

Algorithms and datastructures II

Lecture 4: network flows 2

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Oct 26 2020

Network flow

Definition (Network)

Network is an 4-tuple $N = (V, E, s, t, c)$ where

- ① (V, E) is a directed graph,
- ② $s \in V$ is a **source** vertex,
- ③ $t \in V$ is a **sink** vertex,
- ④ $c : E \rightarrow \mathbb{R}_0^+$ is a function assigning every edge a **capacity**.

- $f^+(v) = \sum_{u, (u,v) \in E} f(u, v)$ (**flow into a vertex**)
- $f^-(v) = \sum_{u, (v,u) \in E} f(v, u)$ (**flow out of a vertex**)
- $f^\Delta(v) = f^+(v) - f^-(v)$ (**surplus**)

Here $f : E \rightarrow \mathbb{R}_0^+$

Definition (Flow)

Function $f : E \rightarrow \mathbb{R}_0^+$ is **flow** if it satisfies

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② **Conservation of flows (Kirchoff's law):** $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) = 0$

Value of the flow: $|f| = f^\Delta(t)$. **Problem:** Find a flow with maximum value.

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

FordFulkerson(V, E, s, t, c)

- ① $f \leftarrow$ zero flow (or flow of your choice).
- ② While there exists augmenting path P from s to t :
 - ③ $\epsilon \leftarrow \min_{e \in P} r(e)$.
 - ④ For every $\{u, v\} \in P$:
 - ⑤ $\delta \leftarrow \min(f(v, u), \epsilon)$.
 - ⑥ $f(v, u) \leftarrow f(v, u) - \delta$.
 - ⑦ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.
 - ⑧ Return f (maximum flow).

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an **(elementary) cut** of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then f is a maximum flow and $c(X, Y)$ is minimum capacity.

Dinic algorithm 1970

Dinic (V, E, s, t, c)

- ① $f \leftarrow$ zero flow.
- ② Repeat:
 - ③ Build residual network R and remove all edges e with $r(e) = 0$.
 - ④ $\ell \leftarrow$ length of the shortest oriented path from s to t in R .
 - ⑤ If there is no such path return f .
 - ⑥ $L \leftarrow$ LayeredNetwork (R).
 - ⑦ $g \leftarrow$ BlockingFlow (L).
 - ⑧ Improve flow f using g .

Theorem

Dinic algorithm will terminate in time $O(|V|^2|E|)$ and will return maximum flow.

Dinic algorithm 1970

Dinic (V, E, s, t, c)

- ① $f \leftarrow$ zero flow.
- ② Repeat:
 - ③ Build residual network R and remove all edges e with $r(e) = 0$.
 - ④ $\ell \leftarrow$ length of the shortest oriented path from s to t in R .
 - ⑤ If there is no such path return f .
 - ⑥ $L \leftarrow$ LayeredNetwork (R).
 - ⑦ $g \leftarrow$ BlockingFlow (L).
 - ⑧ Improve flow f using g .

Theorem

Dinic algorithm will terminate in time $O(|V|^2|E|)$ and will return maximum flow.

Today: An easier algorithm with same time complexity.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Observation

Every flow is a wave.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon).$
- ② $f(v, u) \leftarrow f(v, u) - \delta.$
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta.$

Observation

Every flow is a wave.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Observation

Every flow is a wave.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Observation

Every flow is a wave.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

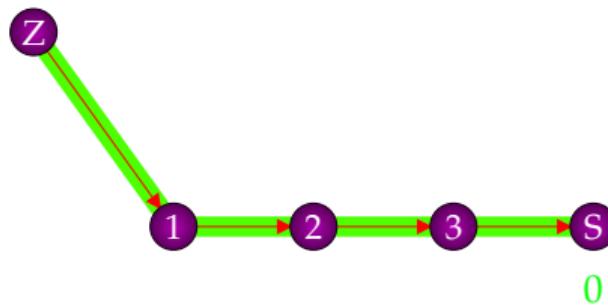
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

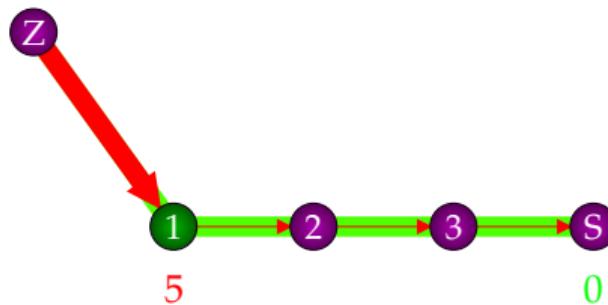
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

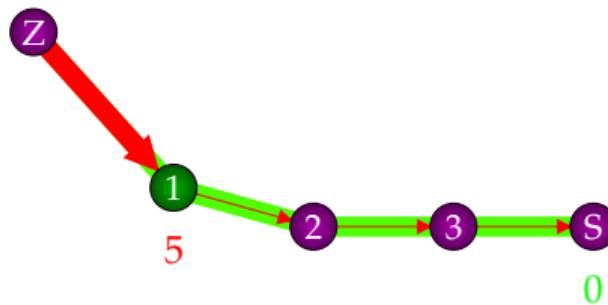
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

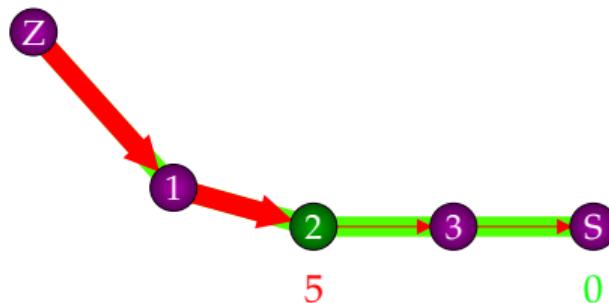
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

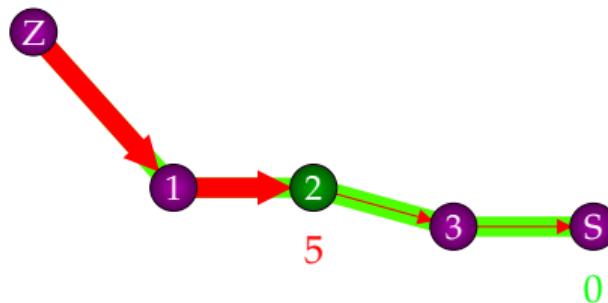
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

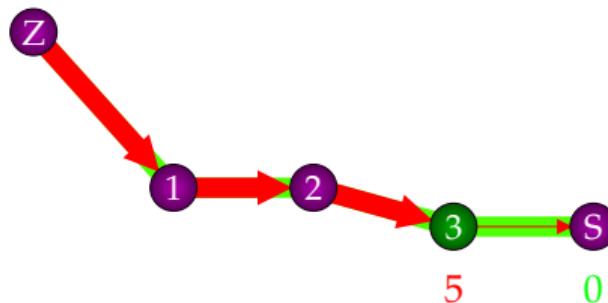
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

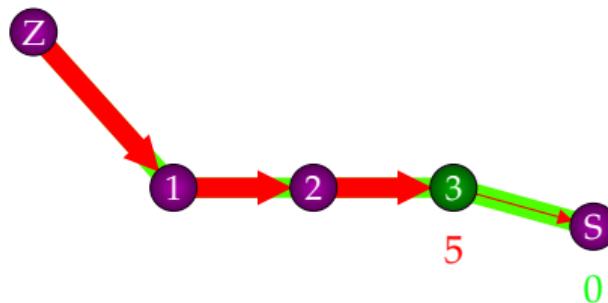
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

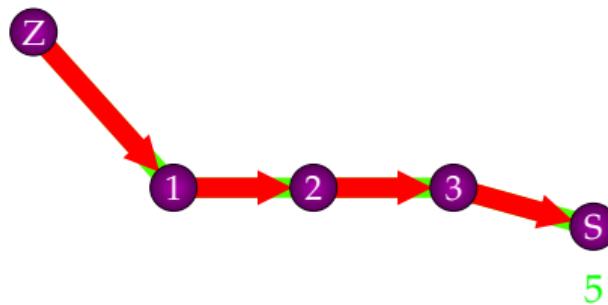
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg's Algorithm

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

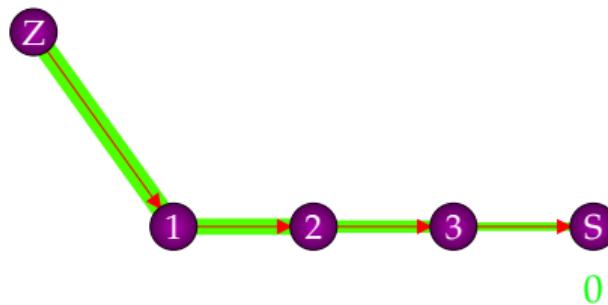
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

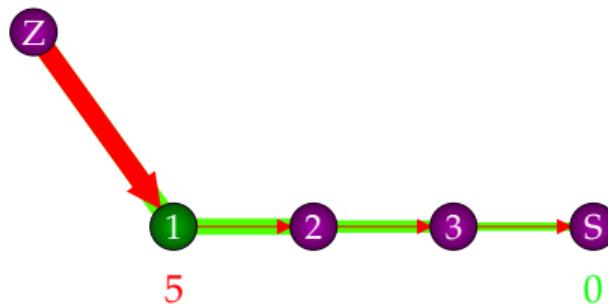
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

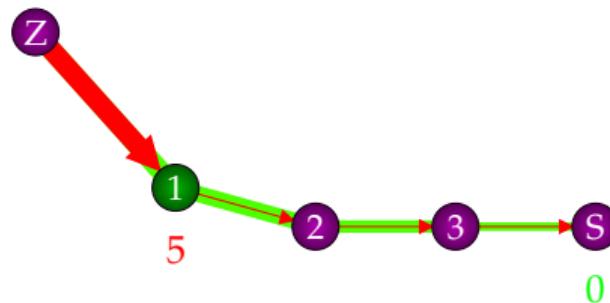
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

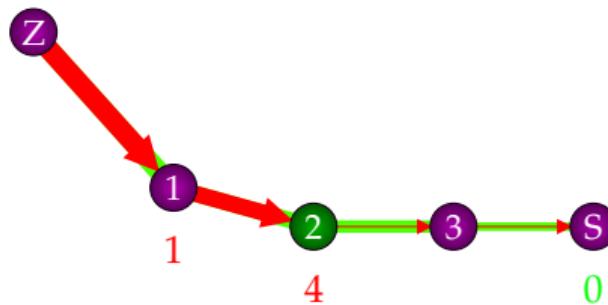
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

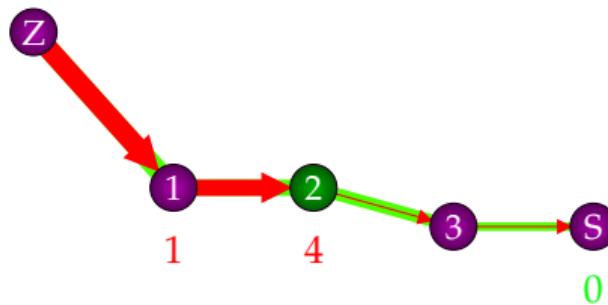
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

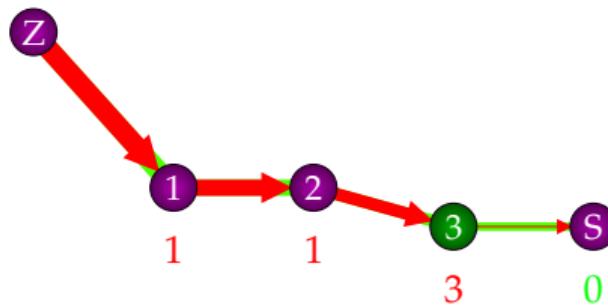
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

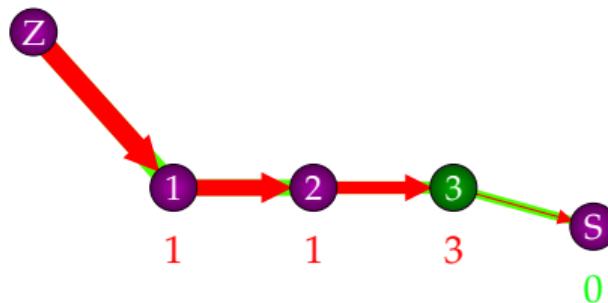
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

