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Polynomials

Definition (Polynomial)

Polynomial is an expression of form

P(x) =

n−1∑
i=0

pi · x i .

Where x is a variable and pi are some constants called coefficients.

We will represent polynomial by a vector of coefficients (p0, . . . , pn−1).

Number of coefficients is called the size of the polynomial and denoted |P|.
Normal form of a polynomial is created by removing trailing zero coefficients.
Multiplication of polynomials is defined as:

P(x) · Q(x) =

n−1∑
i=0

pi · x i

 ·
m−1∑

i=0

qi · x i

 =
∑
i,j

pi qj x i+j .

Result of the multiplication is a polynomial R(x) with

rk = p0qk + p1qk−1 + · · ·+ pk q0.

Observation
Polynomial R(x) = P(x) · Q(x) can be computed in Θ(n2) where n = |P| = |Q|.
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Polynomials: identity and vector of values

Polynomials P and Q are identical, denoted by P ≡ Q, iff they have same coefficients.
Polynomials P and Q are equivalent, denoted by P = Q, iff ∀x : P(x) = Q(x).

Lemma
Let x0, . . . , xd by any sequence of distinct numbers. Let P and Q be polynomials of degree at most d. If
P(xi ) = Q(xi ) for every i = 0, 1, . . . d then P and Q are equivalent.

Recall:

Lemma
Non-zero polynomial R of degree t ≥ 0 has at most t roots.

division of polynomials: R(x) ≡ (x − α) · R′(x) + β for constant β. If α is root then β = 0.
Now consider R(x) ≡ P(x)− Q(x). Degree of R is at most d and all of x0, . . . , xd are roots.

We established bijection between polynomials and vectors of values.
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Multiplication

Multiply (P, Q)

WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.

1 Choose distinct numbers x0, x1, . . . , xn−1.

2 Compute (P(x0), . . . ,P(xn−1)) and (Q(x0), . . . ,Q(xn−1)).

3 Multiply component to determine (R(x0), . . . ,R(xn−1))

4 Find corresponding coefficients of vector R of length n.

Can we use divide and conquer to do step 2 effectively?

P(x) = (p0x0 + p2x2 + · · ·+ pn−2xn−2) + (p1x1 + p3x3 + · · ·+ pn−1xn−1) = Pe(x2) + xPo(x2).

Pe(t) = p0t0 + p2t1 + · · ·+ pn−2t
n−2

2

Po(t) = p1t0 + p3t1 + · · ·+ pn−2t
n−1

2

also

P(−x) = Pe(x2)− xPo(x2).

We can choose x0,−x0, x1,−x1, . . . xn/2,−xn/2; evaluate Pe and Pi in n/2 points and combine them.
Can we get algorithm with time complexity: T (n) = 2T (n/2) + Θ(n)?
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Complex numbers: algebraic approach

Definition (Complex numbers)

C = {a + bi : a, b ∈ R}

operations:

1 addition: (a + bi) + (p + qi) = (a + p) + (b + q)i

2 subtraction: (a + bi)− (p + qi) = (a− p) + (b − q)i

3 multiplication: (a + bi) · (p + qi) = (ap − bq) + (bq + bp)i

4 complex conjugate: a + bi = a− bi

5 norm: |x | =
√

xx or |a + bi| =
√

(a + bi)(a− bi) =
√

a2 − b2.

6 division: apply a trick:
x
y

=
(x · y)

(y · y)
.

yy is real number so we can divide as usual.



Recall: Polynomials Complex numbers Fast Fourier Transform Fast Fourier Transform Fast Fourier Transform, 1965

Complex numbers: algebraic approach

Definition (Complex numbers)

C = {a + bi : a, b ∈ R}

operations:

1 addition: (a + bi) + (p + qi) = (a + p) + (b + q)i

2 subtraction: (a + bi)− (p + qi) = (a− p) + (b − q)i

3 multiplication: (a + bi) · (p + qi) = (ap − bq) + (bq + bp)i

4 complex conjugate: a + bi = a− bi

5 norm: |x | =
√

xx or |a + bi| =
√

(a + bi)(a− bi) =
√

a2 − b2.

6 division: apply a trick:
x
y

=
(x · y)

(y · y)
.

yy is real number so we can divide as usual.



