

Recall
oo

Ford–Fulkerson algorithm
ooo

Dinic's algorithm
ooooo

Algorithms and datastructures II

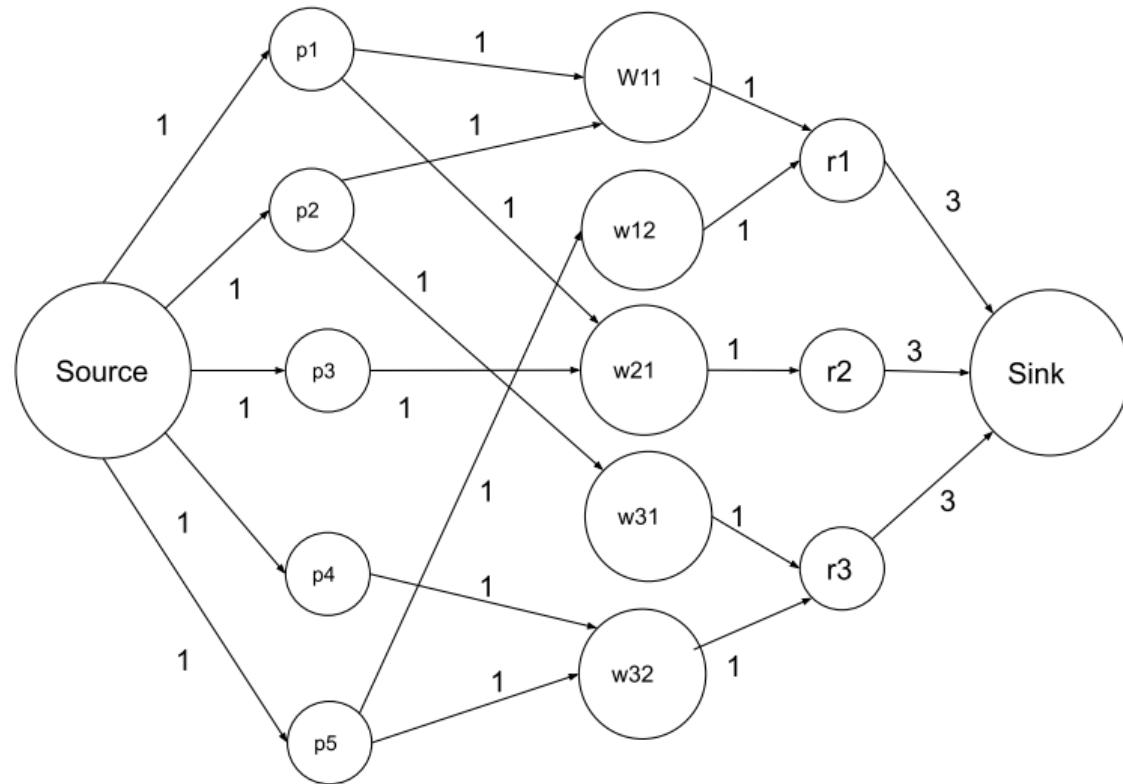
Lecture 3: network flows

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Oct 19 2020

Network flow



Network flow

Definition (Network)

Network is an 4-tuple $N = (V, E, s, t, c)$ where

- ① (V, E) is a directed graph,
- ② $s \in V$ is a **source** vertex,
- ③ $t \in V$ is a **sink** vertex,
- ④ $c : E \rightarrow \mathbb{R}_0^+$ is a function assigning every edge a **capacity**.

- $f^+(v) = \sum_{u, (u,v) \in E} f(u, v)$ (**flow into a vertex**)
- $f^-(v) = \sum_{u, (v,u) \in E} f(v, u)$ (**flow out of a vertex**)
- $f^\Delta(v) = f^+(v) - f^-(v)$ (**surplus or excess**)

Here $f : E \rightarrow \mathbb{R}_0^+$

Definition (Flow)

Function $f : E \rightarrow \mathbb{R}_0^+$ is **flow** if it satisfies

- ① **Capacity constraint:** $(\forall e \in E) : f(e) \leq c(e)$
- ② **Conservation of flows (Kirchoff's law):** $(\forall v \in V \setminus \{s, t\}) : f^\Delta(v) = 0$

Value of the flow: $|f| = f^\Delta(t)$.

