
Computation model Addition Addition Comparator networks

Algorithms and datastructures II

Lecture 5: circuit complexity 1/2

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Nov 2 2020

Computation model Addition Addition Comparator networks

Parallel computing

Computation model Addition Addition Comparator networks

Parallel computing

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Computation model Addition Addition Comparator networks

Computational model: gate

Computation model Addition Addition Comparator networks

Computational model: circuit

Computation model Addition Addition Comparator networks

Computational model: example

Compute majority of three 1 bit inputs.

maj(1, 1, 0) = maj(1, 0, 1) = maj(0, 1, 1) = maj(1, 1, 1) = 1

maj(0, 0, 1) = maj(0, 1, 0) = maj(1, 0, 0) = maj(0, 0, 0) = 0

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet Σ.

Definition (Circuit)

Circuit is defined by:

1 Alphabet Σ.

2 Pairwise disjoint set of vertices I (input), O (output) and H (gate).

3 Acyclic directed multi-graph (V ,E) with E = I ∪ O ∪ H.

4 Mapping F which assign every gate g ∈ H of arity a(g) a function F (h) : Σa(g) → Σ.

5 Mapping z : E → N which maps every edge to a gate to index which argument it represents.

Satisfying:

1 In-degree of vertices in I is 0.

2 In-degree of vertices in O is 1 and out-degree is 0.

3 In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.

4 Every input of every gate is assigned.

Computation model Addition Addition Comparator networks

Computational model: computation

Definition (Computation)

Computation happens in steps (clocks):

1 step 0: All inputs and constants gets assigned value.

2 step i + 1: Assign value to all gates and outputs for which all inputs are determined at step i .

Computation ends once all vertices have value assigned.

Definition (Layer)

Layer i consist of all vertices whose value is determined in step i .

Layer is also maximal distance from some input.

Definition (Time complexity)

Time of the computation of a given circuit is determined by the number of layers.

Definition (Space complexity)

Space of the computation is determined by the number of gates in the circuit.

Computation model Addition Addition Comparator networks

Computational model: computation

Definition (Computation)

Computation happens in steps (clocks):

1 step 0: All inputs and constants gets assigned value.

2 step i + 1: Assign value to all gates and outputs for which all inputs are determined at step i .

Computation ends once all vertices have value assigned.

Definition (Layer)

Layer i consist of all vertices whose value is determined in step i .

Layer is also maximal distance from some input.

Definition (Time complexity)

Time of the computation of a given circuit is determined by the number of layers.

Definition (Space complexity)

Space of the computation is determined by the number of gates in the circuit.

Computation model Addition Addition Comparator networks

Computational model: computation

Definition (Computation)

Computation happens in steps (clocks):

1 step 0: All inputs and constants gets assigned value.

2 step i + 1: Assign value to all gates and outputs for which all inputs are determined at step i .

Computation ends once all vertices have value assigned.

Definition (Layer)

Layer i consist of all vertices whose value is determined in step i .

Layer is also maximal distance from some input.

Definition (Time complexity)

Time of the computation of a given circuit is determined by the number of layers.

Definition (Space complexity)

Space of the computation is determined by the number of gates in the circuit.

Computation model Addition Addition Comparator networks

Computational model: computation

Definition (Computation)

Computation happens in steps (clocks):

1 step 0: All inputs and constants gets assigned value.

2 step i + 1: Assign value to all gates and outputs for which all inputs are determined at step i .

Computation ends once all vertices have value assigned.

Definition (Layer)

Layer i consist of all vertices whose value is determined in step i .

Layer is also maximal distance from some input.

Definition (Time complexity)

Time of the computation of a given circuit is determined by the number of layers.

Definition (Space complexity)

Space of the computation is determined by the number of gates in the circuit.

Computation model Addition Addition Comparator networks

Computational model: program

Definition (Program)

Program is a sequence of circuits for individual sizes of inputs.

Remarks:
1 It is necessary to restrict types of allowed gates (or their arity) and Σ. Otherwise every problem can be

solved by a single gate.
2 Typically we want network for a given size to be generated by an effective non-parallel algorithm.

We will typically consider boolean circuits where Σ = {0, 1} and arity is at most 2.

