
Recall Ford–Fulkerson algorithm Dinic’s algorithm

Algorithms and datastructures II

Lecture 3: network flows

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Oct 19 2020

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus or excess)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆(v) = 0

Value of the flow: |f | = f ∆(t).

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus or excess)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆(v) = 0

Value of the flow: |f | = f ∆(t).

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Network flow

Network flow problem

Given network N = (V ,E , s, t , c) find flow f maximizing |f | (a maximum flow).

Naive approach: Start with 0 flow and keep improving as long as there is path from source to sink that can be
improved.

Today: we show that naive approach works and give an effective algorithm to solve this problem

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y) = E ∩ {X × Y}

f (X ,Y) =
∑

e∈E(X ,Y)

f (e)

f ∆(X ,Y) = f (X ,Y)− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .
Put Y = V \ X .

(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .
Put Y = V \ X .
(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y) a cut, then f ∆(X ,Y) = |f |.

f ∆(X ,Y) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y) a cut, then |f | ≤ c(X ,Y).

|f | = f ∆(X ,Y) = f (X ,Y)−f (Y ,X) ≤ f (X ,Y) ≤ c(X ,Y)

Observation C
If f is a flow and (X ,Y) a cut, |f | = c(X ,Y) then |f | is
maximum and c(X ,Y) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .
Put Y = V \ X .
(X ,Y) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Yefim Dinitz

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Constructing blocking flow of layered network

BlockingFlow (Layered R = (V ,E , s, t , r))

1 g ← zero flow.

2 While there exists oriented path P from s to t :

3 ε← mine∈P(r(e)− g(e)).

4 For every e ∈ P : g(e)← g(e) + ε.

5 Remove from E all e ∈ P such that g(e) = r(e).

6 Remove dead ends like in previous algorithm.

7 Return g.

Time complexity: O(|V ||̇E |)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Constructing blocking flow of layered network

BlockingFlow (Layered R = (V ,E , s, t , r))

1 g ← zero flow.

2 While there exists oriented path P from s to t :

3 ε← mine∈P(r(e)− g(e)).

4 For every e ∈ P : g(e)← g(e) + ε.

5 Remove from E all e ∈ P such that g(e) = r(e).

6 Remove dead ends like in previous algorithm.

7 Return g.

Time complexity: O(|V ||̇E |)

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Dinic (V , E , s, t , c)

1 f ← zero flow.

2 Repeat:

3 Build residual network R and remove all edges e with r(e) = 0.

4 `←length of the shortest oriented path from s to t in R.

5 If there is no such path return f .

6 L←LayeredNetwork (R).

7 g ←BlockingFlow (L).

8 Improve flow f using g.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Dinic (V , E , s, t , c)

1 f ← zero flow.

2 Repeat:

3 Build residual network R and remove all edges e with r(e) = 0.

4 `←length of the shortest oriented path from s to t in R.

5 If there is no such path return f .

6 L←LayeredNetwork (R).

7 g ←BlockingFlow (L).

8 Improve flow f using g.

Lemma (On improving flows)

For every flow f in network N = (V ,E , s, t , c) and flow g in R(S, f) = (V ,E , s, t , r) one can construct in time
O(m) flow h in S such that |h| = |f |+ |g|.

Proof.
For every (u, v) such that {u, v} ∈ E compute h∗(u, v) = f (u, v)− f (v , u) + g(u, v)− g(v , u).
If h∗(u, v) ≥ 0 put h(u, v) = h∗(u, v) and h(v , u) = 0.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Dinic (V , E , s, t , c)

1 f ← zero flow.

2 Repeat:

3 Build residual network R and remove all edges e with r(e) = 0.

4 `←length of the shortest oriented path from s to t in R.

5 If there is no such path return f .

6 L←LayeredNetwork (R).

7 g ←BlockingFlow (L).

8 Improve flow f using g.

Lemma
Every iteration of the loop increases ` by at least 1.

Loop iterates at most |V | times. It follows that the runtime of algorithm is O(|V |2|E |).

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Lemma
Every iteration of the loop increases ` by at least 1.

Proof.
Denote by Ri the residual network R at iteration i .
What is difference of Ri+1 and Ri ?

We removed edge from every path of length `, but new edges can appear.
Those edges appear only on paths of length `+ 2.

Theorem
Dinic algorithm will terminate in time O(|V |2|E |) and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford–Fulkerson’s algorithm.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Lemma
Every iteration of the loop increases ` by at least 1.

Proof.
Denote by Ri the residual network R at iteration i .
What is difference of Ri+1 and Ri ?
We removed edge from every path of length `, but new edges can appear.

Those edges appear only on paths of length `+ 2.

Theorem
Dinic algorithm will terminate in time O(|V |2|E |) and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford–Fulkerson’s algorithm.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Lemma
Every iteration of the loop increases ` by at least 1.

Proof.
Denote by Ri the residual network R at iteration i .
What is difference of Ri+1 and Ri ?
We removed edge from every path of length `, but new edges can appear.
Those edges appear only on paths of length `+ 2.

Theorem
Dinic algorithm will terminate in time O(|V |2|E |) and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford–Fulkerson’s algorithm.

Recall Ford–Fulkerson algorithm Dinic’s algorithm

Dinic algorithm

Lemma
Every iteration of the loop increases ` by at least 1.

Proof.
Denote by Ri the residual network R at iteration i .
What is difference of Ri+1 and Ri ?
We removed edge from every path of length `, but new edges can appear.
Those edges appear only on paths of length `+ 2.

Theorem
Dinic algorithm will terminate in time O(|V |2|E |) and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford–Fulkerson’s algorithm.

	Recall
	Ford–Fulkerson algorithm
	Dinic's algorithm

