Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Oct 19 2020

Source

Definifon (Network)
Network is an 4-tuple N = (V, E, s, t, c) where

@ (V,E) is adirected graph,

@® s € Vs a source vertex,

@ t € Vis asink vertex,

O0c: E— Rar is a function assigning every edge a capacity.

* (V) = Xy (uvee f(u, v) (flow into a vertex)
© (V) = Xy vupee (v, u) (flow out of a vertex) Here 7 : £ — Ry
o fA(v) = ft(v) — f~(v) (surplus or excess)
Definfion (Flow)
Function f : E — R is flow if it satisfies
@ Capacity constraint: (Vecg) : f(e) < c(e)
@ Conservation of flows (Kirchoff’s law): (Ve v\ ¢s,t3) : fA(v) =0

Value of the flow: [f| = fA(t).

Given network N = (V, E, s, t, c) find flow f maximizing |f| (@ maximum flow).

Naive approach: Start with 0 flow and keep improving as long as there is path from source to sink that can be
improved.

Today: we show that naive approach works and give an effective algorithm to solve this problem

Recall Ford-Fulkerson algorithm Dinic’s algorithm
(oo} @00 00000

Ford—Fulkerson algorithm, 1956

r(u,v) = c(u, v) — f(u, v) + f(v,u)

A pathin (V, E) is augmenting if every edge has
non-zero residual capacity.

Definition (Residual capacty)
r(u,v) = c(u, v) — f(u, v) + f(v,u)

A path in (V, E) is augmenting if every edge has
non-zero residual capacity.

@ f + zero flow (or flow of your choice).

® While there exists augmenting path P from s to t:
© €< mingepr(e).

® Forevery {u,v} € P:

(5} 8 < min(f(v,u),e).

(6} f(v,u) « f(v,u) — 4.
o
(&)

f(u,v) < f(u,v) +e—34.
Return f (maximum flow).

r(u, v) = c(u, v) — f(u, v) + f(v, u) If FordFulkerson terminates, it returns a flow.

A path in (V, E) is augmenting if every edge has
non-zero residual capacity.

@ f + zero flow (or flow of your choice).

® While there exists augmenting path P from s to t:
© €< mingepr(e).

® Forevery {u,v} € P:

(5} 8 < min(f(v,u),e).

(6} f(v,u) « f(v,u) — 4.
o
(&)

f(u,v) < f(u,v) +e—34.
Return f (maximum flow).

r(u, v) = c(u, v) — f(u, v) + f(v, u) If FordFulkerson terminates, it returns a flow.

A path in (V, E) is augmenting if every edge has
non-zero residual capacity.

@ f + zero flow (or flow of your choice).

® While there exists augmenting path P from s to t:
© €< mingepr(e).

® Forevery {u,v} € P:

(5} 8 < min(f(v,u),e).

(6} f(v,u) « f(v,u) — 4.
o
(&)

Invariant: fis a flow.

f(u,v) < f(u,v) +e—34.
Return f (maximum flow).

Recall Ford-Fulkerson algorithm Dinic’s algorithm

(oo} oeo

Ford—Fulkerson algorithm, 1956

Definition (Residual capacity)
f(U, V) = C(U, V) - f(U, V) + f(V, U)

Definition (Augumenting path)

A path in (V, E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V, E, s, t, ¢)

@ f «+ zero flow (or flow of your choice).

® While there exists augmenting path P from s to t:

@ c < mingepr(e).

® Forevery {u,v} € P:

(5} 6 < min(f(v, u),e).

(6 f(v,u) « f(v,u) — 4.

(7] f(u,v) « f(u,v) +e€— 0.
® Return f (maximum flow).

00000

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:
o X, YCV,

e XuYy=1V,
@ XNY=0,
0 scX,
@teY.

Recall Ford-Fulkerson algorithm Dinic’s algorithm

(oo} oeo

Ford—Fulkerson algorithm, 1956

Definition (Residual capacity)
f(U, V) = C(U, V) - f(U, V) + f(V, U)

Definition (Augumenting path)

A path in (V, E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V, E, s, t, ¢)

@ f «+ zero flow (or flow of your choice).

® While there exists augmenting path P from s to t:

@ c < mingepr(e).

