k.



For every 0 < k < n/2 it holds:

F@E) = (0,...,0,n,0,...,0)
F(&) = (0,...,0,n/2i,0,...,0,—-n/2i,0...,0)
F(@E) = (0,...,0,n/2,0,...,0,n/2,0...,0)

First vector is non-zero in position n — k and other two in positions k and n — k.

© For & the formula holds for k = 0 and k = n/2.
® 5° and §"/2 are zero vectors.
® ®=(n,0,...,0)and /2 = (0,...,0,n,0,...,0).



Recall: FFT Butterfly FFT on real vectors Spectral analysis DCT Multiplying large numbers
0000 (o]e] 00e0 o [e]e]e} (e}

Lemma
Forevery0 < k < n/2 it holds:

F@E) = (0,...,0,n,0,...,0)
F(E) = (0,...,0,n/2i,0,...,0,—n/2i,0...,0)
F@E&) = (0,...,0,n/2,0,...,0,n/2,0...,0)

First vector is non-zero in position n — k and other two in positions k and n — k.

© For & the formula holds for k = 0 and k = n/2.
@ 5° and 57/2 are zero vectors.
® ¢® =(n,0,...,0)and /2 =(0,...,0,n,0,...,0).

Proof.
e/k — g2kmij/n _ gkei/n _  jk
t-th element of Fourier transform is
Z — Kt = Zw/(km
J j
We can again apply the observation about geometric sequence as while computing the inverse. |



For every X € R" there exists real values ay, . . . , o, /2
and By, - - . , Bny2 such that

n/2

X = Z(O‘kck + Bks®)

k=0

These coefficients can be determined from

—

y=]—'()‘(’)=(a0+b0i,...,a,,,1 +bn71i)

by:
ag = a/n
aj = 2a/n forj=1,...,n/2 -1
Qnj2 = an/z/n
Bo=PBpnp2 = 0

B = =2bj/n forj=1,...,n/2 -1



Recall: FFT Butterfly FFT on real vectors
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Theorem
For every X € R" there exists real values ay, . . ., o2

and By, . . ., Bns2 such that

n/2

x = (axck + Bys")

k=0
These coefficients can be determined from

V= F(X) = (ao + boi, .- -,an—1 + bp_1i)

by:
[e7)) = ao/n
aj = 2a/n forj=1,...,n/2 -1
Qps2 = apj2/n
Bo="Bnpp = 0

Bi = —2bj/n forj=1,...,n/2 -1

Spectral analysis DCT Multiplying large numbers
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For every 0 < k < n/2 it holds:

=
—
|

5 (0,...,0,n/2i,0,...,0,—n/2i,0...,0)
F@E) = (0,...,0,n/2,0,...,0,n/2,0...,0)
Vectors are non-zero in positions k and n — k.

5% and §"/2 are zero vectors.
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Theorem
For every X € R" there exists real values ay, . . ., o2

and g, - . ., Bns2 such that

n/2

x = (axck + Bys")

k=0
These coefficients can be determined from

V= F(X) = (ao + boi, .- -,an—1 + bp_1i)

by:
[e7)) = ao/n
aj = 2a/n forj=1,...,n/2 -1
Qps2 = apj2/n
Bo="Bnpp = 0
Bi = —2bj/n forj=1,...,n/2 -1

Spectral analysis DCT Multiplying large numbers
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For every 0 < k < n/2 it holds:

=
—
|

5 (0,...,0,n/2i,0,...,0,—n/2i,0...,0)
F@*) = (0,...,0,n/2,0,...,0,n/2,0...,0)
Vectors are non-zero in positions k and n — k.

50 and 5"/2 are zero vectors.

& =(n,0,...,0)and &2 = (0,...,0,n,0,...,0).
Proof.

Because F has inverse we need only to check that

n/2
Vo= FO_ (a8 + )
k=0
n/2
= D (aF(E) + BF(F)).

k=0

We only need to set up values to match elements
0,...,n/2 + 1. Rest follows from anti-symmetry.

a; + bji = (2a;/n)n/2 — (2b;/n)n/2i = ;& + B8

M
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Spectral analysis

Recall that o cos x + Bsin x = Asin(x + ¢) for some A and ¢. It means that we can, using FFT, decompose
every sound to sum of basic sinusoid waves of different amplitudes A and phase shifts (.




Discrete cosine transform is a spectral analysis of vector (Xo, . . -, Xp/2—1, Xn/2: Xn/2—1 - -

antisymetric vector and its Fourier transform is also real and antisymmetric

(Vo5 -+ Ynj2—1,Ynj2s Ynja—1s -+ ¥y )-
We can thus write vector (X, - - . X,/2) as a combination of vectors e,..., 872

., Xx; ). This is real



Discrete cosine transform is a spectral analysis of vector (Xo, . - -, Xp/2—1, Xn/2; Xnj2—1; - - - s Xx; )- This is real
antisymetric vector and its Fourier transform is also real and antisymmetric

(y07 soo 7.Vn/2—1 7yn/27 yn/2—1 goce 7.y}'1 )

We can thus write vector (X, - - . X,/2) as a combination of vectors e,..., 872

DCT-II:
Yk—ZXcos( +n1/2) )

Inverse of DCT-1l is DCT-1Il multiplied by 2/n.



Discrete cosine transform is a spectral analysis of vector (Xo, . - -, Xp/2—1, Xn/2; Xnj2—1; - - - s Xx; )- This is real
antisymetric vector and its Fourier transform is also real and antisymmetric

(y07 soo 7.Vn/2—1 7yn/27 yn/2—1 goce 7.y}'1 )

We can thus write vector (X, - - . X,/2) as a combination of vectors e,..., 872

DCT-II:
Yk—ZXcos( +n1/2) )

Inverse of DCT-1l is DCT-1Il multiplied by 2/n.

DCT-IlI:
:—X0+ZXC (ﬂ(k+1/2))
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Discrete Cosine transform

Discrete cosine transform

Discrete cosine transform is a spectral analysis of vector (Xo, - - ., Xn/2—1, Xn/2, Xn/2—1, - - -  Xx; ). This is real
antisymetric vector and its Fourier transform is also real and antisymmetric

Yos--+sYnja—15Ynj2s Ynj2—1s - Yy )-
We can thus write vector (Xp, . . . X,/2) as a combination of vectors &°,. .., &"/2.

o S (U112

Inverse of DCT-1l is DCT-IIl multiplied by 2/n.

DCT-III:
(k+1/2)
= Xo—i-E X/cos< p j)

DCT-II:

2-dimensional DCT-2:
n—1n—1

,Vk1,k2—ZZXh,2cos< h+1/2) )cos(Ml@)

1=0jo=

2-dimensional DCT can be computed by applying 1-dimensional DCT on every row and then 1-dimensional DCT
to every column.
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2-dimensional DCT and JPEG compression
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2-dimensional DCT and JPEG compression
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DCT Multiplying large numbers
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JPEG artifacts




It is possible to apply FFT in a finite field assuming that there is an n-th primitive root of 1.

Computing modp for prime p = 2¥ + 1 we have 22 =1 mod p and 2°,...25=1 mutually different.
Sadly 2k is unlikely to be power of 2.

Every multiplicative group of Zy, is cyclic.

It follows that all p — 1 element can be written as powers of some g (generator of a group).
It follows that g is primitive (p — 1)-st root of 1.
For example we can use:

@ p=2"%1+1=65537,g=38,w=232n=2"
® p=15-227 4+ 1 = 2013265921, g = 31, w = 440564289, n = 227
® p=23-2%0 4 1=23221225473,9g = 5,w = 125,n = 2%°
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