Network flow

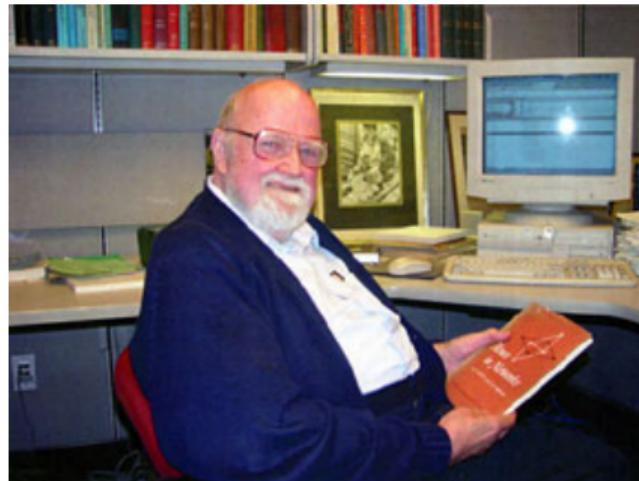
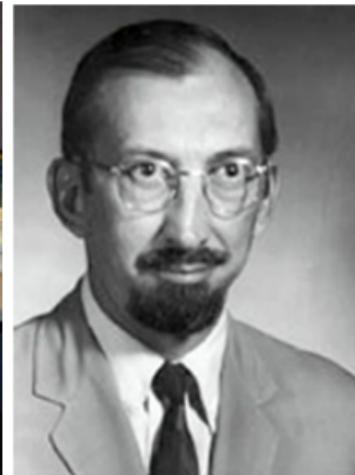
Network flow problem

Given network $N = (V, E, s, t, c)$ find flow f maximizing $|f|$ (a **maximum flow**).

Naive approach: Start with 0 flow and keep improving as long as there is path from source to sink that can be improved.

Today: we show that naive approach works and give an effective algorithm to solve this problem

Ford–Fulkerson algorithm, 1956



Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

FordFulkerson(V, E, s, t, c)

- 1 $f \leftarrow$ zero flow (or flow of your choice).
- 2 While there exists augmenting path P from s to t :
 - 3 $\epsilon \leftarrow \min_{e \in P} r(e)$.
 - 4 For every $\{u, v\} \in P$:
 - 5 $\delta \leftarrow \min(f(v, u), \epsilon)$.
 - 6 $f(v, u) \leftarrow f(v, u) - \delta$.
 - 7 $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.
 - 8 Return f (maximum flow).

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Lemma

If FordFulkerson terminates, it returns a flow.

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

FordFulkerson(V, E, s, t, c)

- 1 $f \leftarrow$ zero flow (or flow of your choice).
- 2 While there exists augmenting path P from s to t :
 - 3 $\epsilon \leftarrow \min_{e \in P} r(e)$.
 - 4 For every $\{u, v\} \in P$:
 - 5 $\delta \leftarrow \min(f(v, u), \epsilon)$.
 - 6 $f(v, u) \leftarrow f(v, u) - \delta$.
 - 7 $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.
 - 8 Return f (maximum flow).

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

FordFulkerson(V, E, s, t, c)

- 1 $f \leftarrow$ zero flow (or flow of your choice).
- 2 While there exists augmenting path P from s to t :
 - 3 $\epsilon \leftarrow \min_{e \in P} r(e)$.
 - 4 For every $\{u, v\} \in P$:
 - 5 $\delta \leftarrow \min(f(v, u), \epsilon)$.
 - 6 $f(v, u) \leftarrow f(v, u) - \delta$.
 - 7 $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.
 - 8 Return f (maximum flow).

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

FordFulkerson(V, E, s, t, c)

- 1 $f \leftarrow$ zero flow (or flow of your choice).
- 2 While there exists augmenting path P from s to t :
 - 3 $\epsilon \leftarrow \min_{e \in P} r(e)$.
 - 4 For every $\{u, v\} \in P$:
 - 5 $\delta \leftarrow \min(f(v, u), \epsilon)$.
 - 6 $f(v, u) \leftarrow f(v, u) - \delta$.
 - 7 $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.
 - 8 Return f (maximum flow).

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an **(elementary) cut** of graph (V, E) if:

- 1 $X, Y \subseteq V$,
- 2 $X \cup Y = V$,
- 3 $X \cap Y = \emptyset$,
- 4 $s \in X$,
- 5 $t \in Y$.