® Forevery {u,v} € P:

(5} 6 < min(f(v, u),e).

(6 f(v,u) « f(v,u) — 4.

(7] f(u,v) « f(u,v) +e€— 0.
® Return f (maximum flow).

00000

Lemma

If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X, Y) is an (elementary) cut of graph (V, E) if:
o X, YCV,

e XuYy=1V,
@ XNY=0,
0 scX,
@teY.

E(X,Y)=En{Xx Y}
f(X,v)y= >_ f(e)

ecE(X,Y)
FAX, Y) = (X, Y) — £(Y, X)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|.

If FordFulkerson terminates, it returns a flow.

Invariant: fis a flow.

(X, Y) is an (elementary) cut of graph (V, E) if:
o X, YCvV,

e Xuy=yV,
@XNY=10,
®scX,
@tcy.

E(X,Y)=En{XxY}
(X, Y)= > f(e)

ecE(X,Y)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|.

FAXY) = 1A) = A1) = If]
veX

If FordFulkerson terminates, it returns a flow.

Invariant: fis a flow.

(X, Y) is an (elementary) cut of graph (V, E) if:
o X, YCvV,

e Xuy=yV,
@XNY=10,
®scX,
@tcy.

E(X,Y)=En{XxY}
(X, Y)= > f(e)

ecE(X,Y)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|.

FAXY) = 1A) = A1) = If]
veX

If fis a flow and (X, Y) a cut, then |f| < ¢(X, Y).

If FordFulkerson terminates, it returns a flow.

Invariant: fis a flow.

(X, Y) is an (elementary) cut of graph (V, E) if:

o X, YCV,
e Xuy=yV,
@ XNY=10,
®scX,
@tcy.

E(X,Y)=En{XxY}
(X, Y)= > f(e)

ecE(X,Y)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|.

FAXY) = 1A) = A1) = If]
veX

If fis a flow and (X, Y) a cut, then |f| < ¢(X, Y).

If FordFulkerson terminates, it returns a flow.

Invariant: fis a flow.

(X, Y) is an (elementary) cut of graph (V, E) if:

o X, YCV,
e Xuy=yV,
@ XNY=10,
®scX,
@tcy.

E(X,Y)=En{XxY}
(X, Y)= > f(e)

ecE(X,Y)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|. If FordFulkerson terminates, it returns a flow.

Invariant: fis a flow.

(X, Y) is an (elementary) cut of graph (V, E) if:

‘Gbsenaiion® I exve,

FAXY) = 1A) = A1) = If]
veX

If fis a flow and (X, Y) a cut, then |f| < ¢(X, Y). e XuYy=V,
@ XNY =0,
0O scX,
[l = FA(X, Y) = F(X, V)= (Y, X) <F(X,Y) < (X, Y) @teyY.
ObservatonC FXY = Enieary
If fis a flow and (X, Y) a cut, |f| = c(X, Y) then |f| is (X, Y)= > f(e)
maximum and ¢(X, Y) is minimum possible. ecE(X,Y)

AX,Y)=f(X,Y)—f(Y,X)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|. If FordFulkerson terminates, it returns a flow.

Invariant: fis a flow.

(X, Y) is an (elementary) cut of graph (V, E) if:

‘Gbsenaiion® I exve,

FAXY) = 1A) = A1) = If]
veX

If fis a flow and (X, Y) a cut, then |f| < ¢(X, Y). e XuYy=V,
@ XNY =0,
0O scX,
[l = FA(X, Y) = F(X, V)= (Y, X) <F(X,Y) < (X, Y) @teyY.
ObservatonC FXY = Enieary
If fis a flow and (X, Y) a cut, |f| = c(X, Y) then |f| is (X, Y)= > f(e)
maximum and ¢(X, Y) is minimum possible. ecE(X,Y)

AX,Y)=f(X,Y)—f(Y,X)

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|. If FordFulkerson terminates, it returns a flow.

fA(X, Y) = ZfA(V):fA([):m _

vex If FordFulkerson terminates it returns a maximum flow

If fis a flow and (X, Y) a cut, then |f| < ¢(X, Y).

If fis a flow and (X, Y) acut, |f| = ¢(X, Y) then |f| is
maximum and ¢(X, Y) is minimum possible.

