
Recall Aho–Corasick Network flows

Algorithms and datastructures II

Lecture 2: text searching (2/2)

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Oct 5 2020

Recall Aho–Corasick Network flows

String-searching (“searching needle in a haystack”)

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

Some notation:

1 Σ: an alphabet (finite set of characters)

2 Σ∗: the set all finite words in alphabet Σ

3 α, β, . . . : words

4 |α|: length of the word α.

5 ε: empty word (the only word of length 0)

6 αβ: concatenation of α and β

7 α[i]: i-th character of α (starting from 0)

8 α[i : j]: subword α[i]α[i + 1] · · ·α[j − 1]

9 α[: j]: prefix of α of length j

10 α[i :]: a suffix of α

11 α[:]: whole word α

Occurrence of ν in η is any index i such that η[i : i + |ν|] = ν

Recall Aho–Corasick Network flows

Knuth–Morris–Pratt (KMP) algorithm (1974)

Searching automaton

1 State 0, . . . , |ν|
(state s corresponds to prefix ν[: s])

2 Forward edges: s → s + 1

3 Backward edges: pointing from s > 0 to j such that
ν[: j] is a proper suffix of ν[: s]

KMPConstruction (ν):

1 b[0]←undefined, b[1]← 0, s ← 0.

2 For i = 2, . . . , |ν|:
3 s ← Step (s, ν[i − 1]).

4 b[i]← s.

Step (s, c):

1 While s 6= 0 and ν[s] 6= c:

2 s ← b[s].

3 If ν[s] = c: s ← s + 1.

4 Return s

Search (η, automaton for ν):

1 s ← 0.

2 For i = 0, . . . , |η| − 1:

3 s ← Step (s, η[i]).

4 If s = |ν|: report i − |ν|+ 1.

Theorem
Algorithm KMP will finish in time Θ(|η|+ |ν|).

Invariant: The state s corresponds to the longest suffix of η[: i] that is a prefix of ν.

Recall Aho–Corasick Network flows

Today: Searching multiple needles at once

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

string-searching with multiple needles

Given strings ν1, ν2, . . . , νn (“a needles”) and η (“a haystack”) find all occurrences of ν1, ν2, . . . , νn in η.

We expect output in the form S = {(i, j) : η[i : i + |νj |] = νj}.
Time complexity using KMP:

O

(
|η| · n +

n∑
i=1

|νi |
)

We seek for:

O

(
|η|+

n∑
i=1

|νi |+ |S|
)

Recall Aho–Corasick Network flows

Today: Searching multiple needles at once

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

string-searching with multiple needles

Given strings ν1, ν2, . . . , νn (“a needles”) and η (“a haystack”) find all occurrences of ν1, ν2, . . . , νn in η.

We expect output in the form S = {(i, j) : η[i : i + |νj |] = νj}.

Time complexity using KMP:

O

(
|η| · n +

n∑
i=1

|νi |
)

We seek for:

O

(
|η|+

n∑
i=1

|νi |+ |S|
)

Recall Aho–Corasick Network flows

Today: Searching multiple needles at once

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

string-searching with multiple needles

Given strings ν1, ν2, . . . , νn (“a needles”) and η (“a haystack”) find all occurrences of ν1, ν2, . . . , νn in η.

We expect output in the form S = {(i, j) : η[i : i + |νj |] = νj}.
Time complexity using KMP:

O

(
|η| · n +

n∑
i=1

|νi |
)

We seek for:

O

(
|η|+

n∑
i=1

|νi |+ |S|
)

Recall Aho–Corasick Network flows

Today: Searching multiple needles at once

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

string-searching with multiple needles

Given strings ν1, ν2, . . . , νn (“a needles”) and η (“a haystack”) find all occurrences of ν1, ν2, . . . , νn in η.

We expect output in the form S = {(i, j) : η[i : i + |νj |] = νj}.
Time complexity using KMP:

O

(
|η| · n +

n∑
i=1

|νi |
)

We seek for:

O

(
|η|+

n∑
i=1

|νi |+ |S|
)

Recall Aho–Corasick Network flows

Aho-Corasick (1975)

Recall Aho–Corasick Network flows

Aho-Corasick: The automaton

Searching automaton (Knuth–Morris–Pratt)

1 States: 0, . . . , |ν|
2 Forward edges: s → s + 1

3 Backward edges: pointing from s > 0 to j such that
ν[: j] is a proper suffix of ν[: s]

Searching automaton (Aho–Corasick)

• States: {α : ∃i α is a prefix of ηi}.
• Forward edges: {(α, β) : ∃x∈Σβ = αx}.
• Backward edges: {(α, β) : β is the longest proper

suffix of α that is a state}.

