Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Nov 2 2020

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)
Moore's law describes the empirical regularity that the number of i on i circuits doubles i every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.

50,000,000,000
gmsoeetss gacer
\wﬂs&unrc«wu\m R S B
10,000,000,000 e Es éﬁmm R
5,000,000,000 umm% e e
e S ‘m% s
o e 48808 Sl
e & s, ;
1,000,000,000 s N g mm 9 g b Sl
500,000,000 k2 Mo O Mﬁﬂﬂm’““
e
o SIS o -
oo oo G S@o 2B K
100,000,000 o1ed O e e
= 50,000,000 e s Wi S TSN oom
E [isvroibivons
g SSBT8, grana i S0
5 10,000,000 o, -
g 10000 oL
% 5000000 L X
i g oS
g %0
1,000,000 e SR
500,000 fl it e
[N
a4 mﬁ:af "y
100,000 iy maooss it 2
50,000 @i so1e6 !
o oo PRINEENE 2
To000 mgen ey BT 9 Sy,
° RCA 1802 ks
51000 " Brigiol ™
o 3 T
s
1,000
O AV Ax A0 A® g o > o
FFEL LSS S5
Data source: Wikipedia (https://en.y W\klpedlﬂ org/wmmanslslcr ccum)
The data visualization is There you find i d research on this topic. Licensed under CC-BY-SA by the author Max Roser.

Computation model Addition Addition Comparator networks
0000000 0000 o

Parallel computing

48 Years of Microprocessor Trend Data

T T T T
10 : ; : : &% Transistors
6L s | (thousands)
10 : : : A
; ; ‘ AN .
105 | B Vo o o Single-Thread
‘ ° @ ¢ Performance

| (SpecINT x 10%)

10t |- i
; ; (®sy Frequency (MHz
103 ,AAA‘A.G. M rred v)
a : & .g-. 3 V 2R Typical Power
102 fom e s g - V'i"vv",;vv'"vz‘,”; v . :"’"f (Watts)
Lot Ry v wps#d | Number of
10 T — T ; AV B Logical Cores
A m ;Y y vV vy i cnaee’
0l o 8 Teeie e .]
1 0 ; v 0 * 00:0 - mmoo :
L L L L
1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Compute majority of three 1 bit inputs.
maj(1,1,0) = maj(1,0,1) = maj(0,1,1) = maj(1,1,1) =1

maj(0, 0, 1) = maj(0,1,0) = maj(1,0,0) = maj(0,0,0) =0

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Circuit is defined by:
© Alphabet ¥
@ Pairwise disjoint set of vertices / (input), O (output) and H (gate).

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Circuit is defined by:
© Alphabet X.
@ Pairwise disjoint set of vertices / (input), O (output) and H (gate).
@® Acyclic directed multi-graph (V, E) with E = /U O U H.

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Circuit is defined by:
© Alphabet X.
@ Pairwise disjoint set of vertices / (input), O (output) and H (gate).
@® Acyclic directed multi-graph (V, E) with E = /U O U H.
© Mapping F which assign every gate g € H of arity a(g) a function F(h) : 29 — 5.

Computation model Addition Addition
0008000 0000

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Definition (Circuit)
Circuit is defined by:
© Alphabet ¥
® Pairwise disjoint set of vertices / (input), O (output) and H (gate).
@® Acyclic directed multi-graph (V, E) with E = /U O U H.
© Mapping F which assign every gate g € H of arity a(g) a function F(h) : 29 — ¥.
® Mapping z : E — N which maps every edge to a gate to index which argument it represents.

Comparator networks
[e]

Computation model Addition Addition
0008000 0000

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Definition (Circuit)
Circuit is defined by:
© Alphabet ¥
® Pairwise disjoint set of vertices / (input), O (output) and H (gate).
@® Acyclic directed multi-graph (V, E) with E = /U O U H.
© Mapping F which assign every gate g € H of arity a(g) a function F(h) : 29 — ¥.
® Mapping z : E — N which maps every edge to a gate to index which argument it represents.

Comparator networks
[e]

Computation model Addition Addition Comparator networks
0008000 0000 o

Computational model

Informally circuits consists of gates connected by wires. Every wire transfer a value in alphabet ¥.

Definition (Circuit)
Circuit is defined by:
© Alphabet ¥
® Pairwise disjoint set of vertices / (input), O (output) and H (gate).
@® Acyclic directed multi-graph (V, E) with E = /U O U H.
© Mapping F which assign every gate g € H of arity a(g) a function F(h) : 29 — ¥.
® Mapping z : E — N which maps every edge to a gate to index which argument it represents.
Satisfying:
@ In-degree of vertices in /is 0.
® In-degree of vertices in O is 1 and out-degree is 0.
@ In-degree of every gate corresponds to its arity. Out-degree of every gate is at least 1.
@ Every input of every gate is assigned.

Computation happens in steps (clocks):

@ step 0: All inputs and constants gets assigned value.