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|. If FordFulkerson terminates, it returns a flow.

XYYy = AW =) =If

vex If FordFulkerson terminates it returns a maximum flow
If fis a flow and (X, Y) a cut, then |f| < (X, Y). X = {v € V : there exists augumenting path s to v}

Because algorithm terminates, we know that t ¢ X.

If fis a flow and (X, Y) acut, |f| = ¢(X, Y) then |f| is
maximum and ¢(X, Y) is minimum possible.

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|. If FordFulkerson terminates, it returns a flow.

XYYy = AW =) =If

vex If FordFulkerson terminates it returns a maximum flow
If fis a flow and (X, Y) a cut, then |f| < (X, Y). X = {v € V : there exists augumenting path s to v}
= Because algorithm terminates, we know that t ¢ X.
PutY =V\X.

If fis a flow and (X, Y) acut, |f| = ¢(X, Y) then |f| is
maximum and ¢(X, Y) is minimum possible.

If f is a flow and (X, Y) a cut, then fA(X, Y) = |f|. If FordFulkerson terminates, it returns a flow.

fA(X, Y) = ZfA(V):fA([):m _

vex If FordFulkerson terminates it returns a maximum flow
‘ObsenaionB o ok
If fis a flow and (X, Y) a cut, then |f| < (X, Y). X={veV: t.here exis_ts augumenting path sto v}
Because algorithm terminates, we know that t ¢ X.
Put Y = V\ X.
(X, Y) is a cut and by Observation C f is maximum flow.

If fis a flow and (X, Y) acut, |f| = ¢(X, Y) then |f| is
maximum and ¢(X, Y) is minimum possible.

Recall

(oo}

ooce

Ford—Fulkerson algorithm, 1956

Observation A
If f is a flow and (X, Y) a cut, then fA(X, Y) = |f].
X, Y) = = 2(t) = |f|

> W

veX

Observation B
If fis a flow and (X, Y) a cut, then |f| < ¢(X, Y).

If| = FA(X, Y) = f(X, Y)—f(Y, X) < £(X, Y) < c(X, Y)

Observation C

If fisaflowand (X, Y) acut, |[f| = ¢(X, Y) then |f| is
maximum and ¢(X, Y) is minimum possible.

Ford-Fulkerson algorithm

00000

Lemma
If FordFulkerson terminates, it returns a flow.

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.

X = {v € V : there exists augumenting path s to v}

Because algorithm terminates, we know that ¢ ¢ X.

PutY =V\X.

(X, Y) is a cut and by Observation C f is maximum flow.
O

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.

Dinic’s algorithm

Recall Ford—Fulkerson algorithm Dinic’s algorithm
00 000 00000

Yefim Dinitz

r(u,v) =c(u,v) — f(u,v) + f(v, u).

r(u,v) =c(u,v) — f(u,v) + f(v, u).

Let N = (V, E, s, t,c) be a network and f a flow. Then
the residual network is network defined as:

R(S,f) = (V,E;s, t,1).

r(u,v) =c(u,v) — f(u,v) + f(v, u).

Let N = (V, E, s, t,c) be a network and f a flow. Then
the residual network is network defined as:

R(S,f) = (V,E;s, t,1).

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f(e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

r(u,v) = c(u,v) — f(u,v) + f(v, u).

Let N = (V, E, s, t,c) be a network and f a flow. Then
the residual network is network defined as:

R(S,f) = (V,E;s, t,1).

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f(e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t.

Recall Ford-Fulkerson algorithm Dinic’s algorithm

(oo} [e]e]e}

Construction of layered residual network

Definition (Reall: Residual capacity)
r(u,v) = c(u,v) — f(u,v) + f(v, u).

Definition (Residual network)
Let N = (V,E,s,t,c) be anetwork and f a flow. Then
the residual network is network defined as:

R(S,f) = (V,E,s,t,r).

Definition (Blocking flow)
Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f(e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

[e] JeJe]e}

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t.

LayeredNetwork(R = (V, E, s, t, r)

@ Using BFS(s) determine layers in (V, E).
® Remove all layers after t.

©® Remove edges inside layers and edges going
backwards.