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached

(not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)

2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path

(slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)

3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached

(too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)

4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho-Corasick: How to output the locations?

1 Output whenever a leaf state is reached (not working)
2 Follow back edges and output all needles on the path (slow)
3 Precompute lists of needles to output when given state is reached (too large automaton)
4 Output edges pointing from state α to nearest output state β reachable by back edges.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Recall Aho–Corasick Network flows

Aho–Corasick: search loop

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Step (s,c):

1 While Forward[s][c] = ∅ and s 6= root: s ←Back[s].

2 If Forward[s][c] 6= ∅: s ←Forward[s][c].

3 Return s.

Search (η, automaton)

1 s ←root.

2 For characters c in η do:

3 s ← Step (s, c).

4 j ← s.

5 While j 6= ∅:
6 If Needle(j) 6= ∅: Report occurence of needle.

7 j ← Output(j).

Invariant: The state s corresponds to the longest suffix
of η[: i] that is a prefix of some needle.

Lemma
Search runtime is Θ (|η|+ |S|) .

Recall Aho–Corasick Network flows

Aho–Corasick: search loop

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Step (s,c):

1 While Forward[s][c] = ∅ and s 6= root: s ←Back[s].

2 If Forward[s][c] 6= ∅: s ←Forward[s][c].

3 Return s.

Search (η, automaton)

1 s ←root.

2 For characters c in η do:

3 s ← Step (s, c).

4 j ← s.

5 While j 6= ∅:
6 If Needle(j) 6= ∅: Report occurence of needle.

7 j ← Output(j).

Invariant: The state s corresponds to the longest suffix
of η[: i] that is a prefix of some needle.

Lemma
Search runtime is Θ (|η|+ |S|) .

Recall Aho–Corasick Network flows

Aho–Corasick: search loop

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Step (s,c):

1 While Forward[s][c] = ∅ and s 6= root: s ←Back[s].

2 If Forward[s][c] 6= ∅: s ←Forward[s][c].

3 Return s.

Search (η, automaton)

1 s ←root.

2 For characters c in η do:

3 s ← Step (s, c).

4 j ← s.

5 While j 6= ∅:
6 If Needle(j) 6= ∅: Report occurence of needle.

7 j ← Output(j).

Invariant: The state s corresponds to the longest suffix
of η[: i] that is a prefix of some needle.

Lemma
Search runtime is Θ (|η|+ |S|) .

Recall Aho–Corasick Network flows

Aho–Corasick: search loop

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Step (s,c):

1 While Forward[s][c] = ∅ and s 6= root: s ←Back[s].

2 If Forward[s][c] 6= ∅: s ←Forward[s][c].

3 Return s.

Search (η, automaton)

1 s ←root.

2 For characters c in η do:

3 s ← Step (s, c).

4 j ← s.

5 While j 6= ∅:
6 If Needle(j) 6= ∅: Report occurence of needle.

7 j ← Output(j).

Invariant: The state s corresponds to the longest suffix
of η[: i] that is a prefix of some needle.

Lemma
Search runtime is Θ (|η|+ |S|) .

Recall Aho–Corasick Network flows

Recall Aho–Corasick Network flows

Aho–Corasick: automaton construction

Construct (ν1, . . . , νn)

1 Initialize a trie with root r .
(sets Forward and Needle arrays)

2 Insert words ν1, . . . , νn to the trie

3 Back(r)← ∅, Output(r)← ∅.
4 Create a queue Q and insert all sons of r .

5 For every son s of r : Back(s)← r , Output(s)← ∅
6 While Q 6= ∅:
7 Dequeue i from Q.

8 For every son s of i :

9 b ← Step (Back[i], letter on edge (i, s)).

10 Back[s]← b.

11 If Needle[b] 6= ∅: Output[s]← b
else Output[s]← Output[b].

12 Append s to Q.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Lemma
Runtime of Construction is O

(∑n
i=1 νi

)
.

