Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Oct 5 2020

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)
@ «afi : j]: subword afilafi+ 1] afj — 1]
O of: j]: prefix of « of length j
® «ofi :]: asuffix of «
® «of:]: whole word «

Occurrence of v in n is any index i such that n[i : i + |v|]] = v

Recall Aho—Corasick
oe 0000000

Knuth—Morris—Pratt (KMP) algorithm (1974)

Searching automaton Step (s, ©):
@ State 0, ..., |v| @ While s # 0 and v[s] # c:
(state s corresponds to prefix v[: s]) @ s« b[s.
® Forward edges: s — s + 1 @ Ifu[s]=c: s+ s+ 1.
® Backward edges: pointing from s > 0 to j such that ® Return s

v[: j] is a proper suffix of v[: s]

Search (n, automaton for v):
KMPConstruction (v):
Q@ s« 0.

® Fori=0,...,|n —1:
® s« Step (s, n[i]).
® lfs=|v|:reporti— |v|+1.

@ b[0] +—undefined, b[1] < 0, s < 0.
@ Fori=2,..., |y

® s+« Step (s, v[i —1]).

O b+ s

Theorem
Algorithm KMP will finish in time ©(|n| + |v|).-

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Network flows
[e]o]e}

Given a string v (“a needle”) and n (“a haystack”) find all occurrences of v in 7.

Given a string v (“a needle”) and n (“a haystack”) find all occurrences of v in 7.

Given strings v1, 1o, ..., vp (“a needles”) and i (“a haystack”) find all occurrences of vy, vo, ..., vpinn.

We expect output in the form S = {(i,)) : nli : i + |y]] = v;}.

Given a string v (“a needle”) and n (“a haystack”) find all occurrences of v in 7.

Given strings v1, 1o, ..., vp (“a needles”) and i (“a haystack”) find all occurrences of vy, vo, ..., vpinn.

We expect output in the form S = {(7,)) : nli : i + |y]] = v}

Time complexity using KMP:
n
o <Inl Nty le)
i=1

Given a string v (“a needle”) and n (“a haystack”) find all occurrences of v in 7.

Given strings v1, 1o, ..., vp (“a needles”) and i (“a haystack”) find all occurrences of vy, vo, ..., vpinn.

We expect output in the form S = {(7,)) : nli : i + |y]] = v}

Time complexity using KMP:
n
o <Inl Nty le)
i=1

We seek for:

n
o <In| +> il + ISI>
i=1

Recall Aho-Corasick Network flows
(e]e} 0@00000 e]e]e}

Aho-Corasick (1975)

@ States: 0, ..., |v| ® States: {« : 3j a is a prefix of n;}.
® Forward edges: s — s+ 1 ® Forward edges: {(a, 8) : IxexB = ax}.
@ Backward edges: pointing from s > 0 to j such that ® Backward edges: {(a, 8) : 3 is the longest proper

v[: j] is a proper suffix of v[: s] suffix of « that is a state}.

@ Output whenever a leaf state is reached

@ Output whenever a leaf state is reached (not working)

@ Output whenever a leaf state is reached (not working)
® Follow back edges and output all needles on the path

@ Output whenever a leaf state is reached (not working)
@® Follow back edges and output all needles on the path (slow)

@ Output whenever a leaf state is reached (not working)
@® Follow back edges and output all needles on the path (slow)
© Precompute lists of needles to output when given state is reached

@ Output whenever a leaf state is reached (not working)
@® Follow back edges and output all needles on the path (slow)
@ Precompute lists of needles to output when given state is reached (too large automaton)

@ Output whenever a leaf state is reached (not working)

@® Follow back edges and output all needles on the path (slow)

@ Precompute lists of needles to output when given state is reached (too large automaton)
@ Output edges pointing from state « to nearest output state 3 reachable by back edges.

@ States: 1,2,...,N.

@ Output whenever a leaf state is reached (not working)

@® Follow back edges and output all needles on the path (slow)

@ Precompute lists of needles to output when given state is reached (too large automaton)
@ Output edges pointing from state « to nearest output state 3 reachable by back edges.

@ States: 1,2,...,N.
® Needles: Needle[s].

Recall Aho-Corasick
00 0000000

Aho-Corasick: How to output the locations?