Recall

(oo}

[e]e]e}

Construction of layered residual network

Definition (Reall: Residual capacity)
r(u,v) = c(u,v) — f(u,v) + f(v, u).

Definition (Residual network)
Let N = (V,E,s,t,c) be anetwork and f a flow. Then
the residual network is network defined as:

R(S,f) = (V,E,s,t,r).

Definition (Blocking flow)
Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f(e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Ford-Fulkerson algorithm Dinic’s algorithm

[e] JeJe]e}

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t.

LayeredNetwork(R = (V, E, s, t, r)

@ Using BFS(s) determine layers in (V, E).
® Remove all layers after t.

©® Remove edges inside layers and edges going
backwards.

® Remove dead ends:

® Q= {v+#z:deg®(v)=0}

O While there exists v +— Dequeue(Q):
(7] Remove v and all edges containing v.

[s) If removal of some edge decreased deg®! of
some vertex to 0, add it to Q.

©® Return R.

@ g « zero flow.

® While there exists oriented path P from s to t:

© < mingep(r(e) — g(e)).

@ Foreveryee P:g(e) <« g(e)+e.

® Remove from E all e € P such that g(e) = r(e).
O Remove dead ends like in previous algorithm.
@ Return g.

@ g « zero flow.

® While there exists oriented path P from s to t:

© < mingep(r(e) — g(e)).

@ Foreveryee P:g(e) <« g(e)+e.

® Remove from E all e € P such that g(e) = r(e).
O Remove dead ends like in previous algorithm.
@ Return g.

Time complexity: O(| V||E|)

© f < zero flow.

® Repeat:

Build residual network R and remove all edges e with r(e) = 0.
¢ +length of the shortest oriented path from s to ¢ in R.

If there is no such path return f.

L <LayeredNetwork (R).

g <BlockingFlow (L).

Improve flow f using g.

Recall Ford-Fulkerson algorithm Dinic’s algorithm
(oo} [e]e]e} [e]e]e] e}

Dinic algorithm

Dinic (V, E, s, t,)

@ f < zero flow.

® Repeat:

Build residual network R and remove all edges e with r(e) = 0.
¢ +length of the shortest oriented path from s to ¢ in R.

If there is no such path return f.

L +LayeredNetwork (R).

g <BlockingFlow (L).

290000

Improve flow f using g.

Lemma (On improving flows)

For every flow f in network N = (V, E, s, t,c) and flow g in R(S, f) = (V, E, s, t, r) one can construct in time
O(m) flow h in S such that |h| = |f| + |g|-

Proof.
For every (u, v) such that {u, v} € E compute h*(u, v) = f(u,v) — f(v,u) + g(u,v) — g(v, u).
If h*(u, v) > 0 put h(u, v) = h*(u, v) and h(v, u) = 0. O

© f < zero flow.

® Repeat:

Build residual network R and remove all edges e with r(e) = 0.
¢ +length of the shortest oriented path from s to ¢ in R.

If there is no such path return f.

L <LayeredNetwork (R).

g <BlockingFlow (L).

Improve flow f using g.

Every iteration of the loop increases ¢ by at least 1.

Loop iterates at most | V| times. It follows that the runtime of algorithm is O(|V|?|E|).

Every iteration of the loop increases ¢ by at least 1.

Denote by R; the residual network R at iteration i.
What is difference of Ri.1 and R;?

Every iteration of the loop increases ¢ by at least 1.

Denote by R; the residual network R at iteration i.
What is difference of Ri.1 and R;?
We removed edge from every path of length ¢, but new edges can appear.

Every iteration of the loop increases ¢ by at least 1.

Denote by R; the residual network R at iteration i.
What is difference of Ri.1 and R;?
We removed edge from every path of length ¢, but new edges can appear.

Those edges appear only on paths of length ¢ + 2.

Every iteration of the loop increases ¢ by at least 1.

Denote by R; the residual network R at iteration i.
What is difference of Ri.1 and R;?
We removed edge from every path of length ¢, but new edges can appear.

Those edges appear only on paths of length ¢ + 2.

Dinic algorithm will terminate in time O(|V|?|E|) and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford—Fulkerson’s algorithm.

	Recall
	Ford–Fulkerson algorithm
	Dinic's algorithm