® step i + 1: Assign value to all gates and outputs for which all inputs are determined at step /.
Computation ends once all vertices have value assigned.

Computation happens in steps (clocks):

@ step 0: All inputs and constants gets assigned value.

® step i + 1: Assign value to all gates and outputs for which all inputs are determined at step /.
Computation ends once all vertices have value assigned.

Layer i consist of all vertices whose value is determined in step /.

Layer is also maximal distance from some input.

Computation happens in steps (clocks):
@ step 0: All inputs and constants gets assigned value.

® step i + 1: Assign value to all gates and outputs for which all inputs are determined at step /.
Computation ends once all vertices have value assigned.

Layer i consist of all vertices whose value is determined in step /.

Layer is also maximal distance from some input.

Time of the computation of a given circuit is determined by the number of layers.

Computation happens in steps (clocks):

@ step 0: All inputs and constants gets assigned value.

® step i + 1: Assign value to all gates and outputs for which all inputs are determined at step /.
Computation ends once all vertices have value assigned.

Layer i consist of all vertices whose value is determined in step /.

Layer is also maximal distance from some input.

Time of the computation of a given circuit is determined by the number of layers.

Space of the computation is determined by the number of gates in the circuit.

Program is a sequence of circuits for individual sizes of inputs.

Program is a sequence of circuits for individual sizes of inputs.

Remarks:
@ It is necessary to restrict types of allowed gates (or their arity) and . Otherwise every problem can be
solved by a single gate.
® Typically we want network for a given size to be generated by an effective non-parallel algorithm.
We will typically consider boolean circuits where X = {0, 1} and arity is at most 2.

Input: numbers x and y in binary representation.
Output: number z = x + y represented as zy, zo, . . . Zp41.-

Input: numbers x and y in binary representation.
Output: number z = x + y represented as zy, zo, . . . Zp41.-

We will use temporary carry bit information ¢y, co, . .. cp.

Behaviour of block j. .. i is a function:

0 output carry bit is always 0

b(j; i) =

Behaviour of block j. .. i is a function:

0 output carry bit is always 0
b(j,i) =<1 output carry bit is always 1

Behaviour of block j. .. i is a function:

0 output carry bit is always 0
b(j,i) =<1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of block j. .. i is a function:

0 output carry bit is always 0
b(j,i) =<1 output carry bit is always 1
< output carry bit is same as input carry bit
Behaviour of trivial blocks

Behaviour of block j. .. i is a function:

0 output carry bit is always 0
b(j,i) =<1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

Behaviour of block j. .. i is a function:

0 output carry bit is always 0
b(j,i) =<1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

Encoding behaviour as a binary function (p, q):
(1,%) =< (0,0)=0 (0,1)=1

Behaviour of block j. .. i is a function:

0 output carry bit is always 0
b(j,i) =<1 output carry bit is always 1
< output carry bit is same as input carry bit

Behaviour of trivial blocks
Composing behaviours of two adjacent blocks

Encoding behaviour as a binary function (p, q):

(1,%) =< (0,0)=0 (0,1)=1
Composition:
p = pyandp
q = (—-pyandq.)or(pyandqy)

Computation model Addition Addition Comparator networks
0000000 [e]e]]o) [e]

Addition using boolean circuit: example

_________________ 7]6[5[4]3[2][1]0] bit
ol1l111]o0[1]0ol0]
_________________ olol1]1]1]ol1]q] Mt
0| < |1 1 < | < | <] <
0 1 < <
0 < blocks
................. 0 esscacasssssssssssas
0o 7 1T 0
s — 0 .
1 0 carry
_________________ 1 1 0 o 1
71011011 1]1] outpu

Basic steps of algorithm:

® Determine behaviour of all canonical blocks
(block is canonical if its size and position is power of 2)
@ ©O(1) layers to determine behaviour of blocks of size 1.
@ O(log n) layers to determine behaviour of remaining canonical blocks.

Basic steps of algorithm:

® Determine behaviour of all canonical blocks
(block is canonical if its size and position is power of 2)

@ ©O(1) layers to determine behaviour of blocks of size 1.
@ O(log n) layers to determine behaviour of remaining canonical blocks.

® Determine carry bits ¢y, ¢, ..., Cn
@ O(log n) layers.

Basic steps of algorithm:

® Determine behaviour of all canonical blocks
(block is canonical if its size and position is power of 2)

@ ©O(1) layers to determine behaviour of blocks of size 1.
@ O(log n) layers to determine behaviour of remaining canonical blocks.

® Determine carry bits ¢y, ¢, ..., Cn
@ O(log n) layers.
® Determine final result z; = x; ® y; @ ¢;.

3 consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.

3 consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.
Example: Bubble sort

3 consists of values being sorted.
Comparators are “gates” with two inputs and two outputs.
Example: Bubble sort

Next time: an effective sorting algorithm.

	Computation model
	Addition
	Addition
	Comparator networks