@ Output whenever a leaf state is reached (not working)

® Follow back edges and output all needles on the path (slow)

@ Precompute lists of needles to output when given state is reached (too large automaton)
@ Output edges pointing from state « to nearest output state 3 reachable by back edges.

Representation of the searching automaton

@ States: 1,2, ..., N.
® Needles: Needle[s].

® Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

Network flows
[e]o]e}

Recall Aho-Corasick
00 0000000

Aho-Corasick: How to output the locations?

@ Output whenever a leaf state is reached (not working)

® Follow back edges and output all needles on the path (slow)

@ Precompute lists of needles to output when given state is reached (too large automaton)
@ Output edges pointing from state « to nearest output state 3 reachable by back edges.

Representation of the searching automaton

@ States: 1,2,..., N.
® Needles: Needle[s].

@ Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

@ Backward edges: Back[s].

Network flows
[e]o]e}

Recall Aho-Corasick
00 0000000

Aho-Corasick: How to output the locations?

@ Output whenever a leaf state is reached (not working)

® Follow back edges and output all needles on the path (slow)

@ Precompute lists of needles to output when given state is reached (too large automaton)
@ Output edges pointing from state « to nearest output state 3 reachable by back edges.

Representation of the searching automaton

@ States: 1,2,..., N.
® Needles: Needle[s].

@ Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming character.)

@ Backward edges: Back[s].
@ Output edges: Output[s].

Network flows
[e]o]e}

@ States: 1,2,..., N.
® Needles: Needle[s].

@ Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

@ Backward edges: Back[s].
@ Output edges: Output[s].

@ States: 1,2,..., N.
® Needles: Needle[s].

@ Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

@ Backward edges: Back[s].
@ Output edges: Output[s].

@ While Forward[s][c] = 0 and s # root: s <—Back][s].
@ If Forward[s][c] # 0: s < Forward[s][c].
® Return s.

Recall Aho-Corasick Network flows
(oo} 0000e00 [e]o]e}

Aho—Corasick: search loop

Representation of the searching automaton Search (n, automaton)
@ States: 1,2, ..., N. @ s «root.
© Needles: Needle[s]. @ For characters c in 7 do:
® Forward edges: Forward[s][c]. ® s+« Step(s, o).
(sis an index of a state, ¢ is an incoming j<s.
character.)

(4]
® Whilej#0:

[6) If Needle(j) # 0: Report occurence of needle.
(7] j < Output(j).

@ Backward edges: Back[s].
® Output edges: Output[s].

Step (s,¢):

@ While Forward[s][c] = @ and s # root: s <—Back[s].
@ If Forward[s][c] # 0: s «—Forward[s][c].
®© Return s.

Recall Aho-Corasick
00 00000800

Aho—Corasick: search loop

Representation of the searching automaton

@ States: 1,2, ..., N.
® Needles: Needle[s].

® Forward edges: Forward[s][c].
(sis an index of a state, c is an incoming
character.)

@ Backward edges: Back[s].
® Output edges: Output[s].

Step (s,¢):

@ While Forward[s][c] = @ and s # root: s <—Back[s].

@ If Forward[s][c] # 0: s «—Forward[s][c].
®© Return s.

Network flows
[e]o]e}

Search (n, automaton)

@ s <root.

® For characters c in n do:

® s+« Step(s,c).

0O j<« s

® Whilej#0:

[6) If Needle(j) # 0: Report occurence of needle.
(7] j < Output(j).

Invariant: The state s corresponds to the longest suffix
of n[: i] that is a prefix of some needle.

Lemma
Search runtime is © (|n| + |S]) -

Recall Aho-Corasick Network flows
00 0000080 000

Recall Aho-Corasick Network flows
(oo} 000000e [e]o]e}

Aho—Corasick: automaton construction

Construct (1, ..., vn) Representation of the searching automaton
@ Initialize a trie with root r. @ States: 1,2,...,N.
(sets Forward and Needle arrays) ® Needles: Needle[s].
(2] Insert words Vi,...,Vn to the trie) Forward edges: Forward[s][c].
® Back(r) + 0, Output(r) < 0. (s is an index of a state, c is an incoming

character.)
@ Backward edges: Back[s].