Theorem
Aho–Corasick algorithm will find all occurences of
needles in η and will terminate in time
O
(
|η|+

∑n
i=1 |νi |+ |S|

)
.

Recall Aho–Corasick Network flows

Aho–Corasick: automaton construction

Construct (ν1, . . . , νn)

1 Initialize a trie with root r .
(sets Forward and Needle arrays)

2 Insert words ν1, . . . , νn to the trie

3 Back(r)← ∅, Output(r)← ∅.
4 Create a queue Q and insert all sons of r .

5 For every son s of r : Back(s)← r , Output(s)← ∅
6 While Q 6= ∅:
7 Dequeue i from Q.

8 For every son s of i :

9 b ← Step (Back[i], letter on edge (i, s)).

10 Back[s]← b.

11 If Needle[b] 6= ∅: Output[s]← b
else Output[s]← Output[b].

12 Append s to Q.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Lemma
Runtime of Construction is O

(∑n
i=1 νi

)
.

Theorem
Aho–Corasick algorithm will find all occurences of
needles in η and will terminate in time
O
(
|η|+

∑n
i=1 |νi |+ |S|

)
.

Recall Aho–Corasick Network flows

Aho–Corasick: automaton construction

Construct (ν1, . . . , νn)

1 Initialize a trie with root r .
(sets Forward and Needle arrays)

2 Insert words ν1, . . . , νn to the trie

3 Back(r)← ∅, Output(r)← ∅.
4 Create a queue Q and insert all sons of r .

5 For every son s of r : Back(s)← r , Output(s)← ∅
6 While Q 6= ∅:
7 Dequeue i from Q.

8 For every son s of i :

9 b ← Step (Back[i], letter on edge (i, s)).

10 Back[s]← b.

11 If Needle[b] 6= ∅: Output[s]← b
else Output[s]← Output[b].

12 Append s to Q.

Representation of the searching automaton

1 States: 1, 2, . . . , N.

2 Needles: Needle[s].

3 Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

4 Backward edges: Back[s].

5 Output edges: Output[s].

Lemma
Runtime of Construction is O

(∑n
i=1 νi

)
.

Theorem
Aho–Corasick algorithm will find all occurences of
needles in η and will terminate in time
O
(
|η|+

∑n
i=1 |νi |+ |S|

)
.

Recall Aho–Corasick Network flows

Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆ = 0

Value of the flow: |f | = f ∆(t).

Recall Aho–Corasick Network flows

Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆ = 0

Value of the flow: |f | = f ∆(t).

Recall Aho–Corasick Network flows

Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆ = 0

Value of the flow: |f | = f ∆(t).

Recall Aho–Corasick Network flows

Network flow

Definition (Network)

Network is an 4-tuple N = (V ,E , s, t , c) where

1 (V ,E) is a directed graph,

2 s ∈ V is a source vertex,

3 t ∈ V is a sink vertex,

4 c : E → R+
0 is a function assigning every edge a capacity.

• f +(v) =
∑

u,(u,v)∈E f (u, v) (flow into a vertex)

• f−(v) =
∑

u,(v,u)∈E f (v , u) (flow out of a vertex)

• f ∆(v) = f +(v)− f−(v) (surplus)

Here f : E → R+
0

Definition (Flow)

Function f : E → R+
0 is flow if it satisfies

1 Capacity constraint: (∀e∈E) : f (e) ≤ c(e)

2 Conservation of flows (Kirchoff’s law): (∀v∈V\{s,t}) : f ∆ = 0

Value of the flow: |f | = f ∆(t).

Recall Aho–Corasick Network flows

Network flow

Lemma
For every flow it holds that: f ∆(s) + f ∆(t) = 0.

∑
v∈V

f ∆(v) = 0

Recall Aho–Corasick Network flows

Network flow

Lemma
For every flow it holds that: f ∆(s) + f ∆(t) = 0.

∑
v∈V

f ∆(v) = 0

Recall Aho–Corasick Network flows

Naive algorithm

Network flow problem

Given network N = (V ,E , s, t , c) find flow f maximizing |f |.

Naive approach: Start with 0 flow and keep improving as long as there is path from source to sink that can be
improved.

	Recall
	Aho–Corasick
	Network flows