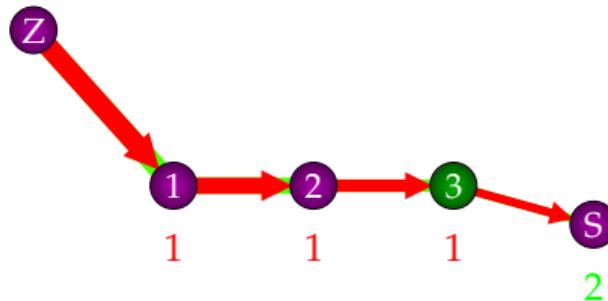
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

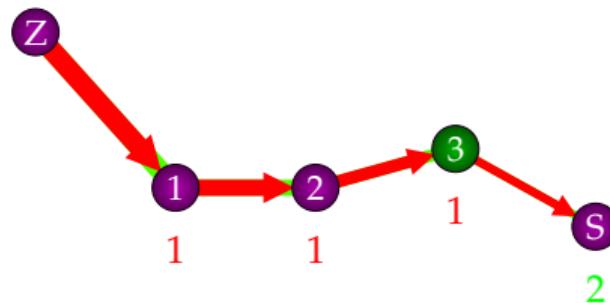
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

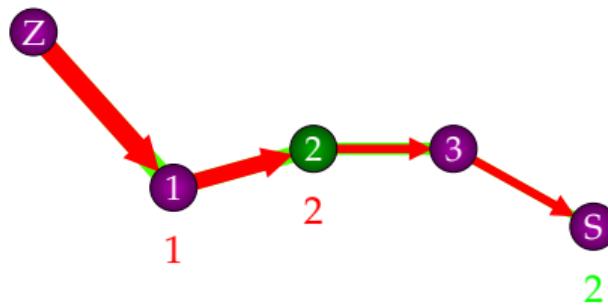
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

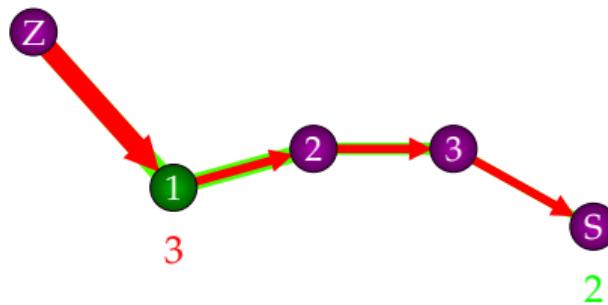
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

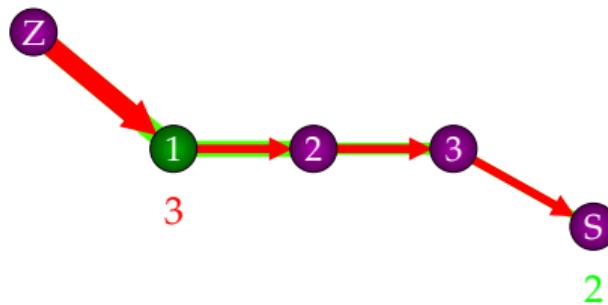
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

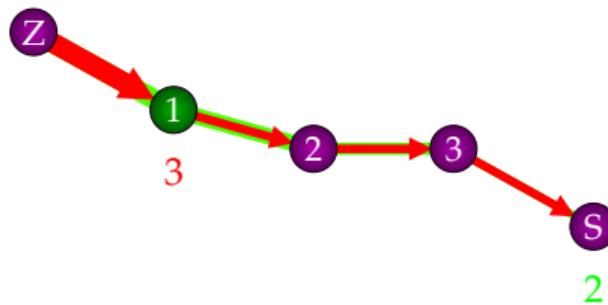
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

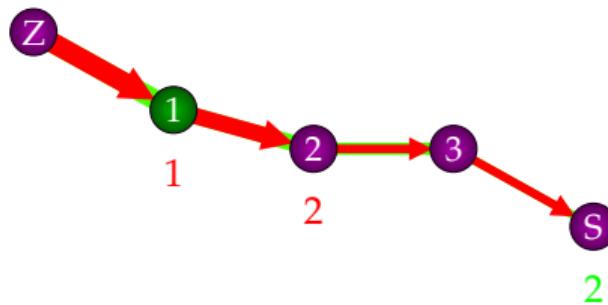
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

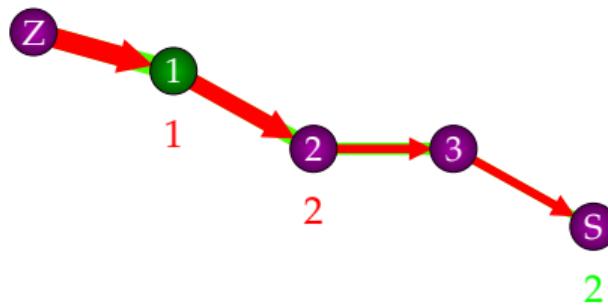
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

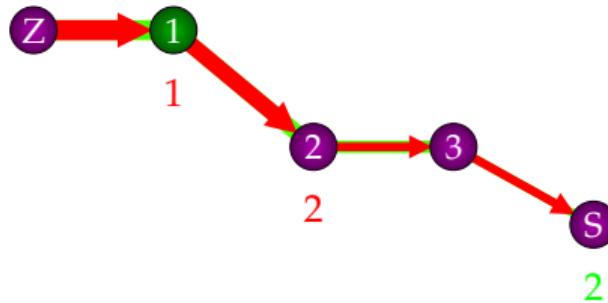
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

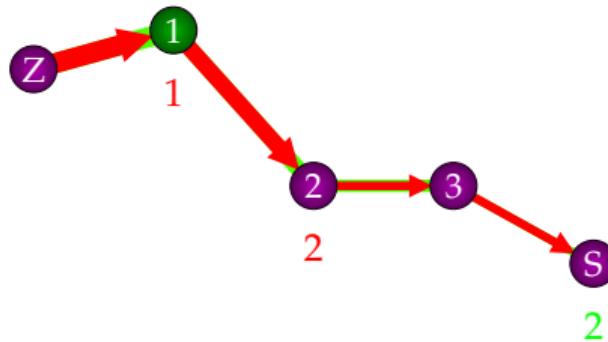
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

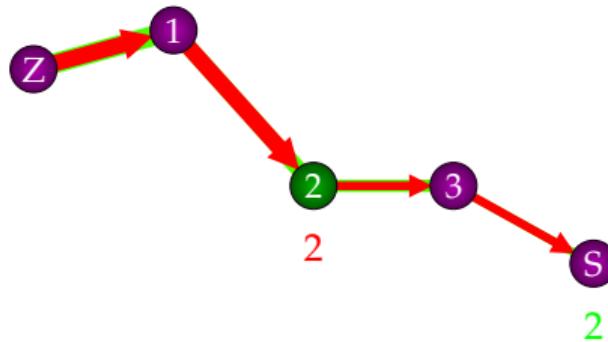
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

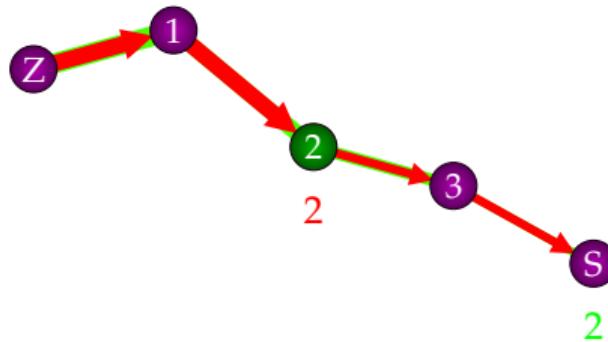
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

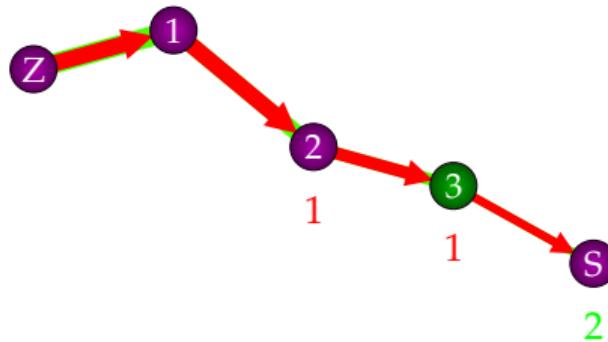
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

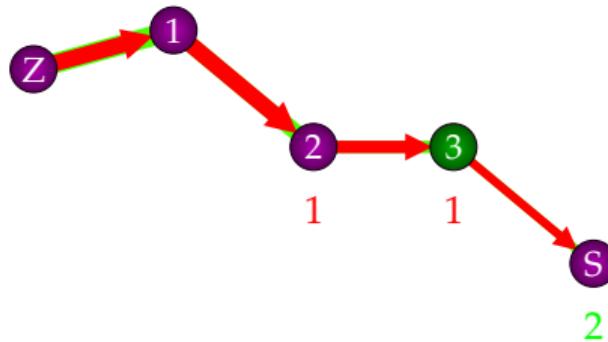
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

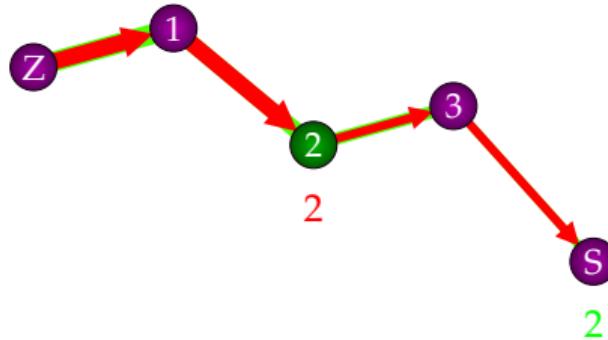
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

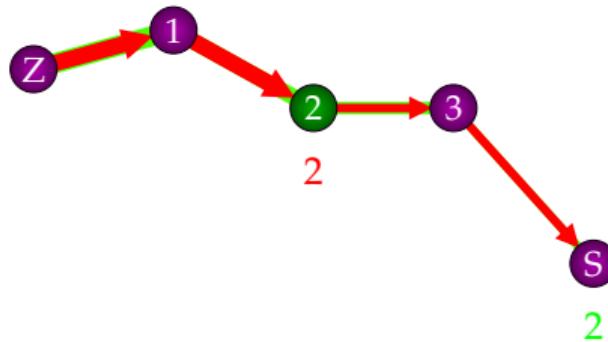
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

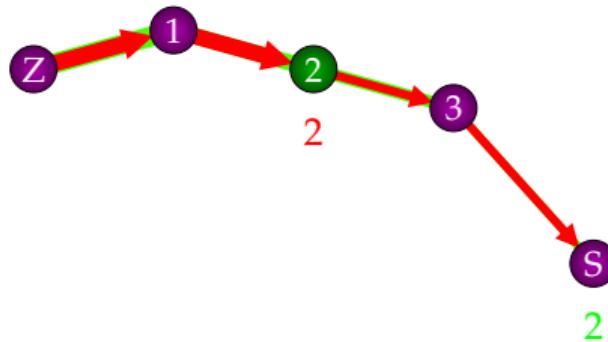
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

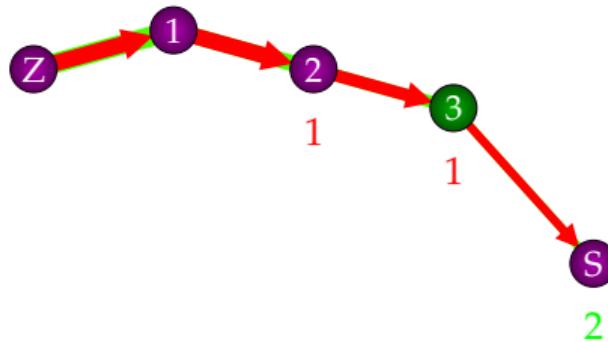
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

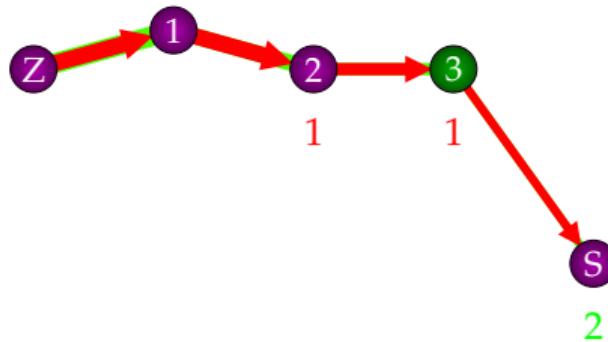
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

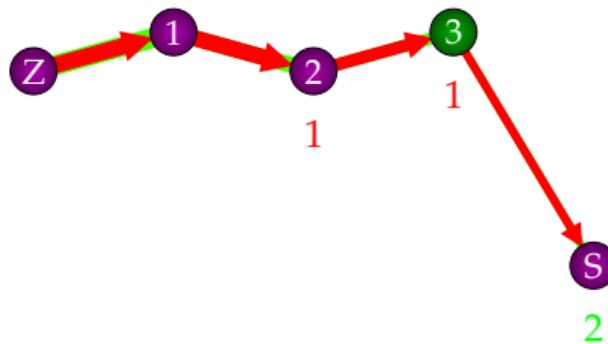
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