@ Create a queue Q and insert all sons of r.

® For every son s of r: Back(s) + r, Output(s) <
® While Q # 0: © Output edges: Output[s].
@ Dequeue i from Q.

® Forevery son sofi:

(o) b « Step (Back[/], letter on edge (i, s)).

® Back[s] + b.

®

If Needle[b] # 0: Output[s] <+ b
else Output[s] + Output[b].

Append s to Q.

®

Recall Aho-Corasick Network flows
(oo} 000000e [e]o]e}

Aho—Corasick: automaton construction

Construct (1, ..., vn) Representation of the searching automaton
@ Initialize a trie with root r. @ States: 1,2,...,N.
(sets Forward and Needle arrays) ® Needles: Needle[s].
(2] Insert words Vi,...,Vn to the trie) Forward edges: Forward[s][c].
® Back(r) + 0, Output(r) < 0. (s is an index of a state, c is an incoming

character.)
@ Backward edges: Back[s].

@ Create a queue Q and insert all sons of r.
® For every son s of r: Back(s) + r, Output(s) <

06 While Q # 0: @ Output edges: Output[s].

@ Dequeue i from Q.

® Forevery son sofi: Lemma

o b < Step (Back]i], letter on edge (i, s)). Runtime of Construction is O (374 v;).
® Back[s] + b.

® If Needle[b] # 0: Output[s] <+ b

else Output[s] + Output[b].
Append s to Q.

®

Recall Aho-Corasick
00 000000@

Aho—Corasick: automaton construction

Construct (v, ..., vn)
@ Initialize a trie with root r.
(sets Forward and Needle arrays)
® Insert words v, ..., v, to the trie
® Back(r) + 0, Output(r) < 0.
@ Create a queue Q and insert all sons of r.
® For every son s of r: Back(s) + r, Output(s) <
0 While Q # 0:
@ Dequeue i from Q.
® Forevery son sofi:
(o) b « Step (Back[/], letter on edge (i, s)).
® Back[s] + b.
®

If Needle[b] # 0: Output[s] <+ b
else Output[s] + Output[b].

Append s to Q.

®

Network flows
[e]o]e}

Representation of the searching automaton

@ States: 1,2,...,N.
@ Needles: Needle[s].

@ Forward edges: Forward[s][c].
(s is an index of a state, c is an incoming
character.)

@ Backward edges: Back[s].
® Output edges: Output[s].

Lemma
Runtime of Construction is O (374 v;).

Theorem

Aho—Corasick algorithm will find all occurences of
needles in n and will terminate in time
O (Inl + X1y lwil + 181)-

Definifon (Network)
Network is an 4-tuple N = (V, E, s, t, c) where
@ (V,E) is adirected graph,
@® s € Vs a source vertex,
@ t € Vis asink vertex,

®0c E—]R(J)r is a function assigning every edge a capacity.

* (V) = Xy (uvee f(u, v) (flow into a vertex)
® f=(v) =22y (v,uyee f(v, u) (flow out of a vertex)
o A(v) = ft(v) — f~(v) (surplus)

Here f: E — R}

Definifon (Network)
Network is an 4-tuple N = (V, E, s, t, c) where

@ (V,E) is adirected graph,

@® s € Vs a source vertex,

@ t € Vis asink vertex,

O0c: E— Rar is a function assigning every edge a capacity.

* (V) = Xy (uvee f(u, v) (flow into a vertex)
© (V) = Xy vupee (v, u) (flow out of a vertex) Here 7 : £ — Ry
o A(v) = ft(v) — f~(v) (surplus)
Definfion (Flow)
Function f : E — R is flow if it satisfies
@ Capacity constraint: (Vecg) : f(e) < c(e)
@ Conservation of flows (Kirchoff’s law): (Ve v\ ¢s,t3) : fA=0

Value of the flow: [f| = fA(t).

For every flow it holds that: f2(s) + f2(t) = 0.

For every flow it holds that: f2(s) + f2(t) = 0.

> A(v)=0

veVv

Given network N = (V, E, s, t, c¢) find flow f maximizing |f|.

Naive approach: Start with 0 flow and keep improving as long as there is path from source to sink that can be
improved.

	Recall
	Aho–Corasick
	Network flows

