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Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus or excess)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E ) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆(v) = 0

Value of the flow: |f | = f ∆(t).
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Network flow

Network flow problem

Given network N = (V ,E , s, t , c) find flow f maximizing |f | (a maximum flow).

Naive approach: Start with 0 flow and keep improving as long as there is path from source to sink that can be
improved.

Today: we show that naive approach works and give an effective algorithm to solve this problem
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Ford–Fulkerson algorithm, 1956

Definition (Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u)

Definition (Augumenting path)

A path in (V ,E) is augmenting if every edge has
non-zero residual capacity.

FordFulkerson(V , E , s, t , c)

1 f ← zero flow (or flow of your choice).

2 While there exists augmenting path P from s to t :

3 ε← mine∈P r(e).

4 For every {u, v} ∈ P:

5 δ ← min(f (v , u), ε).

6 f (v , u)← f (v , u)− δ.
7 f (u, v)← f (u, v) + ε− δ.
8 Return f (maximum flow).

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y ) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y ) = E ∩ {X × Y}

f (X ,Y ) =
∑

e∈E(X ,Y )

f (e)

f ∆(X ,Y ) = f (X ,Y )− f (Y ,X)
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Ford–Fulkerson algorithm, 1956

Observation A
If f is a flow and (X ,Y ) a cut, then f ∆(X ,Y ) = |f |.

f ∆(X ,Y ) =
∑
v∈X

f ∆(v) = f ∆(t) = |f |

Observation B
If f is a flow and (X ,Y ) a cut, then |f | ≤ c(X ,Y ).

|f | = f ∆(X ,Y ) = f (X ,Y )−f (Y ,X) ≤ f (X ,Y ) ≤ c(X ,Y )

Observation C
If f is a flow and (X ,Y ) a cut, |f | = c(X ,Y ) then |f | is
maximum and c(X ,Y ) is minimum possible.

Lemma
If FordFulkerson terminates, it returns a flow.

Invariant: f is a flow.

Definition (elementary cut)

(X ,Y ) is an (elementary) cut of graph (V ,E) if:

1 X ,Y ⊆ V ,

2 X ∪ Y = V ,

3 X ∩ Y = ∅,
4 s ∈ X ,

5 t ∈ Y .

E(X ,Y ) = E ∩ {X × Y}

f (X ,Y ) =
∑

e∈E(X ,Y )

f (e)

f ∆(X ,Y ) = f (X ,Y )− f (Y ,X)

Lemma
If FordFulkerson terminates it returns a maximum flow

Proof.
X = {v ∈ V : there exists augumenting path s to v}
Because algorithm terminates, we know that t /∈ X .

Put Y = V \ X .

(X ,Y ) is a cut and by Observation C f is maximum flow.

Observation
If capacities are integers, FordFulkerson terminates

Homework: Time complexity when all edges have
capacity 1.
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Construction of layered residual network

Definition (Reall: Residual capacity)

r(u, v) = c(u, v)− f (u, v) + f (v , u).

Definition (Residual network)

Let N = (V ,E , s, t , c) be a network and f a flow. Then
the residual network is network defined as:

R(S, f ) = (V ,E , s, t , r).

Definition (Blocking flow)

Flow f is blocking flow if for every (oriented) path from s
to t contains edge e with f (e) = c(e).

Idea: finding a blocking flow is easier than maximum
flow.

Definition (Layered network)

Network is layered if it consists only of vertices and
edges that belong to some shortest path from s to t .

LayeredNetwork(R = (V ,E , s, t , r)

1 Using BFS(s) determine layers in (V ,E).

2 Remove all layers after t .

3 Remove edges inside layers and edges going
backwards.

4 Remove dead ends:

5 Q = {v 6= z : degout (v) = 0}
6 While there exists v ← Dequeue(Q):

7 Remove v and all edges containing v .

8 If removal of some edge decreased degout of
some vertex to 0, add it to Q.

9 Return R.
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Constructing blocking flow of layered network

BlockingFlow (Layered R = (V ,E , s, t , r))

1 g ← zero flow.

2 While there exists oriented path P from s to t :

3 ε← mine∈P(r(e)− g(e)).

4 For every e ∈ P : g(e)← g(e) + ε.

5 Remove from E all e ∈ P such that g(e) = r(e).

6 Remove dead ends like in previous algorithm.

7 Return g.

Time complexity: O(|V ||̇E |)
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Dinic algorithm

Dinic (V , E , s, t , c)

1 f ← zero flow.

2 Repeat:

3 Build residual network R and remove all edges e with r(e) = 0.

4 `←length of the shortest oriented path from s to t in R.

5 If there is no such path return f .

6 L←LayeredNetwork (R).

7 g ←BlockingFlow (L).

8 Improve flow f using g.
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1 f ← zero flow.
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4 `←length of the shortest oriented path from s to t in R.

5 If there is no such path return f .

6 L←LayeredNetwork (R).

7 g ←BlockingFlow (L).

8 Improve flow f using g.

Lemma (On improving flows)

For every flow f in network N = (V ,E , s, t , c) and flow g in R(S, f ) = (V ,E , s, t , r) one can construct in time
O(m) flow h in S such that |h| = |f |+ |g|.

Proof.
For every (u, v) such that {u, v} ∈ E compute h∗(u, v) = f (u, v)− f (v , u) + g(u, v)− g(v , u).
If h∗(u, v) ≥ 0 put h(u, v) = h∗(u, v) and h(v , u) = 0.
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Dinic algorithm

Dinic (V , E , s, t , c)

1 f ← zero flow.

2 Repeat:

3 Build residual network R and remove all edges e with r(e) = 0.

4 `←length of the shortest oriented path from s to t in R.

5 If there is no such path return f .

6 L←LayeredNetwork (R).

7 g ←BlockingFlow (L).

8 Improve flow f using g.

Lemma
Every iteration of the loop increases ` by at least 1.

Loop iterates at most |V | times. It follows that the runtime of algorithm is O(|V |2|E |).
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Dinic algorithm

Lemma
Every iteration of the loop increases ` by at least 1.

Proof.
Denote by Ri the residual network R at iteration i .
What is difference of Ri+1 and Ri ?

We removed edge from every path of length `, but new edges can appear.
Those edges appear only on paths of length `+ 2.

Theorem
Dinic algorithm will terminate in time O(|V |2|E |) and will return maximum flow.

Maximality of flow returned follows from the same analysis as in Ford–Fulkerson’s algorithm.
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