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Computational model: example

Compute majority of three 1 bit inputs.

maj(1, 1, 0) = maj(1, 0, 1) = maj(0, 1, 1) = maj(1, 1, 1) = 1

maj(0, 0, 1) = maj(0, 1, 0) = maj(1, 0, 0) = maj(0, 0, 0) = 0
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Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.
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Computational model: computation

Definition (Computation)

Computation happens in steps (clocks):

1 step 0: All inputs and constants gets assigned value.

2 step i + 1: Assign value to all gates and outputs for which all inputs are determined at step i .

Computation ends once all vertices have value assigned.

Definition (Layer)

Layer i consist of all vertices whose value is determined in step i .

Layer is also maximal distance from some input.

Definition (Time complexity)

Time of the computation of a given circuit is determined by the number of layers.

Definition (Space complexity)

Space of the computation is determined by the number of gates in the circuit.
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Computational model: program

Definition (Program)

Program is a sequence of circuits for individual sizes of inputs.

Remarks:
1 It is necessary to restrict types of allowed gates (or their arity) and Σ. Otherwise every problem can be

solved by a single gate.
2 Typically we want network for a given size to be generated by an effective non-parallel algorithm.

We will typically consider boolean circuits where Σ = {0, 1} and arity is at most 2.
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Computational model: example (determine if there is 1 in input)
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Addition using boolean circuit

Add (x1, x2, . . . , xn; y1, y2, . . . yn)

Input: numbers x and y in binary representation.
Output: number z = x + y represented as z1, z2, . . . zn+1.

We will use temporary carry bit information c1, c2, . . . cn.
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Addition using boolean circuit: simple solution
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Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0

1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)
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Addition using boolean circuit: example
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Addition using boolean circuit: summary

Basic steps of algorithm:
• Determine behaviour of all canonical blocks

(block is canonical if its size and position is power of 2)
1 Θ(1) layers to determine behaviour of blocks of size 1.
2 Θ(log n) layers to determine behaviour of remaining canonical blocks.

• Determine carry bits c0, c1, . . . , cn
1 Θ(log n) layers.

• Determine final result zi = xi ⊕ yi ⊕ ci .
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Time complexity: Θ(log n)
Space complexity: Θ(n)
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Comparator networks: An example

Σ consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.

Example: Bubble sort

Next time: an effective sorting algorithm.
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