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Result of the multiplication is a polynomial R(x) with
Ik = PoQk + P1Qk—1 + - + Pxo-

Polynomial R(x) = P(x) - Q(x) can be computed in ©(n?) where n = |P| = |Q)|.
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Let X, . .., Xg by any sequence of distinct numbers. Let P and Q be polynomials of degree at most d. If
P(x;) = Q(x;) foreveryi =0,1,...d then P and Q are equivalent.

Recall:

Non-zero polynomial R of degree t > 0 has at most t roots.

division of polynomials: R(x) = (x — «) - R’(x) + B for constant 3. If a is root then 3 = 0.
Now consider R(x) = P(x) — Q(x). Degree of R is at most d and all of Xy, .. . , X4 are roots.

We established bijection between polynomials and vectors of values.
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also
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Multiplication
Multiply (P, Q)
WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.
@ Choose distinct numbers xg, X1, ..., Xp_1-

® Compute (P(Xp),- .., P(x,—1)) and (Q(xp), - - ., Q(Xp—1))-
® Multiply component to determine (R(xp), - .., R(Xp—1))
@ Find corresponding coefficients of vector R of length n.

Can we use divide and conquer to do step 2 effectively?

P(x) = (PoX® + p2X® + -+ + Pp_2x"2) + (p1X" + p3x® + -+ Py X"1) = Pe(x?) + XPo(x?).

n—2
Pe(t) = pot®+pat' +---+ppat 2
n—1
Po(t) = pit®+pst' + - +ppat z
also
P(—x) = Pe(x?) — xPo(x?).

We can choose Xo, —Xo, X1, —=Xi, ... Xp/2, —Xn/2; €valuate Pe and P; in n/2 points and combine them.
Can we get algorithm with time complexity: T(n) = 2T(n/2) + ©(n)?
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C={a+bi:abeR}

operations:
@ addition: (a+ bi) + (p+ qi) = (a+p) + (b+ q)i
@® subtraction: (a+ bi) — (p+ qi) = (a— p) + (b— q)i
@ multiplication: (a+ bi) - (p + gi) = (ap — bq) + (bq + bp)i
@ complex conjugate: a+ bi = a— bi
@ norm: |x| = V/xx or |a+ bi| = \/(a+ bi)(a— bi) = \/a2 — b2.
@ division: apply a trick:

x_(xy)

y Wy

yy is real number so we can divide as usual.
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We can assign complex numbers to points in a plane R?:

a+bi < (ab)

@ |x| is the distance of x from 0.
@® All values |x| = 1 lies on a unit circle

@ For every x € C: x = |x|(cos ¢(X) + isin ¢(x))
©(x) is called argument. It is common to normalize it in interval [0, 27).

0 ¢(X) = —¢(x) mod 2.
0 Euler formula: ¥ = cos ¢ + isin .
0 Multiplication: xy = (|x| - €®).(ly| - e*W)) = |x| - |y]| - eleX) o),
@ Powers: For a € R: x® = (|x| - &#0))* = x| . glav(0),
@ Roots: For a € R: ¥/x = |x|1/nele()/n,
Good news: There exist n distinct values x1, Xz, . .. o such that x = 1.
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x is n-th primitive root of z iff X" = zand x',...,x"~1 £ z.

Example:

w is n-th primitive power of 1.

For neven w"/2 = —1.

For n even w? is n/2-th primitive root of 1.
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WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.
@ Choose distinct numbers xg, X1, ..., Xp_1.
® Compute (P(xp), ..., P(x,—1)) and (Q(xp), - - ., Q(Xp—1))-
® Multiply component to determine (R(Xp), - - ., R(Xn—1))
@ Find corresponding coefficients of vector R of length n.
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also

P(—x) = Pe(x?) — xPo(x?).
WLOG n = 2K and evaluate in w?,w?, ..., w"1.
This is called Discrete Fourier transform (DFT).
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Assume n = 2k, w is n-th primitive root of 1.
@ If n=1:return (pp).
® (€0, .-, enj2_1) <FFT (n/2, w2, (Po, P2, - - -, Pn—2))
© (00,---,0n/2_1) <FFT (n/2, 02, (P1,P3,- -, Pn—1))
@ Forj=0,...,n/2—1:
6 yj + € +uwl -0 («/ can be computed incrementally)

6 y/'+n/2<_ei_wj'ol'
9 Return (y07 e 7Yn—1 )

Time complexity T(n) = 2T(n/2) + ©(n) = ©(nlog n).
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WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.
@ Choose distinct numbers xg, X1, ..., Xp_1.
® Compute (P(Xp),. .., P(x,—1)) and (Q(xp), - - ., Q(Xp—1))-
® Multiply component to determine (R(Xp), . .., R(Xn—1))
@ Find corresponding coefficients of vector R of length n.

Step 2 runs on ©(nlog n) using FFT. Can we solve step 4 effectively?

Discrete Fourier transform is a mapping F : C" — C" which assigns vector X vector y
n—1 )
vy =3 xc-
k=0

F is a linear transformation = there exists matrix Q such that 7(X) = QX.
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Forj =k

(Q'ﬁ)/’k = ZQM Qek = Zw/l wik = Zwle .tk
£=0
= iwjl . (w—1)£k _ iwle Ltk — ’Sw(j—k)e'
£=0 /=0 —0

For j # k:
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WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.
@ Choose distinct numbers xq, X1, ..., Xp_1-
® Compute (P(xp), ..., P(x,—1)) and (Q(xp), - - ., Q(Xp—1))-
® Multiply component to determine (R(Xp), - - ., R(Xn—1))
@ Find corresponding coefficients of vector R of length n.

Inverse of FFT with w is also FFT with @.
Step 4 can be solved by the same algorithm.
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