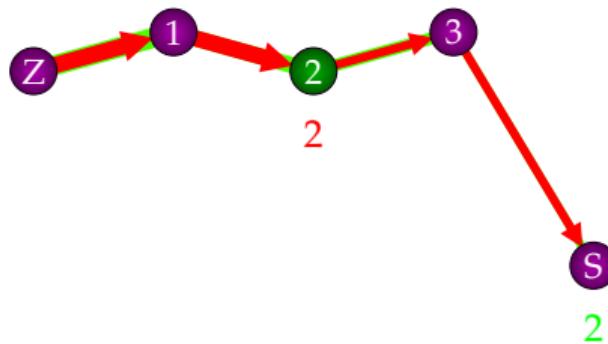
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

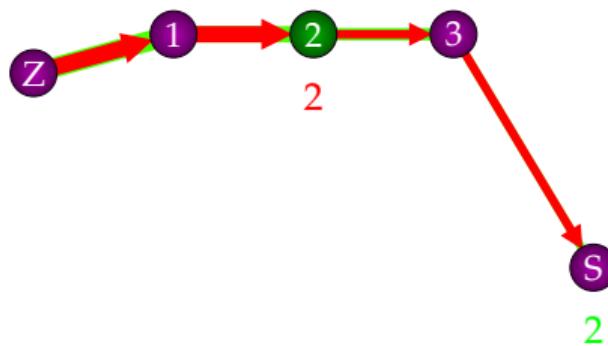
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

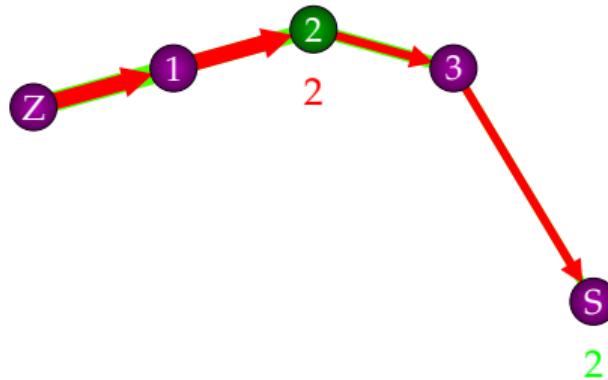
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

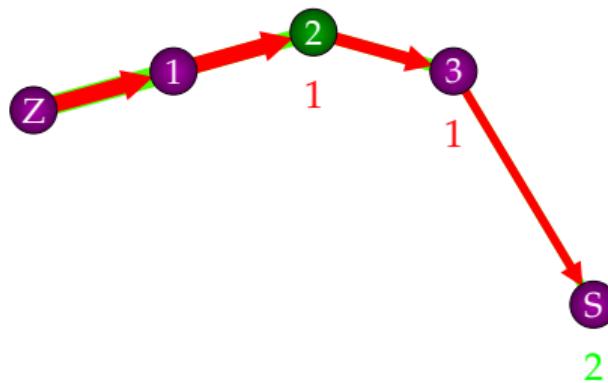
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

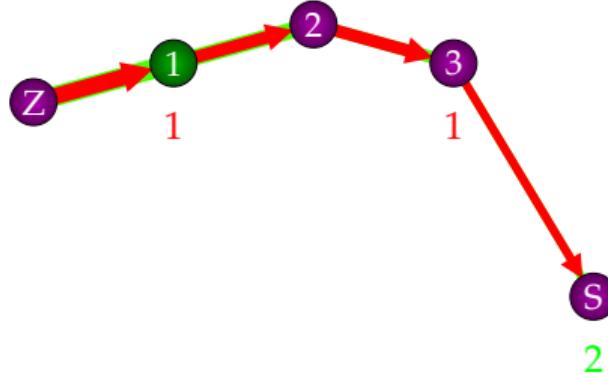
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

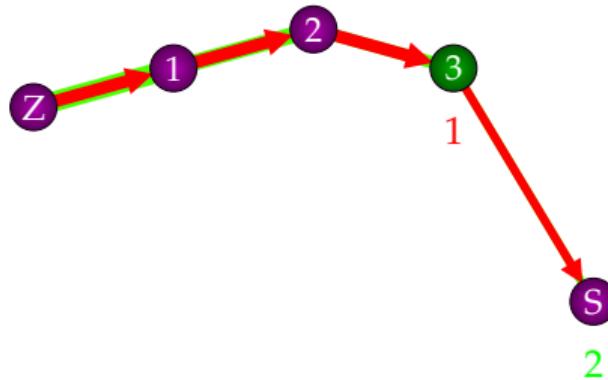
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

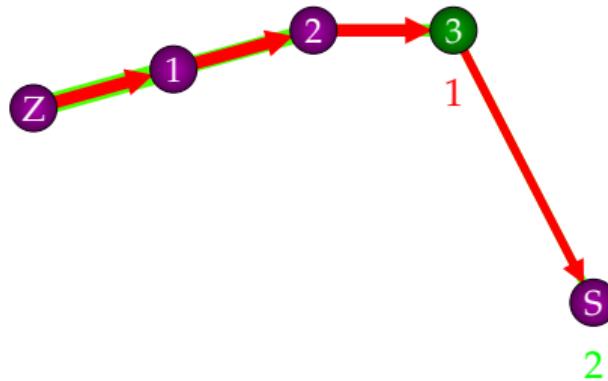
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

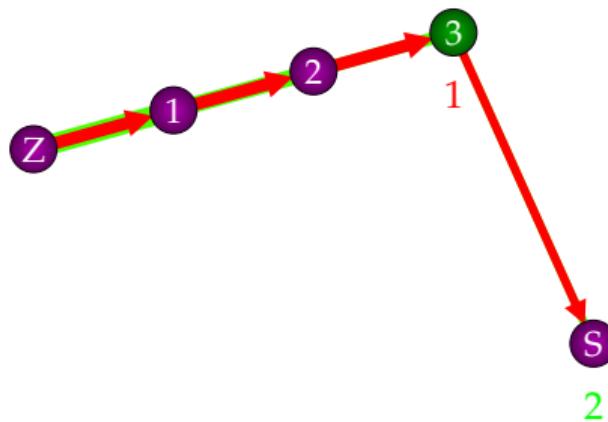
- ① Capacity constraint: $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- 1 $\delta \leftarrow \min(f(v, u), \epsilon).$
- 2 $f(v, u) \leftarrow f(v, u) - \delta.$
- 3 $f(u, v) \leftarrow f(u, v) + \epsilon - \delta.$

Goldberg Meets Bottleneck



PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an height array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

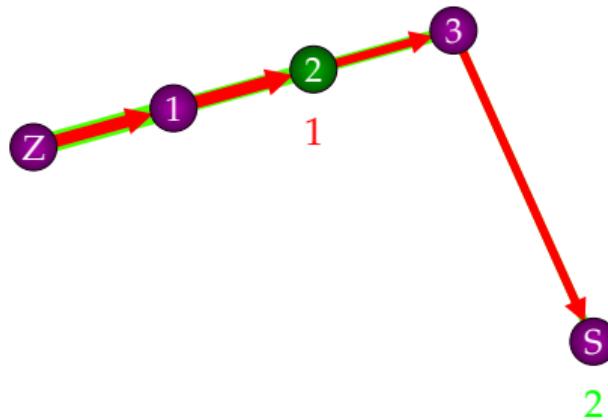
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

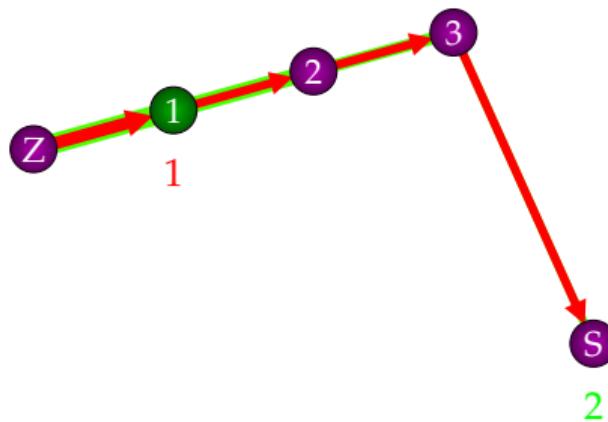
- ① Capacity constraint: $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon).$
- ② $f(v, u) \leftarrow f(v, u) - \delta.$
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta.$

Goldberg Meets Bottleneck



PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an height array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

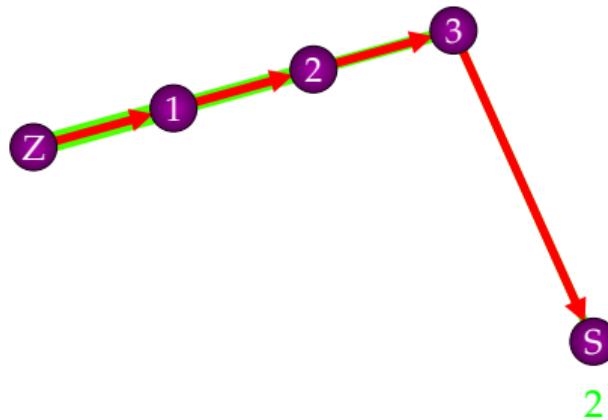
- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Goldberg Meets Bottleneck

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Invariant A (basic invariant)

- ① f is a wave.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Invariant A (basic invariant)

- ① f is a wave.
- ② heights never decrease.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Invariant A (basic invariant)

- ① f is a wave.
- ② heights never decrease.
- ③ $h(s) = |V|$, $h(t) = 0$.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Invariant A (basic invariant)

- ① f is a wave.
- ② heights never decrease.
- ③ $h(s) = |V|$, $h(t) = 0$.
- ④ $f^\Delta(v) \geq 0$ for every $v \in V \setminus \{s\}$.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition (Wave or pre-flow)

A **wave** (or **pre-flow**) in a network $N = (V, E, s, t, c)$ is a function $f : E \rightarrow \mathbb{R}^+$ satisfying:

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) \geq 0$

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

Invariant A (basic invariant)

- ① f is a wave.
- ② heights never decrease.
- ③ $h(s) = |V|$, $h(t) = 0$.
- ④ $f^\Delta(v) \geq 0$ for every $v \in V \setminus \{s\}$.
- ⑤ Sum of all surpluses is 0.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant G (on gradient)

For every edge (u, v) with $r(u, v) > 0$ it holds that $h(u) - h(v) \leq 1$.

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ ($h(s)$ is an height array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant G (on gradient)

For every edge (u, v) with $r(u, v) > 0$ it holds that $h(u) - h(v) \leq 1$.

We proceed by induction on run of the algorithm. After initialization the invariant holds. It can be invalidated by:

- ① Increasing height of u while there exists an edge $r(u, v) > 0$.
- ② Increasing $r(u, v)$ for some edge with $h(u) - h(v) > 1$.

These cases does not happen.

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ ($h(s)$ is an height array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma (On correctness)

If *PushRelabel* terminates, it returns a maximum flow.

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ ($h(s)$ is an height array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma (On correctness)

If *PushRelabel* terminates, it returns a maximum flow.

Proof.

To see that f is a wave that is also a flow we only need to verify the preservation of flows. This is satisfied because algorithm terminated.

To see that f is maximum flow assume, to the contrary, that there is an augmenting path P . By invariant A we know that $h(s) = |V|$ and $h(t) = 0$. P thus goes down by $|V|$ but has at most $|V| - 1$ edges. So one of edges must have gradient 2 that contradicts invariant G. \square

Definition (Push (u, v))

Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ $(h(s)$ is an **height** array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant P (on a path to the source)

If $f^\Delta(v) \geq 0$ then there exists augmenting path from v to s .

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant P (on a path to the source)

If $f^\Delta(v) \geq 0$ then there exists augmenting path from v to s .

Proof.

Let v be a vertex, $f^\Delta(v) \geq 0$.

$$A = \{u \in V : \text{there exists an augmenting path } v \rightarrow s\}$$

$$\sum_{u \in A} f^\Delta(u) = \sum_{(b,a) \in E(V \setminus A, A)} f(b, a) - \sum_{(b,a) \in E(A, V \setminus A)} f(a, b)$$

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant P (on a path to the source)

If $f^\Delta(v) \geq 0$ then there exists augmenting path from v to s .

Proof.