Recall: Polynomials Complex numbers Fast Fourier Transform Fast Fourier Transform Fast Fourier Transform, 1965

Complex numbers: algebraic approach

Definition (Complex numbers)

C = {a + bi : a, b ∈ R}

operations:

1 addition: (a + bi) + (p + qi) = (a + p) + (b + q)i

2 subtraction: (a + bi)− (p + qi) = (a− p) + (b − q)i

3 multiplication: (a + bi) · (p + qi) = (ap − bq) + (bq + bp)i

4 complex conjugate: a + bi = a− bi

5 norm: |x | =
√

xx or |a + bi| =
√

(a + bi)(a− bi) =
√

a2 − b2.

6 division: apply a trick:
x
y

=
(x · y)

(y · y)
.

yy is real number so we can divide as usual.



Recall: Polynomials Complex numbers Fast Fourier Transform Fast Fourier Transform Fast Fourier Transform, 1965

Complex numbers: algebraic approach

Definition (Complex numbers)

C = {a + bi : a, b ∈ R}

operations:

1 addition: (a + bi) + (p + qi) = (a + p) + (b + q)i

2 subtraction: (a + bi)− (p + qi) = (a− p) + (b − q)i

3 multiplication: (a + bi) · (p + qi) = (ap − bq) + (bq + bp)i

4 complex conjugate: a + bi = a− bi

5 norm: |x | =
√

xx or |a + bi| =
√

(a + bi)(a− bi) =
√

a2 − b2.

6 division: apply a trick:
x
y

=
(x · y)

(y · y)
.

yy is real number so we can divide as usual.



Recall: Polynomials Complex numbers Fast Fourier Transform Fast Fourier Transform Fast Fourier Transform, 1965

Complex numbers: algebraic approach

Definition (Complex numbers)

C = {a + bi : a, b ∈ R}

operations:

1 addition: (a + bi) + (p + qi) = (a + p) + (b + q)i

2 subtraction: (a + bi)− (p + qi) = (a− p) + (b − q)i

3 multiplication: (a + bi) · (p + qi) = (ap − bq) + (bq + bp)i

4 complex conjugate: a + bi = a− bi

5 norm: |x | =
√

xx or |a + bi| =
√

(a + bi)(a− bi) =
√

a2 − b2.

6 division: apply a trick:
x
y

=
(x · y)

(y · y)
.

yy is real number so we can divide as usual.



Recall: Polynomials Complex numbers Fast Fourier Transform Fast Fourier Transform Fast Fourier Transform, 1965

Complex numbers: algebraic approach

Definition (Complex numbers)

C = {a + bi : a, b ∈ R}

operations:

1 addition: (a + bi) + (p + qi) = (a + p) + (b + q)i

2 subtraction: (a + bi)− (p + qi) = (a− p) + (b − q)i

3 multiplication: (a + bi) · (p + qi) = (ap − bq) + (bq + bp)i

4 complex conjugate: a + bi = a− bi

5 norm: |x | =
√

xx or |a + bi| =
√

(a + bi)(a− bi) =
√

a2 − b2.

6 division: apply a trick:
x
y

=
(x · y)

(y · y)
.

yy is real number so we can divide as usual.



Recall: Polynomials Complex numbers Fast Fourier Transform Fast Fourier Transform Fast Fourier Transform, 1965

Complex numbers: geometric approach

We can assign complex numbers to points in a plane R2:

a + bi ⇐⇒ (a, b)

1 |x | is the distance of x from 0.

2 All values |x | = 1 lies on a unit circle

3 For every x ∈ C: x = |x |(cosϕ(x) + i sinϕ(x))
ϕ(x) is called argument. It is common to normalize it in interval [0, 2π).

4 ϕ(x) = −ϕ(x) mod 2π.

5 Euler formula: eiϕ = cosϕ+ i sinϕ.

6 Multiplication: xy = (|x | · eiϕ(x)).(|y | · eiϕ(y)) = |x | · |y | · ei(ϕ(x)+ϕ(y)).

7 Powers: For α ∈ R: xα =
(
|x | · eiϕ(x)

)α
= |x |α · eiαϕ(x).

8 Roots: For α ∈ R: n√x = |x |1/neiϕ(x)/n.

Good news: There exist n distinct values x1, x2, . . . xn such that xn
i = 1.
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|x | · eiϕ(x)

)α
= |x |α · eiαϕ(x).