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Definition (Augmenting path)

A path in (V, E) is **augmenting** if every edge has non-zero residual capacity.

FordFulkerson(V, E, s, t, c)

- 1 $f \leftarrow$ zero flow (or flow of your choice).
- 2 While there exists augmenting path P from s to t :
- 3 $\epsilon \leftarrow \min_{e \in P} r(e)$.
- 4 For every $\{u, v\} \in P$:
- 5 $\delta \leftarrow \min(f(v, u), \epsilon)$.
- 6 $f(v, u) \leftarrow f(v, u) - \delta$.
- 7 $f(u, v) \leftarrow f(u, v) + \epsilon - \delta$.
- 8 Return f (maximum flow).

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an **(elementary) cut** of graph (V, E) if:

- 1 $X, Y \subseteq V$,
- 2 $X \cup Y = V$,
- 3 $X \cap Y = \emptyset$,
- 4 $s \in X$,
- 5 $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an **(elementary) cut** of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:

- ① $X, Y \subseteq V$,
- ② $X \cup Y = V$,
- ③ $X \cap Y = \emptyset$,
- ④ $s \in X$,
- ⑤ $t \in Y$.

$$E(X, Y) = E \cap \{X \times Y\}$$

$$f(X, Y) = \sum_{e \in E(X, Y)} f(e)$$

$$f^\Delta(X, Y) = f(X, Y) - f(Y, X)$$

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Lemma

If FordFulkerson terminates it returns a maximum flow

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Lemma

If FordFulkerson terminates it returns a maximum flow

Proof.

$X = \{v \in V : \text{there exists augmenting path } s \text{ to } v\}$
Because algorithm terminates, we know that $t \notin X$.

□

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Lemma

If FordFulkerson terminates it returns a maximum flow

Proof.

$X = \{v \in V : \text{there exists augmenting path } s \text{ to } v\}$

Because algorithm terminates, we know that $t \notin X$.

Put $Y = V \setminus X$.

□

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Lemma

If FordFulkerson terminates it returns a maximum flow

Proof.

$X = \{v \in V : \text{there exists augmenting path } s \text{ to } v\}$

Because algorithm terminates, we know that $t \notin X$.

Put $Y = V \setminus X$.

(X, Y) is a cut and by Observation C f is maximum flow.

□

Ford–Fulkerson algorithm, 1956

Observation A

If f is a flow and (X, Y) a cut, then $f^\Delta(X, Y) = |f|$.

$$f^\Delta(X, Y) = \sum_{v \in X} f^\Delta(v) = f^\Delta(t) = |f|$$

Observation B

If f is a flow and (X, Y) a cut, then $|f| \leq c(X, Y)$.

$$|f| = f^\Delta(X, Y) = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$$

Observation C

If f is a flow and (X, Y) a cut, $|f| = c(X, Y)$ then $|f|$ is maximum and $c(X, Y)$ is minimum possible.

Lemma

If FordFulkerson terminates, it returns a flow.

Lemma

If FordFulkerson terminates it returns a maximum flow

Proof.

$X = \{v \in V : \text{there exists augmenting path } s \text{ to } v\}$

Because algorithm terminates, we know that $t \notin X$.

Put $Y = V \setminus X$.

(X, Y) is a cut and by Observation C f is maximum flow.

□

Observation

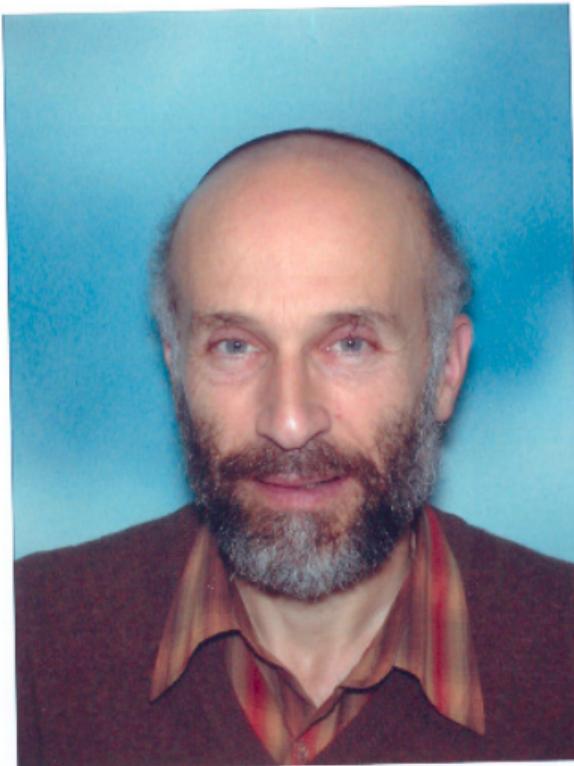
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have capacity 1.