Let v be a vertex, $f^\Delta(v) \geq 0$.

$$A = \{u \in V : \text{there exists an augmenting path } v \rightarrow s\}$$

$$\sum_{u \in A} f^\Delta(u) = \sum_{(b,a) \in E(V \setminus A, A)} f(b, a) - \sum_{(b,a) \in E(A, V \setminus A)} f(a, b)$$

$$\sum_{(b,a) \in E(V \setminus A, A)} f(b, a) = 0$$

$$\sum_{(b,a) \in E(A, V \setminus A)} f(a, b) \geq 0$$

So overall sum is negative: there thus must be a vertex with negative surplus (the source) □

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant H (on height)

For every vertex v it holds that $h(v) \leq 2n$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant H (on height)

For every vertex v it holds that $h(v) \leq 2n$.

Proof.

Assume that we increase $h(v)$ to $2n + 1$. This means that v has positive surplus. By Invariant P there exists path to source and by Invariant G every edge decrease height by at most 1. The path has at most $n - 1$ edges. \square

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Invariant H (on height)

For every vertex v it holds that $h(v) \leq 2n$.

Proof.

Assume that we increase $h(v)$ to $2n + 1$. This means that v has positive surplus. By Invariant P there exists path to source and by Invariant G every edge decrease height by at most 1. The path has at most $n - 1$ edges. \square

Lemma

Height is increased at most $2|V|^2$ times.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition

We say that Push operation is **full** if the surplus decreased to 0. (In the opposite case it is **partial** and the reserve decreases to 0).

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition

We say that Push operation is **full** if the surplus decreased to 0. (In the opposite case it is **partial** and the reserve decreases to 0).

Lemma

There are at most $|V||E|$ partial Push operations.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition

We say that Push operation is **full** if the surplus decreased to 0. (In the opposite case it is **partial** and the reserve decreases to 0).

Lemma

There are at most $|V||E|$ partial Push operations.

Proof.

Fix an edge (u, v) and consider how many times we can do partial Push (u, v) . We know that if it happens then $h(u) = h(v) + 1$. Before next push however we need to send something back and thus $h(v) = h(u) + 1$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Definition

We say that Push operation is **full** if the surplus decreased to 0. (In the opposite case it is **partial** and the reserve decreases to 0).

Lemma

There are at most $|V||E|$ partial Push operations.

Proof.

Fix an edge (u, v) and consider how many times we can do partial Push (u, v) . We know that if it happens then $h(u) = h(v) + 1$. Before next push however we need to send something back and thus $h(v) = h(u) + 1$.

Between each two partial Push operations $h(u)$ increases by 2. By Invariant H we thus get at most $|V|$ partial push operations for every edge. \square

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma

There are at most $O(|V|^2|E|)$ full Push operations.

Proof.

$$\Phi = \sum_{v \in V \setminus \{s, t\}, f^\Delta(v) > 0} h(v)$$

- ① At beginning $\Phi = 0$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma

There are at most $O(|V|^2|E|)$ full Push operations.

Proof.

$$\Phi = \sum_{v \in V \setminus \{s, t\}, f^\Delta(v) > 0} h(v)$$

- ① At beginning $\Phi = 0$.
- ② It always holds that $\Phi \geq 0$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma

There are at most $O(|V|^2|E|)$ full Push operations.

Proof.

$$\Phi = \sum_{v \in V \setminus \{s, t\}, f^\Delta(v) > 0} h(v)$$

- ① At beginning $\Phi = 0$.
- ② It always holds that $\Phi \geq 0$.
- ③ Partial push operations increase Φ by at most $2n$.

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma

There are at most $O(|V|^2|E|)$ full Push operations.

Proof.

$$\Phi = \sum_{v \in V \setminus \{s, t\}, f^\Delta(v) > 0} h(v)$$

- ① At beginning $\Phi = 0$.
- ② It always holds that $\Phi \geq 0$.
- ③ Partial push operations increase Φ by at most $2n$.
- ④ Full push operation decreases Φ by at least 1

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Lemma

There are at most $O(|V|^2|E|)$ full Push operations.

Proof.

$$\Phi = \sum_{v \in V \setminus \{s, t\}, f^\Delta(v) > 0} h(v)$$

- ① At beginning $\Phi = 0$.
- ② It always holds that $\Phi \geq 0$.
- ③ Partial push operations increase Φ by at most $2n$.
- ④ Full push operation decreases Φ by at least 1

□

Goldberg algorithm (Goldberg, Tarjan 1988): Push-relabel, Preflow-push

Implementation notes:

- ① Keep list P of vertices with positive surplus.
During Push update P in constant time. (Every vertex can have pointer to its position in list P .)
- ② For every vertex we keep list $L(u)$ containing all edges with positive reserve and that goes “down”. Again during Push updated lists in a constant time.
- ③ Initialization of algorithm is $O(|E|)$.
- ④ Choosing vertex $O(|1|)$.
- ⑤ Push $O(|1|)$.
- ⑥ Increasing of $h(u)$ in $O(|V|)$: we need to update lists $L(u)$ and lists in all neighboring vertices.

Theorem

Goldberg (PushRelabel) algorithm will find maximum flow in time $O(|V|^2|E|)$.

The runtime can be improved by always choosing a vertex with maximum height. In this case it will run in $O(|V|^2\sqrt{|E|})$.

Definition (Push (u,v))

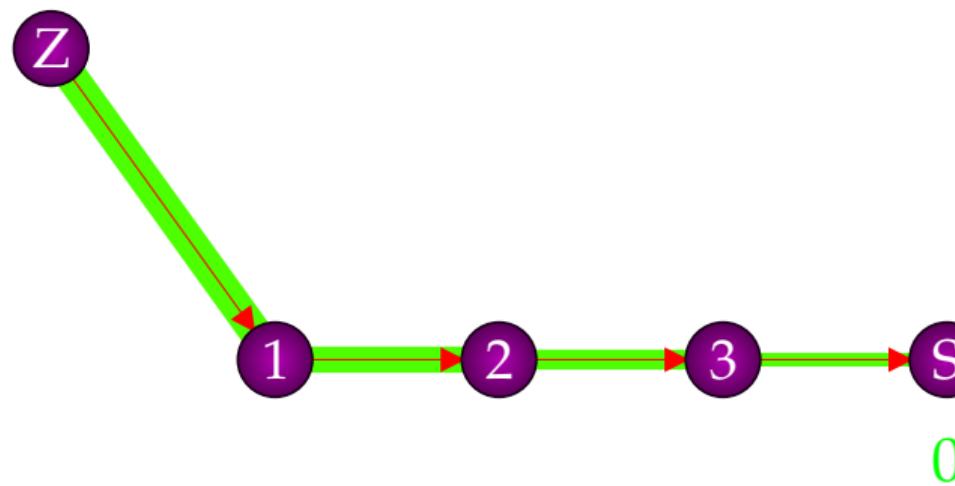
Put $\epsilon = \min(f^\Delta(v), r(u, v))$ and send ϵ from u to v :

- ① $\delta \leftarrow \min(f(v, u), \epsilon)$.
- ② $f(v, u) \leftarrow f(v, u) - \delta$.
- ③ $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.

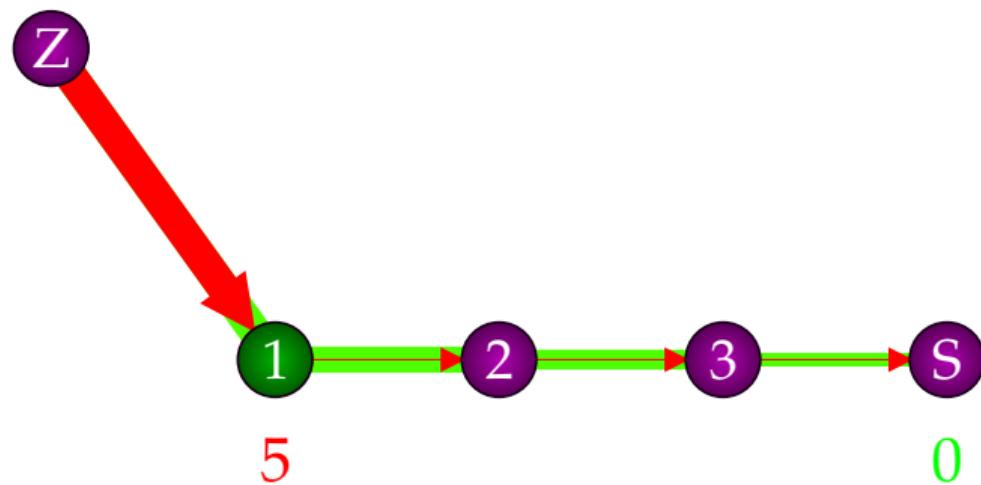
PushRelabel($N = (V, E, s, t, c)$)

- ① $f \leftarrow$ zero wave.
- ② $f(s, v) \leftarrow c(s, v)$ for every v such that $(s, v) \in E$.
- ③ $h(s) \leftarrow |V|$ (h(s) is an height array)
- ④ $h(s) \leftarrow 0$ for all $v \in V \setminus \{s\}$
- ⑤ While there exists $u \in V \setminus \{s, t\}$, $f^\Delta(u) > 0$:
 - ⑥ If there is an edge (u, v) such that $r(u, v) > 0$ and $h(u) > h(v)$: Push (u, v)
 - ⑦ else: $h(u) \leftarrow h(u) + 1$.