8 Roots: For α ∈ R: n√x = |x |1/neiϕ(x)/n.

Good news: There exist n distinct values x1, x2, . . . xn such that xn
i = 1.
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Definition (Primitive roots)

x is n-th primitive root of z iff xn = z and x1, . . . , xn−1 6= z.

Example:
ω = e

i2π
n

ω is n-th primitive power of 1.

Observation
For n even ωn/2 = −1.

Observation
For n even ω2 is n/2-th primitive root of 1.
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Multiplication

Multiply (P, Q)

WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.

1 Choose distinct numbers x0, x1, . . . , xn−1.

2 Compute (P(x0), . . . ,P(xn−1)) and (Q(x0), . . . ,Q(xn−1)).

3 Multiply component to determine (R(x0), . . . ,R(xn−1))

4 Find corresponding coefficients of vector R of length n.

Can we use divide and conquer to do step 2 effectively?

P(x) = (p0x0 + p2x2 + · · ·+ pn−2xn−2) + (p1x1 + p3x3 + · · ·+ pn−1xn−1) = Pe(x2) + xPo(x2).

Pe(t) = p0t0 + p2t1 + · · ·+ pn−2t
n−2

2

Po(t) = p1t0 + p3t1 + · · ·+ pn−1t
n−2

2

also

P(−x) = Pe(x2)− xPo(x2).

WLOG n = 2k and evaluate in ω0, ω1, . . . , ωn−1.
This is called Discrete Fourier transform (DFT).
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Jean-Baptiste Joseph Fourier 1768–1830
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Fast Fourier Transform

FFT(n, ω, (p0, . . . , pn−1))

Assume n = 2k , ω is n-th primitive root of 1.

1 If n = 1: return (p0).

2 (e0, . . . , en/2−1)←FFT (n/2, ω2, (p0, p2, . . . , pn−2))

3 (o0, . . . , on/2−1)←FFT (n/2, ω2, (p1, p3, . . . , pn−1))

4 For j = 0, . . . , n/2− 1:

5 yj ← ej + ωj · oj (ωj can be computed incrementally)

6 yj+n/2 ← ej − ωj · oj

7 Return (y0, . . . , yn−1).

Time complexity T (n) = 2T (n/2) + Θ(n) = Θ(n log n).
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Multiplication

Multiply (P, Q)

WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.

1 Choose distinct numbers x0, x1, . . . , xn−1.

2 Compute (P(x0), . . . ,P(xn−1)) and (Q(x0), . . . ,Q(xn−1)).

3 Multiply component to determine (R(x0), . . . ,R(xn−1))

4 Find corresponding coefficients of vector R of length n.

Step 2 runs on Θ(n log n) using FFT. Can we solve step 4 effectively?

Definition (Discrete Fourier Transform (DFT))

Discrete Fourier transform is a mapping F : Cn → Cn which assigns vector ~x vector ~y

yj =

n−1∑
k=0

xk · ωjk .

F is a linear transformation =⇒ there exists matrix Ω such that F(~x) = Ω~x .
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Inverting Ω

Ωjk = ωjk .

ω−1 = ω.

Lemma
Ω · Ω = n · E.

Proof.

(Ω · Ω)jk =

n−1∑
`=0

Ωj` · Ω`k =

n−1∑
`=0

ωj` · ω`k =

n−1∑
`=0

ωj` · ω`k

=

n−1∑
`=0

ωj` · (ω−1)`k =

n−1∑
`=0

ωj` · ω−`k =

n−1∑
`=0

ω(j−k)`.

For j = k

n−1∑
`=0

ω(j−k)` =

n−1∑
`=0

1 = n.

For j 6= k :

n−1∑
`=0

ω(j−k)` =

n−1∑
`=0

q` =
qn − 1
q − 1

=
ω(j−k)n − 1
ωj−k − 1

= 0.
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Multiplication

Multiply (P, Q)

WLOG assume that |P| = |Q| = n and upper n/2 coefficients are 0.

1 Choose distinct numbers x0, x1, . . . , xn−1.

2 Compute (P(x0), . . . ,P(xn−1)) and (Q(x0), . . . ,Q(xn−1)).

3 Multiply component to determine (R(x0), . . . ,R(xn−1))

4 Find corresponding coefficients of vector R of length n.

Inverse of FFT with ω is also FFT with ω.
Step 4 can be solved by the same algorithm.
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