Recall
oo

Ford-Fulkerson algorithm
ooo

Dinic's algorithm
●oooo



Yefim Dinitz

Construction of layered residual network

Definition (Reall: Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u).$$

Construction of layered residual network

Definition (Reall: Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u).$$

Definition (Residual network)

Let $N = (V, E, s, t, c)$ be a network and f a flow. Then the **residual network** is network defined as:

$$R(S, f) = (V, E, s, t, r).$$

Construction of layered residual network

Definition (Reall: Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u).$$

Definition (Residual network)

Let $N = (V, E, s, t, c)$ be a network and f a flow. Then the **residual network** is network defined as:

$$R(S, f) = (V, E, s, t, r).$$

Definition (Blocking flow)

Flow f is **blocking flow** if for every (oriented) path from s to t contains edge e with $f(e) = c(e)$.

Idea: finding a blocking flow is easier than maximum flow.

Construction of layered residual network

Definition (Reall: Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u).$$

Definition (Residual network)

Let $N = (V, E, s, t, c)$ be a network and f a flow. Then the **residual network** is network defined as:

$$R(S, f) = (V, E, s, t, r).$$

Definition (Blocking flow)

Flow f is **blocking flow** if for every (oriented) path from s to t contains edge e with $f(e) = c(e)$.

Idea: finding a blocking flow is easier than maximum flow.

Definition (Layered network)

Network is **layered** if it consists only of vertices and edges that belong to some shortest path from s to t .

Construction of layered residual network

Definition (Reall: Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u).$$

Definition (Residual network)

Let $N = (V, E, s, t, c)$ be a network and f a flow. Then the **residual network** is network defined as:

$$R(S, f) = (V, E, s, t, r).$$

Definition (Blocking flow)

Flow f is **blocking flow** if for every (oriented) path from s to t contains edge e with $f(e) = c(e)$.

Idea: finding a blocking flow is easier than maximum flow.

Definition (Layered network)

Network is **layered** if it consists only of vertices and edges that belong to some shortest path from s to t .

LayeredNetwork($R = (V, E, s, t, r)$)

- ① Using $\text{BFS}(s)$ determine layers in (V, E) .
- ② Remove all layers after t .
- ③ Remove edges inside layers and edges going backwards.

Construction of layered residual network

Definition (Reall: Residual capacity)

$$r(u, v) = c(u, v) - f(u, v) + f(v, u).$$

Definition (Residual network)

Let $N = (V, E, s, t, c)$ be a network and f a flow. Then the **residual network** is network defined as:

$$R(S, f) = (V, E, s, t, r).$$

Definition (Blocking flow)

Flow f is **blocking flow** if for every (oriented) path from s to t contains edge e with $f(e) = c(e)$.

Idea: finding a blocking flow is easier than maximum flow.

Definition (Layered network)

Network is **layered** if it consists only of vertices and edges that belong to some shortest path from s to t .

LayeredNetwork($R = (V, E, s, t, r)$)

- ① Using $\text{BFS}(s)$ determine layers in (V, E) .
- ② Remove all layers after t .
- ③ Remove edges inside layers and edges going backwards.
- ④ Remove dead ends:
- ⑤ $Q = \{v \neq z : \deg^{\text{out}}(v) = 0\}$
- ⑥ While there exists $v \leftarrow \text{Dequeue}(Q)$:
 - ⑦ Remove v and all edges containing v .
 - ⑧ If removal of some edge decreased \deg^{out} of some vertex to 0, add it to Q .
- ⑨ Return R .

Constructing blocking flow of layered network

BlockingFlow (Layered $R = (V, E, s, t, r)$)

- ① $g \leftarrow$ zero flow.
- ② While there exists oriented path P from s to t :
 - ③ $\epsilon \leftarrow \min_{e \in P} (r(e) - g(e))$.
 - ④ For every $e \in P$: $g(e) \leftarrow g(e) + \epsilon$.
 - ⑤ Remove from E all $e \in P$ such that $g(e) = r(e)$.
 - ⑥ Remove dead ends like in previous algorithm.
- ⑦ Return g .