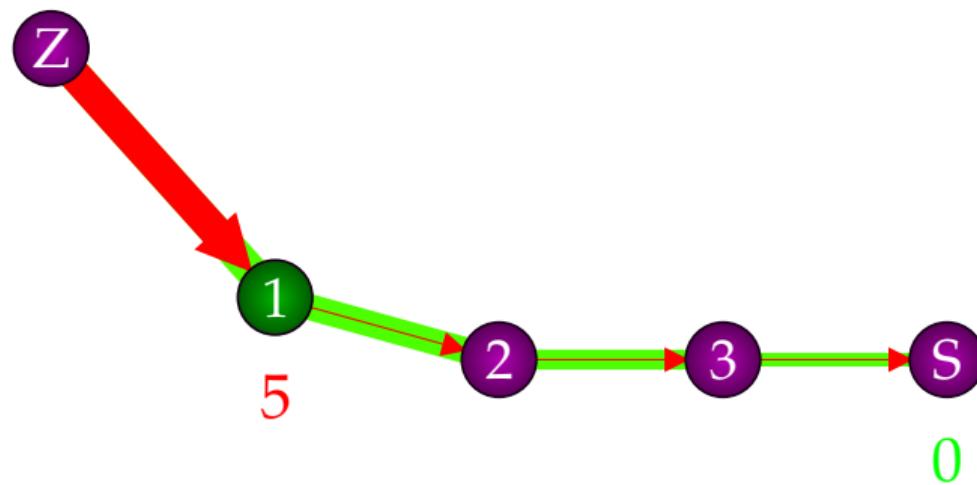
Goldberg with Max Height Rule



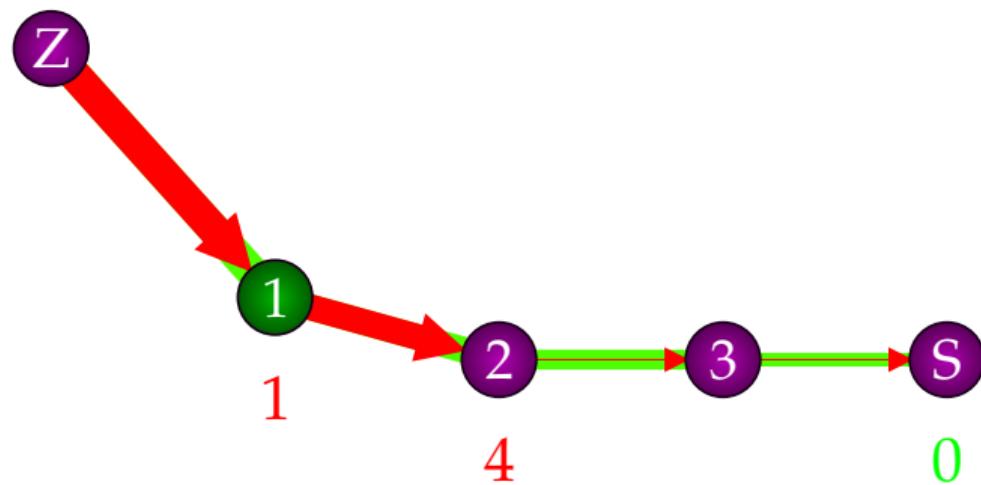
Goldberg with Max Height Rule



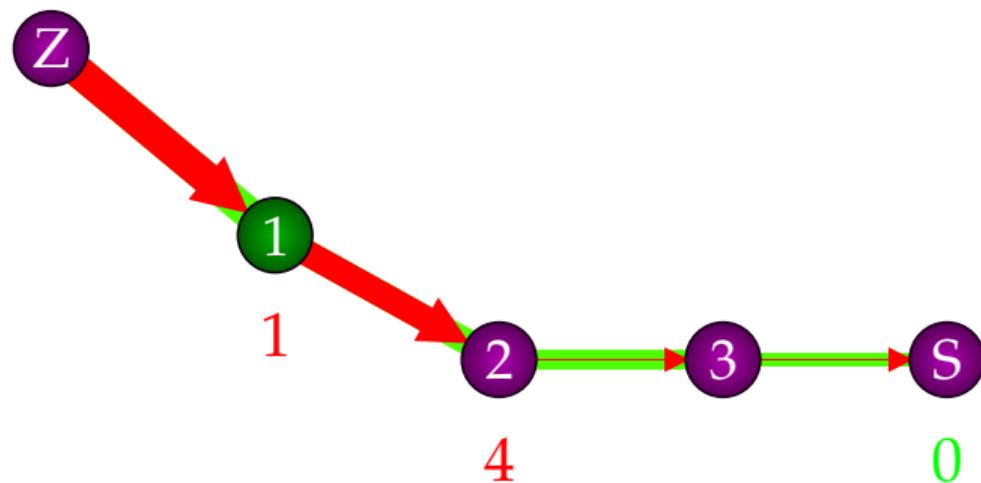
Goldberg with Max Height Rule



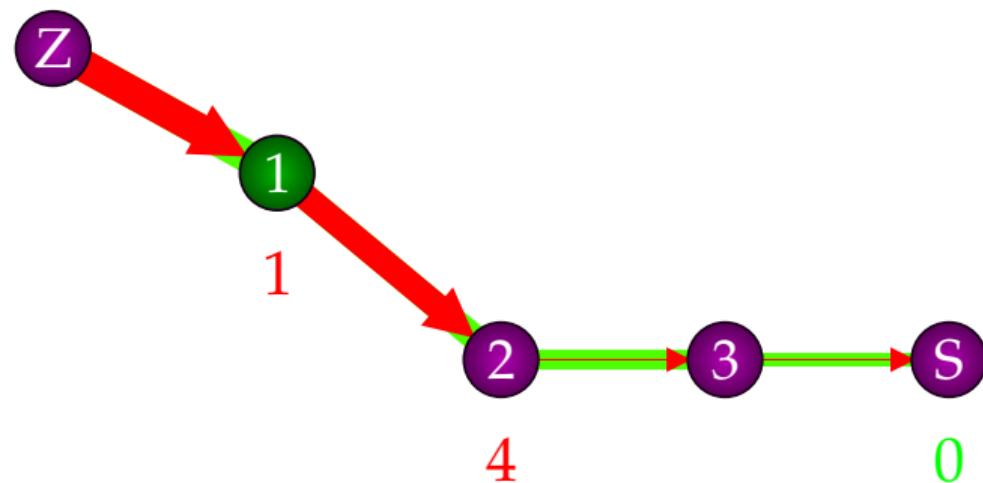
Goldberg with Max Height Rule



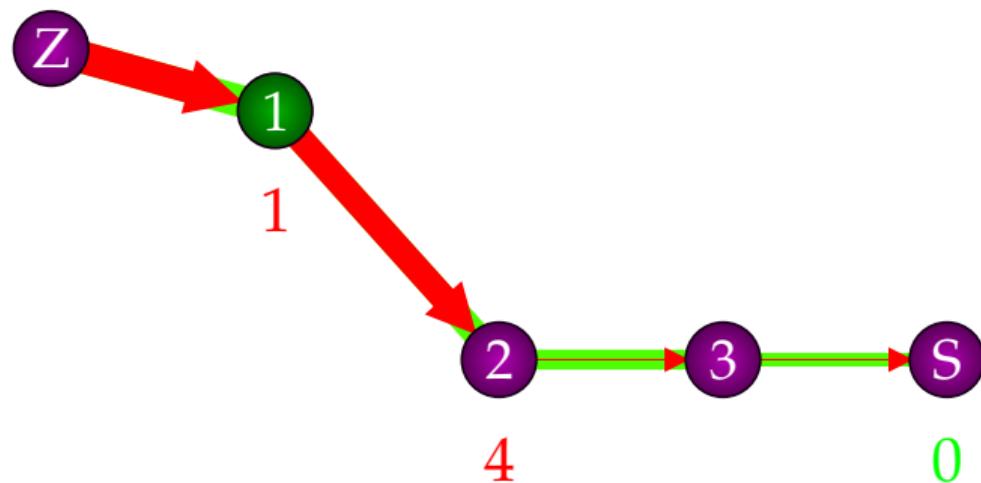
Goldberg with Max Height Rule



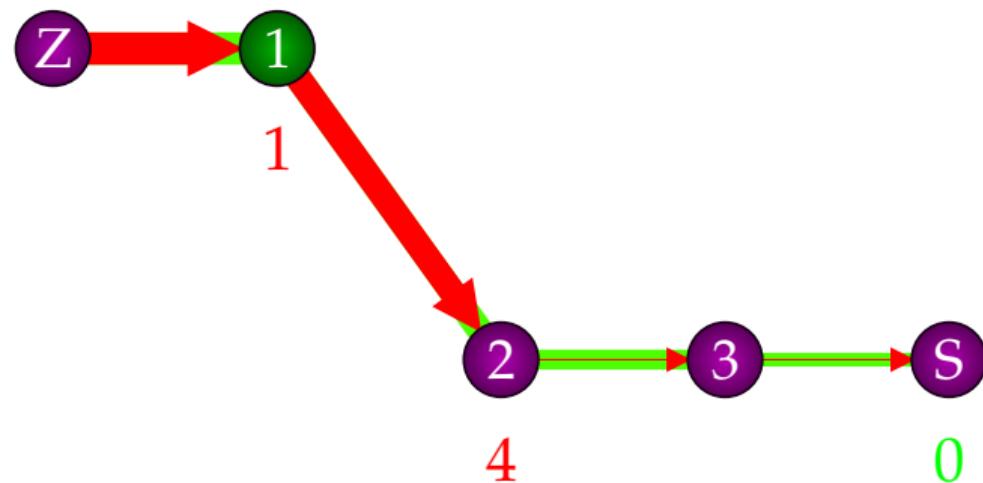
Goldberg with Max Height Rule



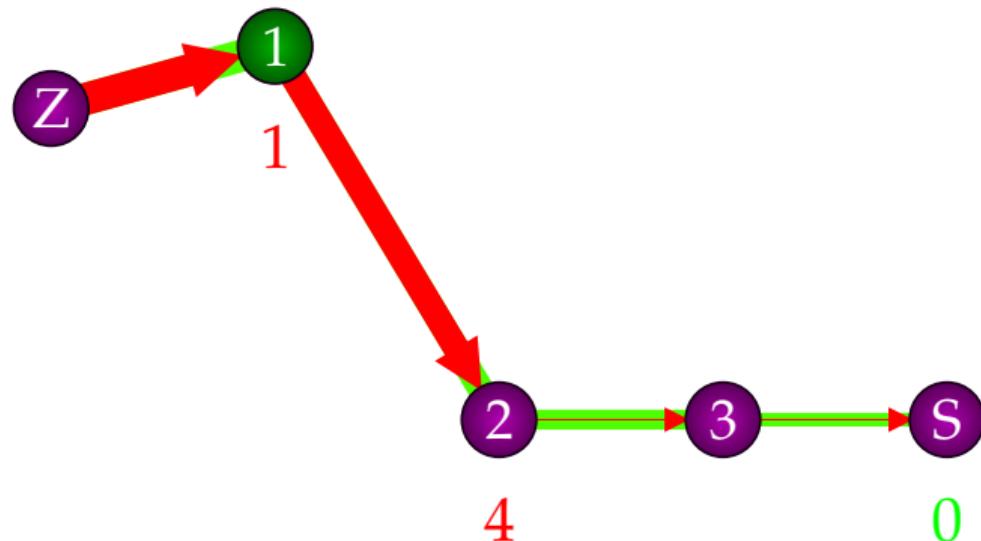
Goldberg with Max Height Rule



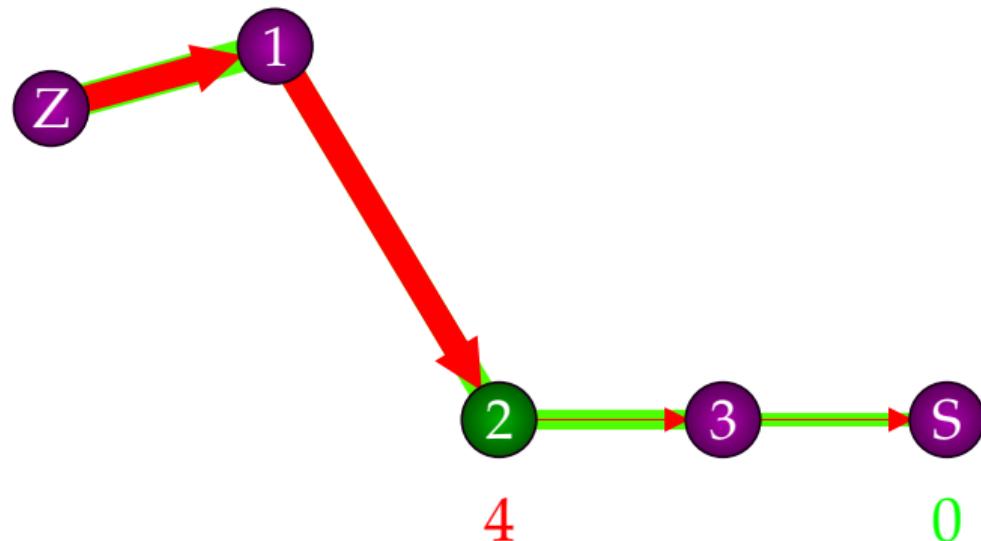