Computation model Addition Addition Comparator networks

Computational model: program

Definition (Program)

Program is a sequence of circuits for individual sizes of inputs.

Remarks:
1 It is necessary to restrict types of allowed gates (or their arity) and Σ. Otherwise every problem can be

solved by a single gate.
2 Typically we want network for a given size to be generated by an effective non-parallel algorithm.

We will typically consider boolean circuits where Σ = {0, 1} and arity is at most 2.

Computation model Addition Addition Comparator networks

Computational model: example (determine if there is 1 in input)

Computation model Addition Addition Comparator networks

Addition using boolean circuit

Add (x1, x2, . . . , xn; y1, y2, . . . yn)

Input: numbers x and y in binary representation.
Output: number z = x + y represented as z1, z2, . . . zn+1.

We will use temporary carry bit information c1, c2, . . . cn.

Computation model Addition Addition Comparator networks

Addition using boolean circuit

Add (x1, x2, . . . , xn; y1, y2, . . . yn)

Input: numbers x and y in binary representation.
Output: number z = x + y represented as z1, z2, . . . zn+1.

We will use temporary carry bit information c1, c2, . . . cn.

Computation model Addition Addition Comparator networks

Addition using boolean circuit: simple solution

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0

1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0
1 output carry bit is always 1

< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0
1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0
1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks

Composing behaviours of two adjacent blocks
0 1 c

0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0
1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0
1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: blocks and carry bits

Behaviour of block j . . . i is a function:

b(j, i) =


0 output carry bit is always 0
1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

0 1 c
0 0 0 0
1 1 1 1
< 0 1 <

Encoding behaviour as a binary function (p, q):

(1, ∗) =< (0, 0) = 0 (0, 1) = 1

Composition:

p = pU and pL

q = (¬pU and qL) or(pU and qL)

Computation model Addition Addition Comparator networks

Addition using boolean circuit: example

7
0
0

6
1
0

5
1
1

4
1
1

3
0
1

2
1
0

1
0
1

0
0
1

0 < 1 1 < < < <
0 1 < <

0 <
0

0 0
0

1 0
1 1 0 0

1 0 1 0 1 1 1 1

bit

input

blocks

carry

output

Computation model Addition Addition Comparator networks

Addition using boolean circuit: summary

Basic steps of algorithm:
• Determine behaviour of all canonical blocks

(block is canonical if its size and position is power of 2)
1 Θ(1) layers to determine behaviour of blocks of size 1.
2 Θ(log n) layers to determine behaviour of remaining canonical blocks.

• Determine carry bits c0, c1, . . . , cn
1 Θ(log n) layers.

• Determine final result zi = xi ⊕ yi ⊕ ci .

Computation model Addition Addition Comparator networks

Addition using boolean circuit: summary

Basic steps of algorithm:
• Determine behaviour of all canonical blocks

(block is canonical if its size and position is power of 2)
1 Θ(1) layers to determine behaviour of blocks of size 1.
2 Θ(log n) layers to determine behaviour of remaining canonical blocks.

• Determine carry bits c0, c1, . . . , cn
1 Θ(log n) layers.

• Determine final result zi = xi ⊕ yi ⊕ ci .

Computation model Addition Addition Comparator networks

Addition using boolean circuit: summary

Basic steps of algorithm:
• Determine behaviour of all canonical blocks

(block is canonical if its size and position is power of 2)
1 Θ(1) layers to determine behaviour of blocks of size 1.
2 Θ(log n) layers to determine behaviour of remaining canonical blocks.

• Determine carry bits c0, c1, . . . , cn
1 Θ(log n) layers.

• Determine final result zi = xi ⊕ yi ⊕ ci .

Computation model Addition Addition Comparator networks

Time complexity: Θ(log n)
Space complexity: Θ(n)

Computation model Addition Addition Comparator networks

Comparator networks: An example

Σ consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.

Example: Bubble sort

Next time: an effective sorting algorithm.

Computation model Addition Addition Comparator networks

Comparator networks: An example

Σ consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.
Example: Bubble sort

Next time: an effective sorting algorithm.

Computation model Addition Addition Comparator networks

Comparator networks: An example

Σ consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.
Example: Bubble sort

Next time: an effective sorting algorithm.

	Computation model
	Addition
	Addition
	Comparator networks