Constructing blocking flow of layered network

BlockingFlow (Layered $R = (V, E, s, t, r)$)

- ① $g \leftarrow$ zero flow.
- ② While there exists oriented path P from s to t :
 - ③ $\epsilon \leftarrow \min_{e \in P} (r(e) - g(e))$.
 - ④ For every $e \in P$: $g(e) \leftarrow g(e) + \epsilon$.
 - ⑤ Remove from E all $e \in P$ such that $g(e) = r(e)$.
 - ⑥ Remove dead ends like in previous algorithm.
- ⑦ Return g .

Time complexity: $O(|V||E|)$

Dinic algorithm

Dinic (V, E, s, t, c)

- ① $f \leftarrow$ zero flow.
- ② Repeat:
 - ③ Build residual network R and remove all edges e with $r(e) = 0$.
 - ④ $\ell \leftarrow$ length of the shortest oriented path from s to t in R .
 - ⑤ If there is no such path return f .
 - ⑥ $L \leftarrow$ LayeredNetwork (R).
 - ⑦ $g \leftarrow$ BlockingFlow (L).
 - ⑧ Improve flow f using g .

Dinic algorithm

Dinic (V, E, s, t, c)

- 1 $f \leftarrow$ zero flow.
- 2 Repeat:
 - 3 Build residual network R and remove all edges e with $r(e) = 0$.
 - 4 $\ell \leftarrow$ length of the shortest oriented path from s to t in R .
 - 5 If there is no such path return f .
 - 6 $L \leftarrow$ LayeredNetwork (R).
 - 7 $g \leftarrow$ BlockingFlow (L).
 - 8 Improve flow f using g .

Lemma (On improving flows)

For every flow f in network $N = (V, E, s, t, c)$ and flow g in $R(S, f) = (V, E, s, t, r)$ one can construct in time $O(m)$ flow h in S such that $|h| = |f| + |g|$.

Proof.

For every (u, v) such that $\{u, v\} \in E$ compute $h^*(u, v) = f(u, v) - f(v, u) + g(u, v) - g(v, u)$.
If $h^*(u, v) \geq 0$ put $h(u, v) = h^*(u, v)$ and $h(v, u) = 0$. □

Dinic algorithm

Dinic (V, E, s, t, c)

- ① $f \leftarrow$ zero flow.
- ② Repeat:
 - ③ Build residual network R and remove all edges e with $r(e) = 0$.
 - ④ $\ell \leftarrow$ length of the shortest oriented path from s to t in R .
 - ⑤ If there is no such path return f .
 - ⑥ $L \leftarrow$ LayeredNetwork (R).
 - ⑦ $g \leftarrow$ BlockingFlow (L).
 - ⑧ Improve flow f using g .

Lemma

Every iteration of the loop increases ℓ by at least 1.

Loop iterates at most $|V|$ times. It follows that the runtime of algorithm is $O(|V|^2|E|)$.

Dinic algorithm

Lemma

Every iteration of the loop increases ℓ by at least 1.

Proof.

Denote by R_i the residual network R at iteration i .

What is difference of R_{i+1} and R_i ?

Dinic algorithm

Lemma

Every iteration of the loop increases ℓ by at least 1.

Proof.

Denote by R_i the residual network R at iteration i .

What is difference of R_{i+1} and R_i ?

We removed edge from every path of length ℓ , but new edges can appear.

Dinic algorithm

Lemma

Every iteration of the loop increases ℓ by at least 1.

Proof.

Denote by R_i the residual network R at iteration i .

What is difference of R_{i+1} and R_i ?

We removed edge from every path of length ℓ , but new edges can appear.

Those edges appear only on paths of length $\ell + 2$.

□

Dinic algorithm

Lemma

Every iteration of the loop increases ℓ by at least 1.

Proof.

Denote by R_i the residual network R at iteration i .

What is difference of R_{i+1} and R_i ?

We removed edge from every path of length ℓ , but new edges can appear.

Those edges appear only on paths of length $\ell + 2$. □

Theorem

Dinic algorithm will terminate in time $O(|V|^2|E|)$ and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford–Fulkerson's algorithm.