Goldberg with Max Height Rule



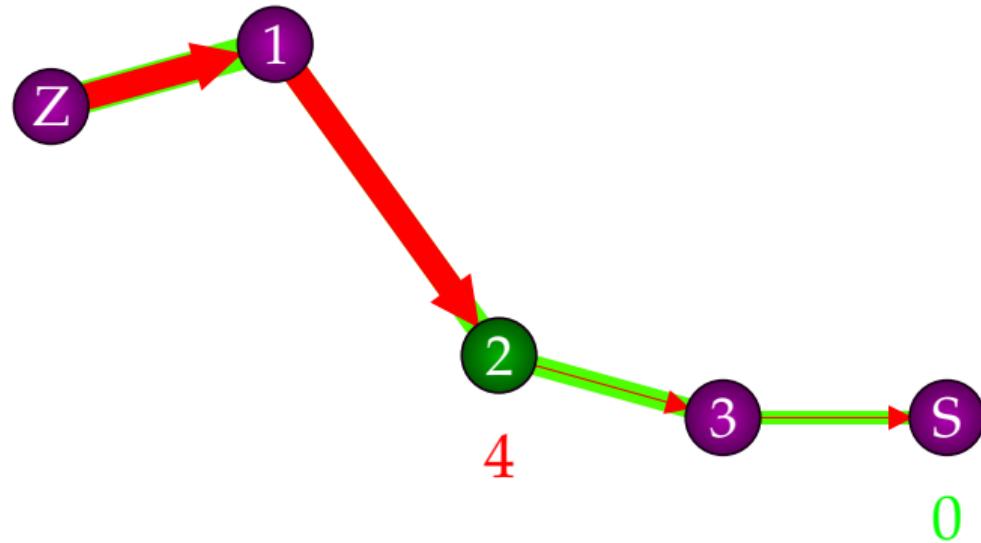
Goldberg with Max Height Rule



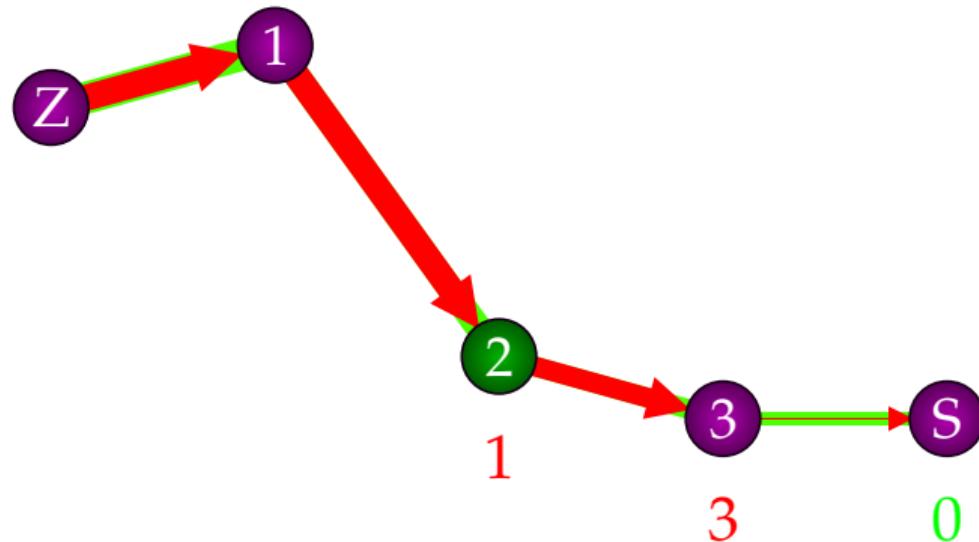
Goldberg with Max Height Rule



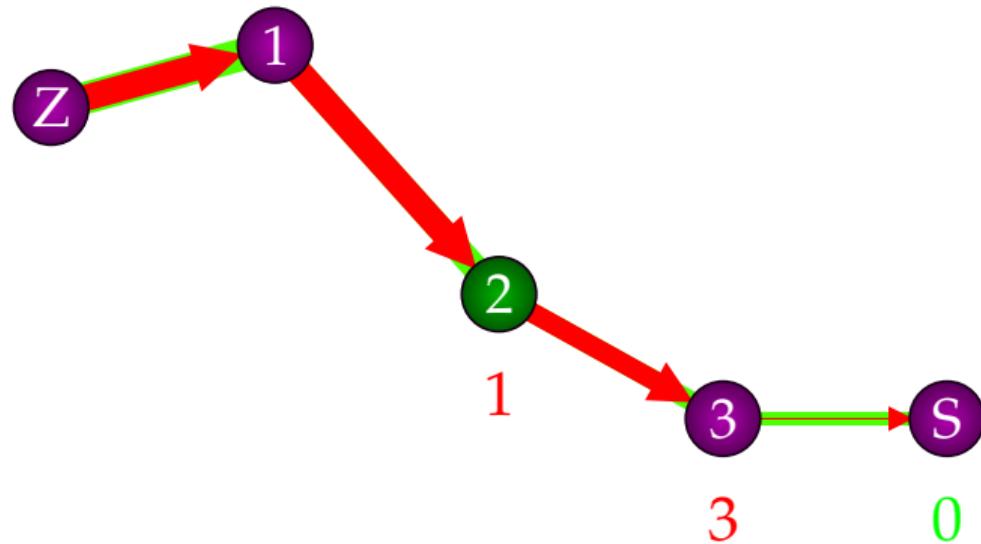
Goldberg with Max Height Rule



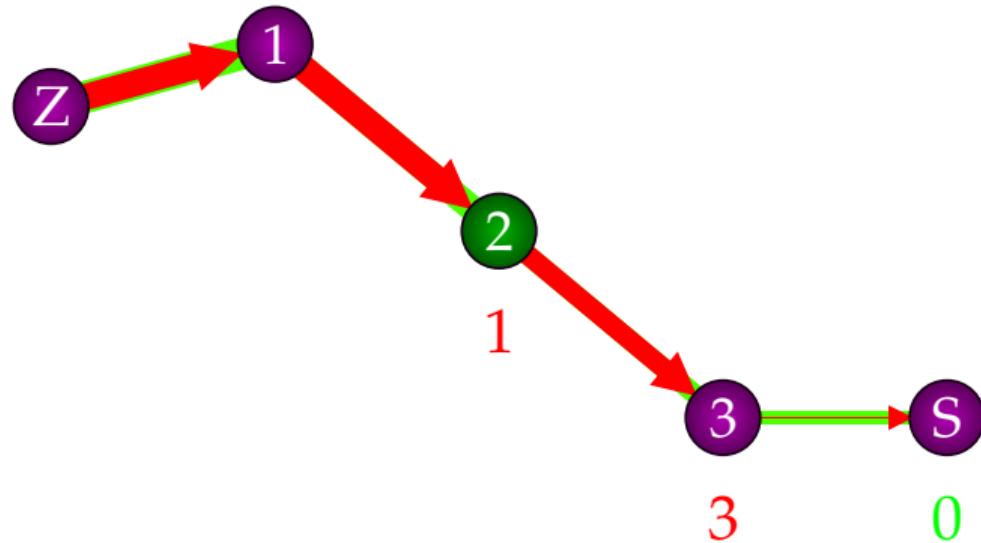
Goldberg with Max Height Rule



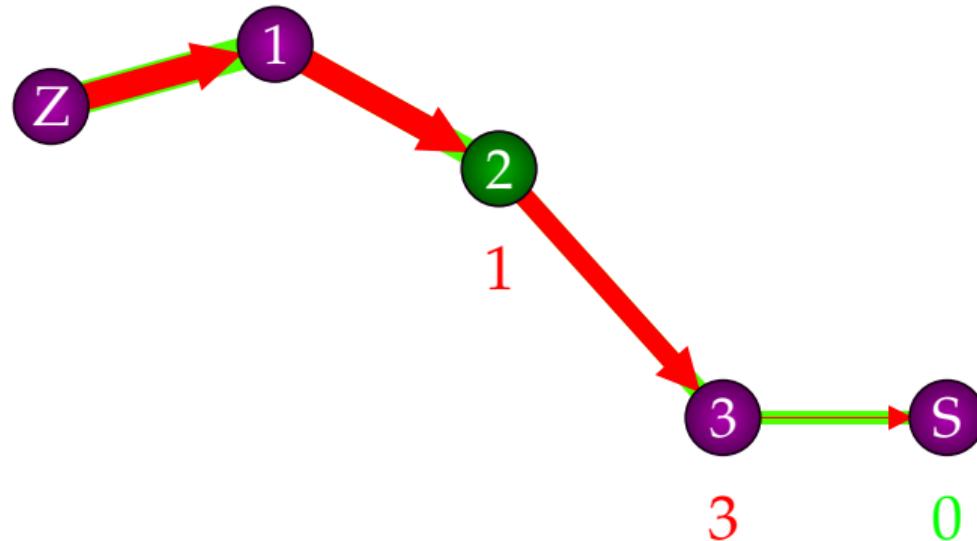
Goldberg with Max Height Rule



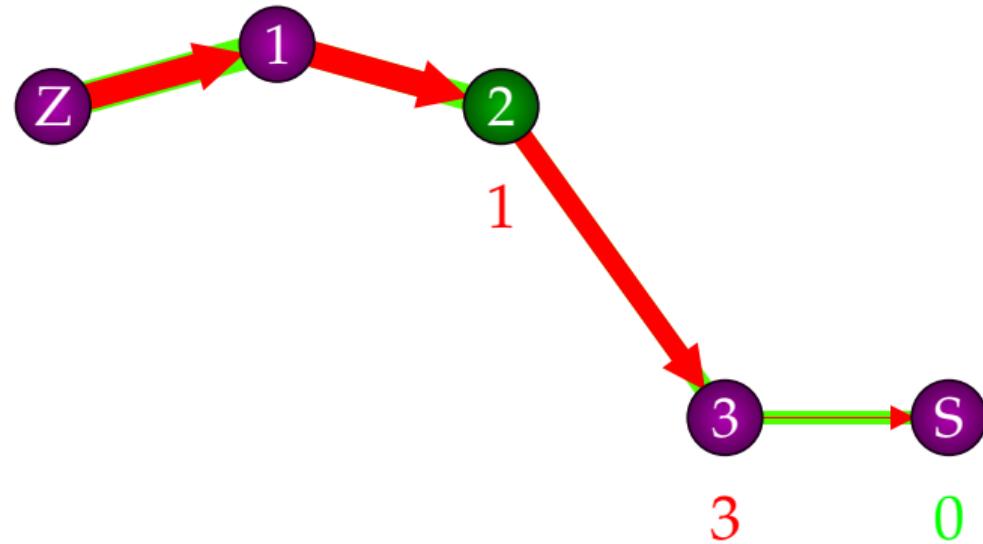
Goldberg with Max Height Rule



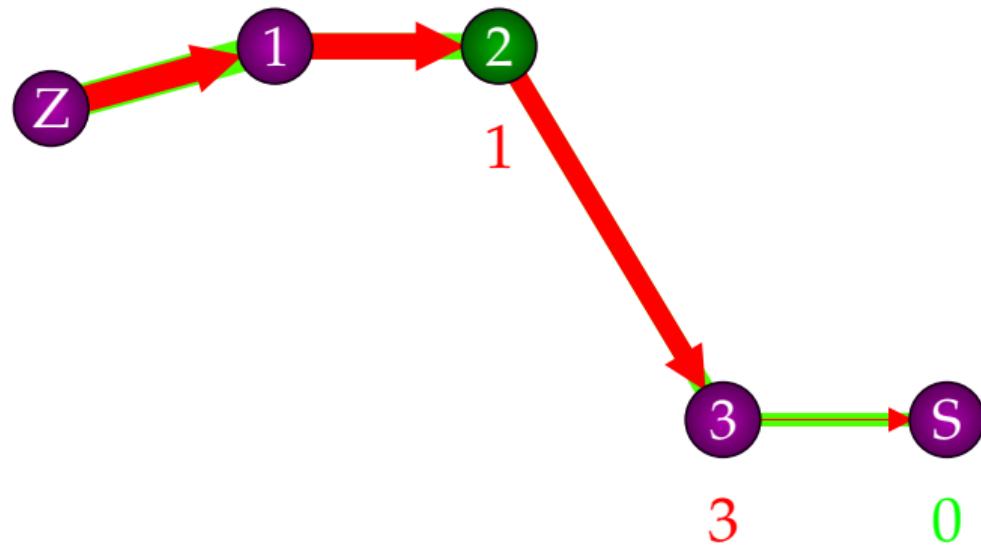
Goldberg with Max Height Rule



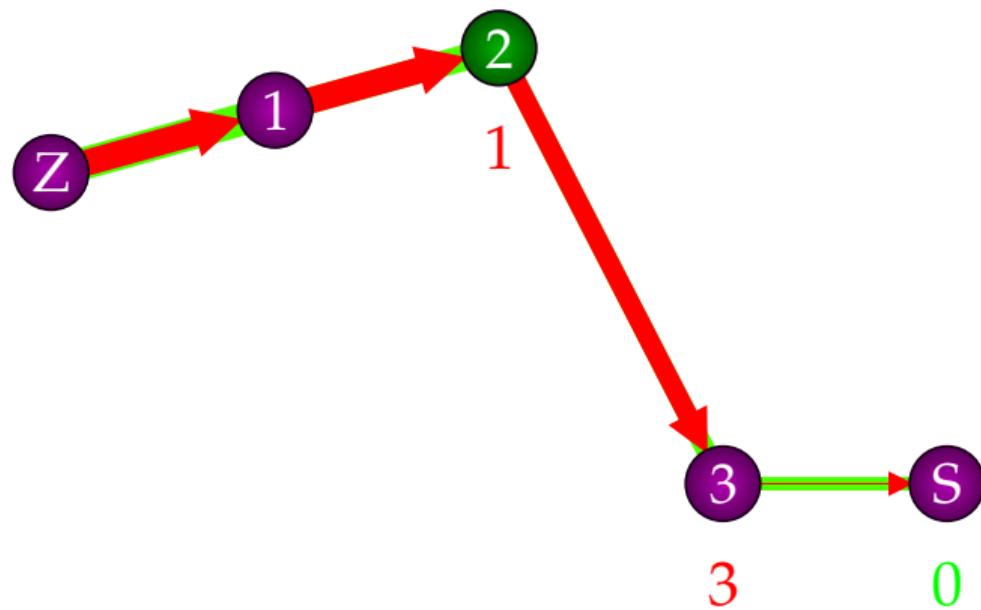
Goldberg with Max Height Rule



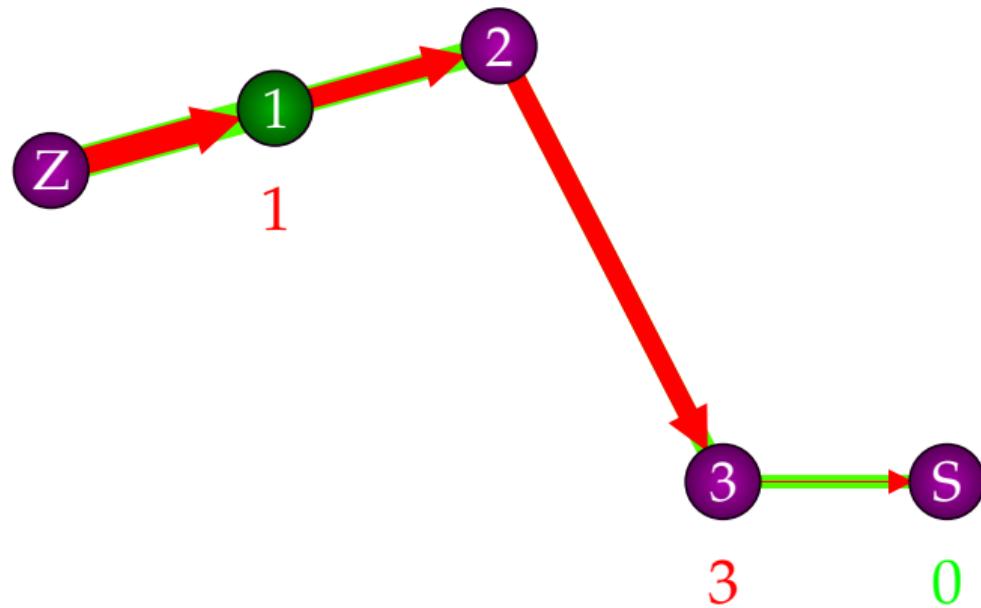
Goldberg with Max Height Rule



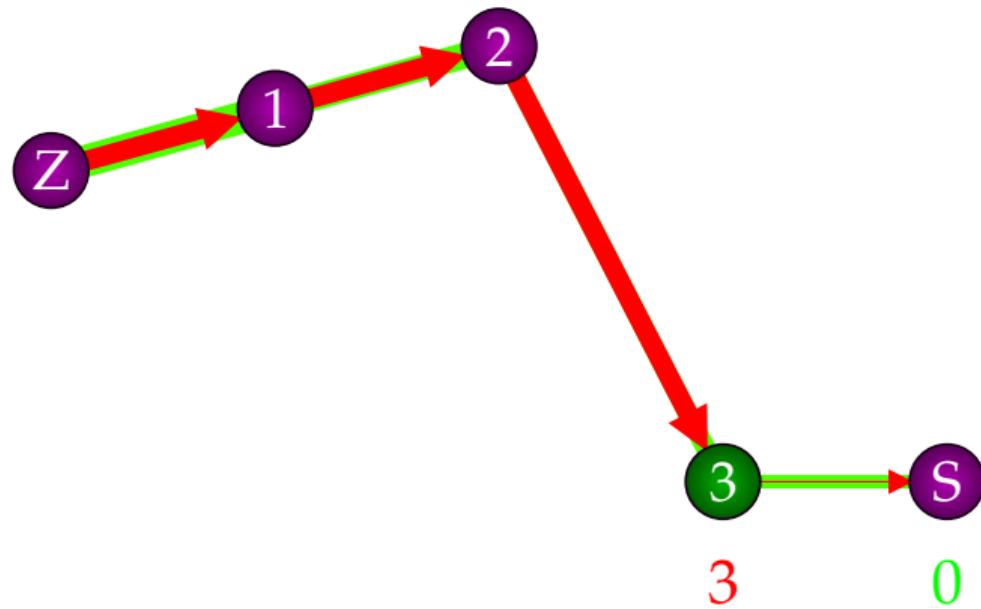
Goldberg with Max Height Rule



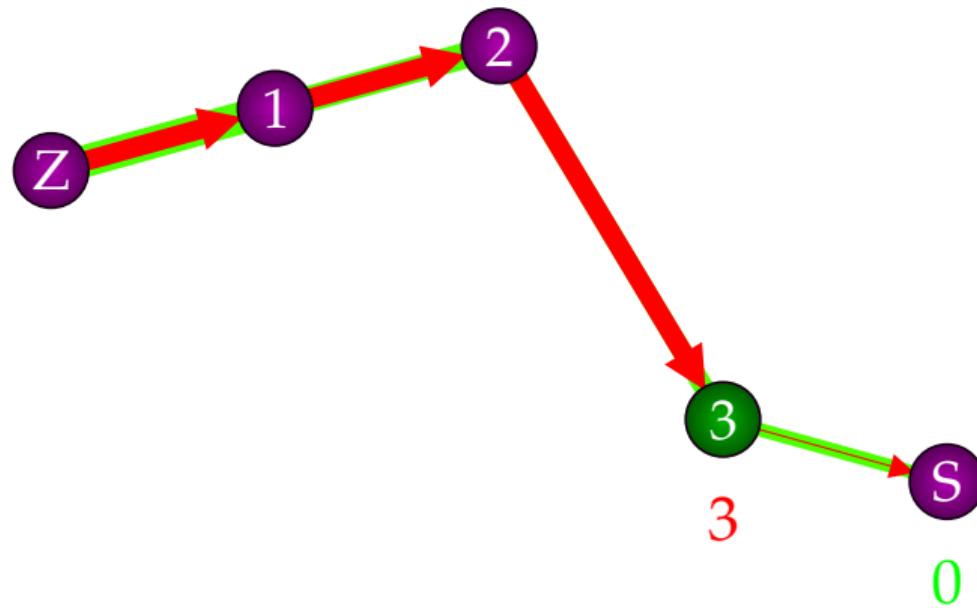
Goldberg with Max Height Rule



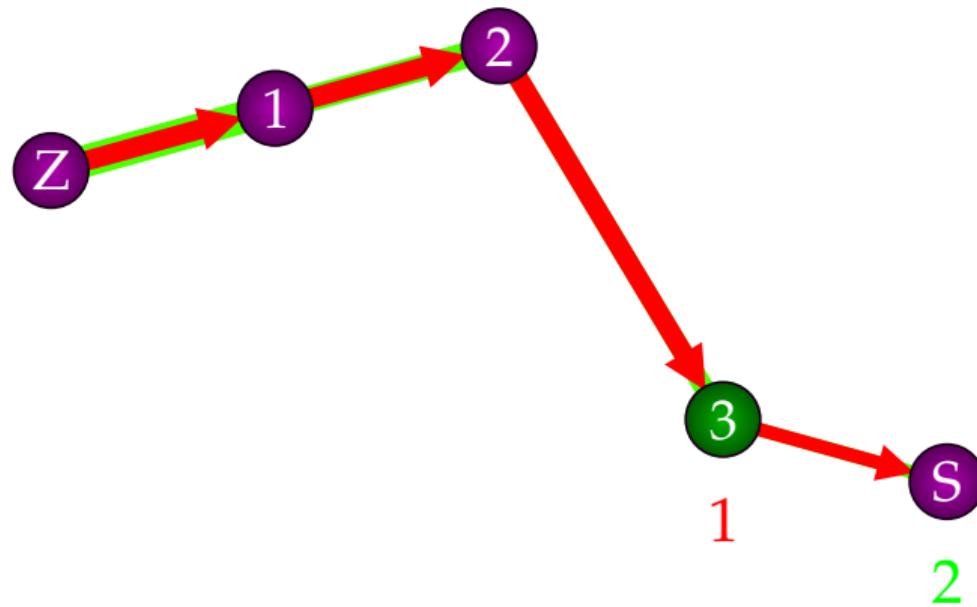
Goldberg with Max Height Rule



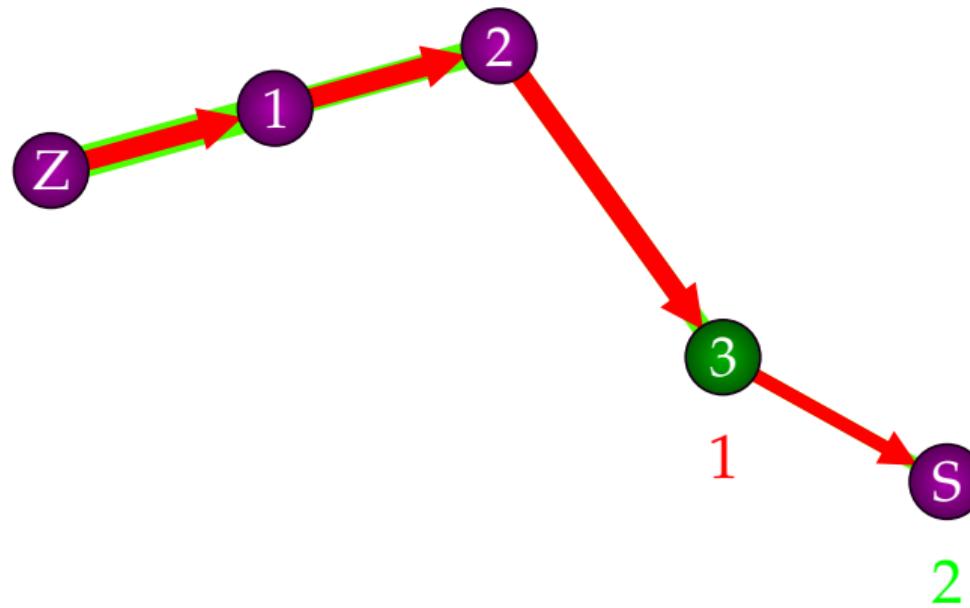
Goldberg with Max Height Rule



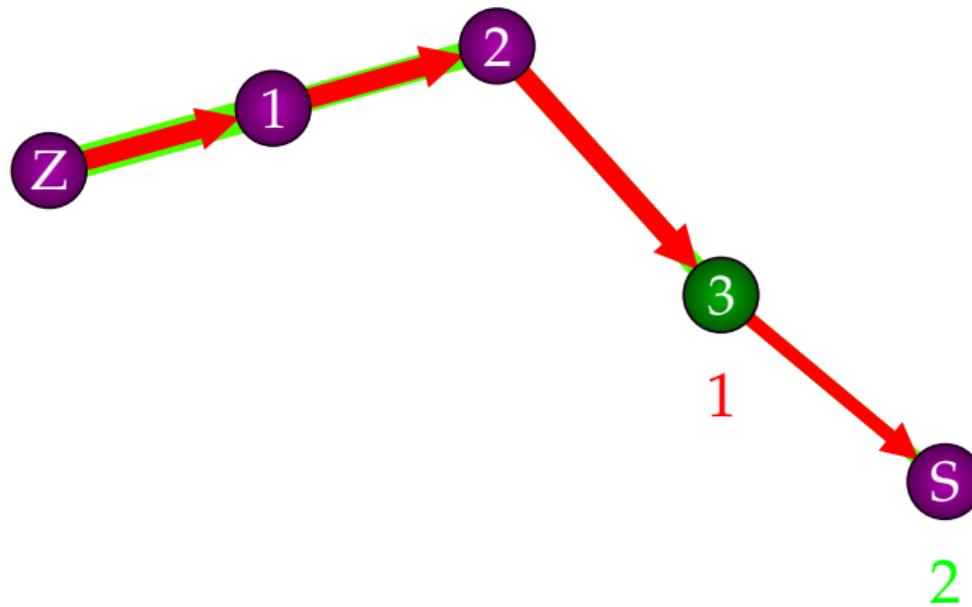
Goldberg with Max Height Rule



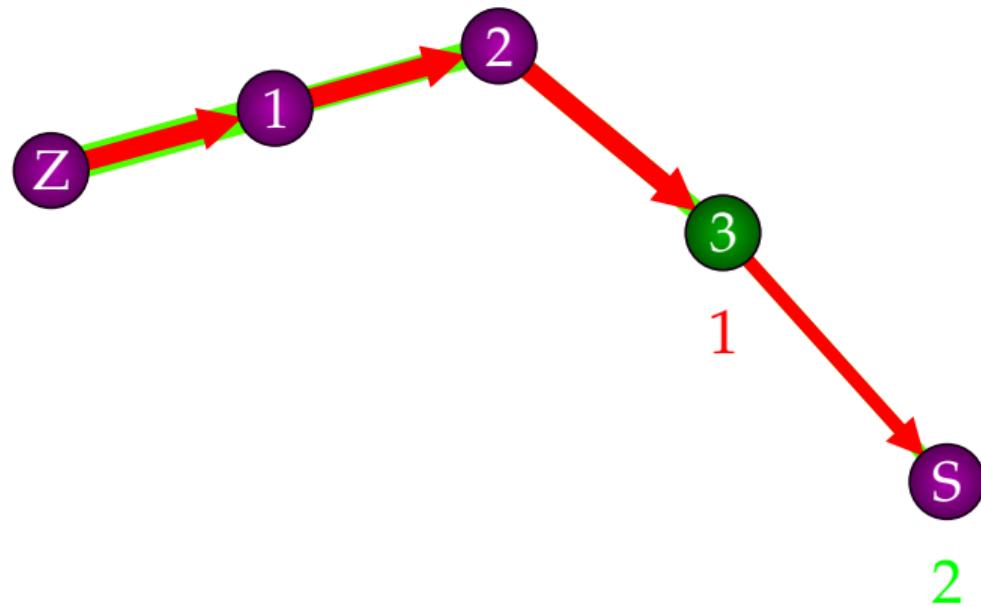
Goldberg with Max Height Rule



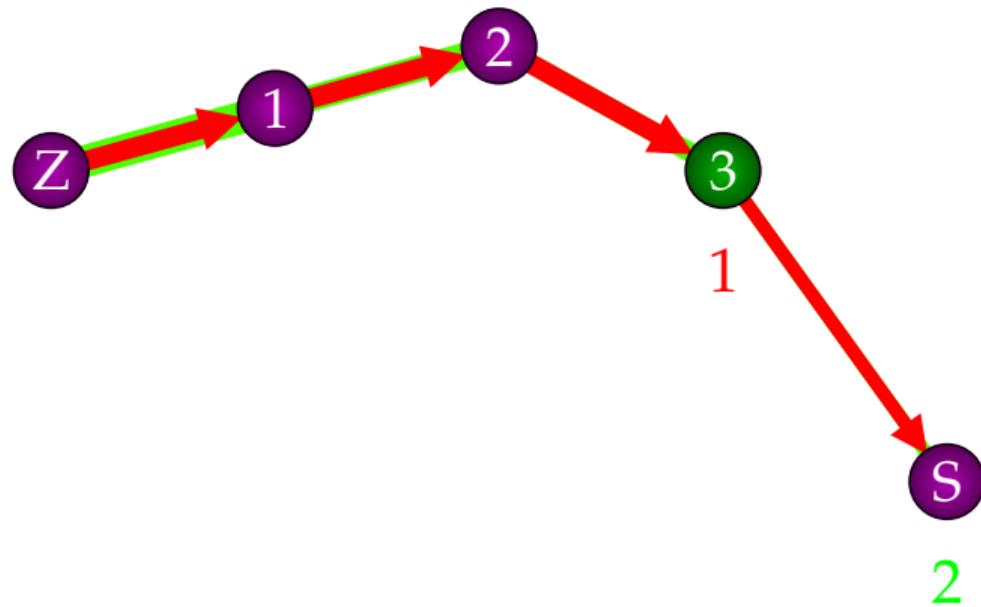
Goldberg with Max Height Rule



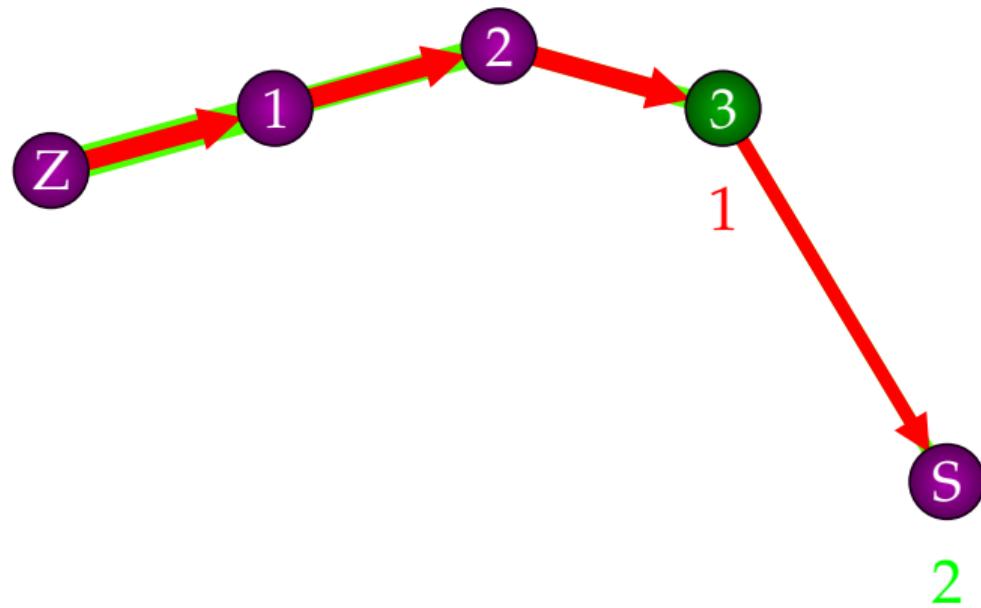
Goldberg with Max Height Rule



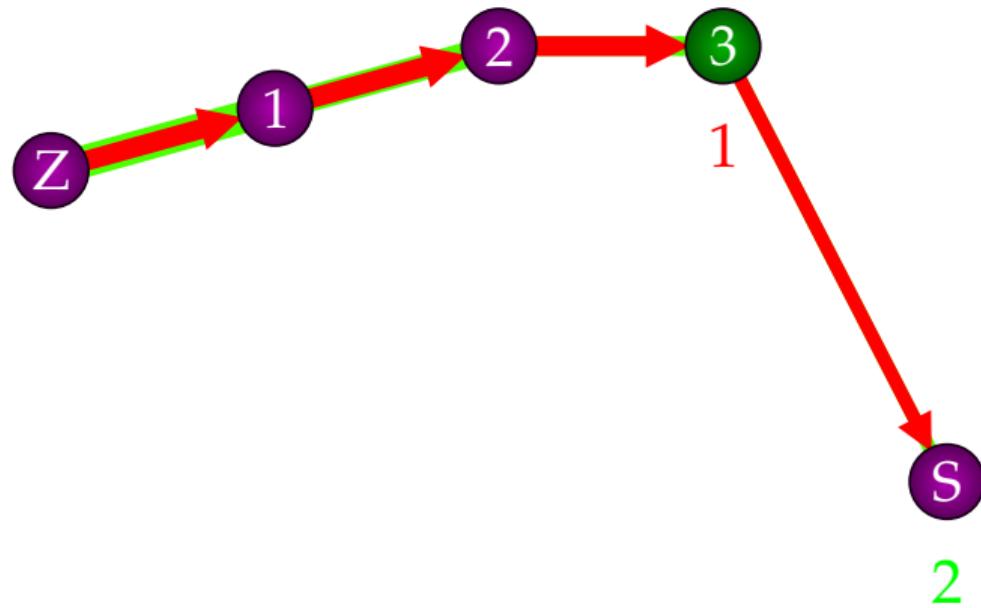
Goldberg with Max Height Rule



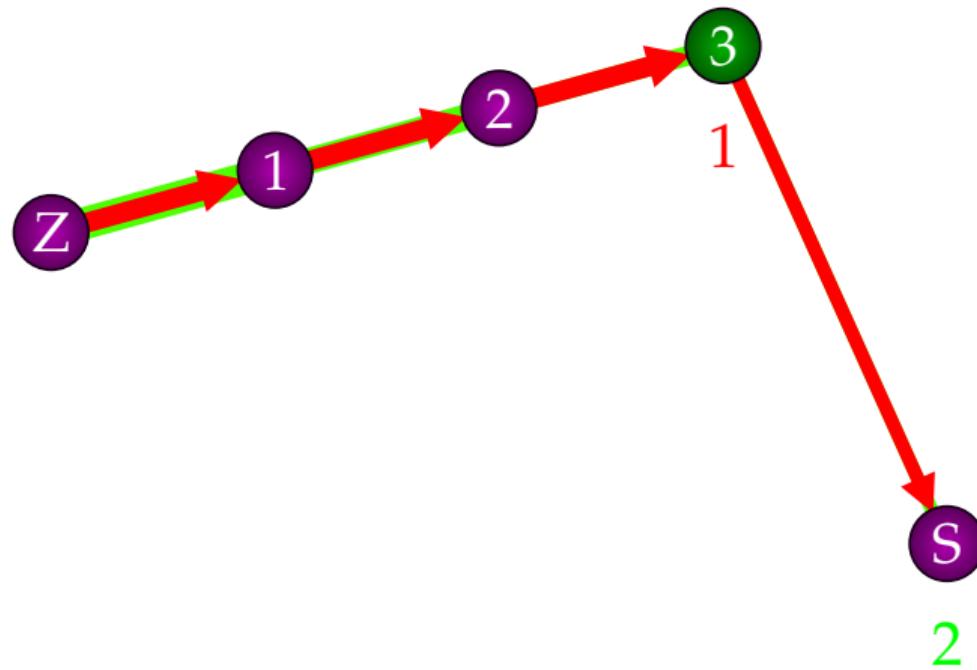
Goldberg with Max Height Rule



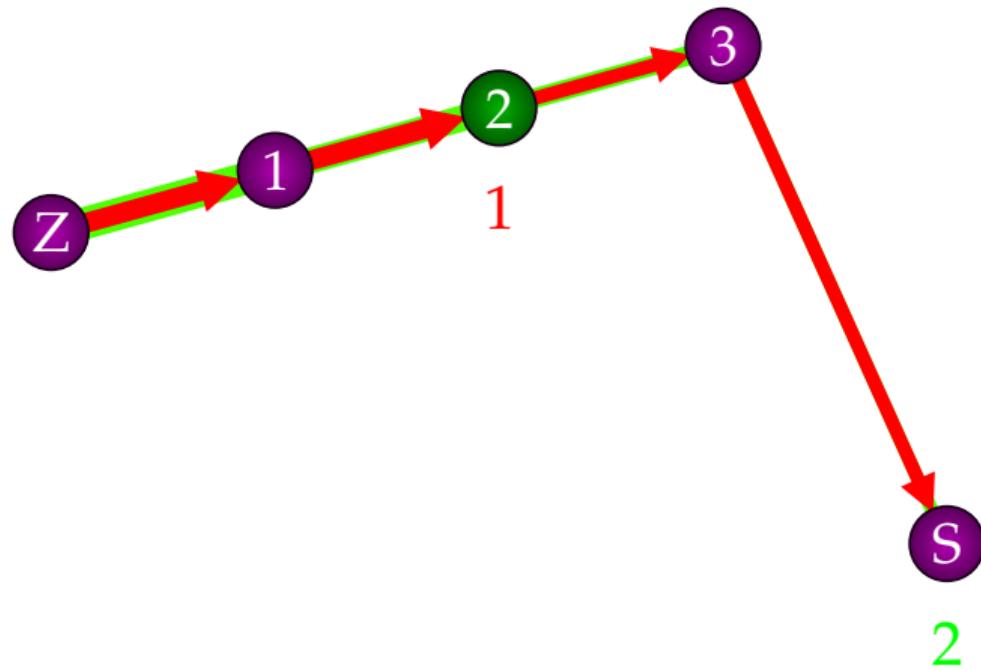
Goldberg with Max Height Rule



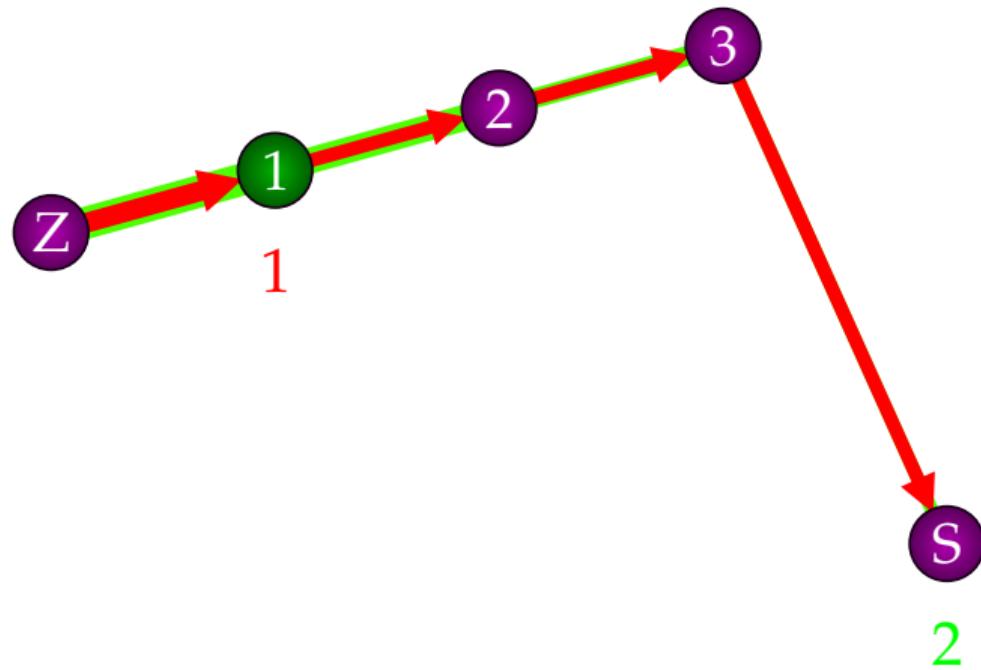
Goldberg with Max Height Rule



Goldberg with Max Height Rule



Goldberg with Max Height Rule



Goldberg with Max Height Rule

