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Randomized algorithms

1 Las Vegas Algorithms: always give correct result, gamble on speed
• Quicksort with random choice of median
• Quickselect with random choice of median
• . . .

2 Monte Carlo Algorithms: Deterministic speed, gamble on result
• Estimate value of π.
• . . .
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Fermat’s little theorem

Theorem (Fermat’s little theorem)

Given prime number p, integer a then ap = a mod p.

Proof.

1 Let a be a positive integer. Consider all strings of p
symbols using alphabet with a different symbols.
Total number of strings is ap .

2 Interpret strings as necklaces. String α is a friend
of β if it differs only by rotation.

3 If α has length p then it has either 1 friend if it
consist of only one character and p friends
otherwise.

4 There are a strings with 1 friend and ap − a strings
with a friends. Thus ap − a is divisible by p.

Example

The following are all strings of length 5 with 2 characters
where each line is a necklace:

1 AAABB, AABBA, ABBAA, BBAAA, BAAAB,

2 AABAB, ABABA, BABAA, ABAAB, BAABA,

3 AABBB, ABBBA, BBBAA, BBAAB, BAABB,

4 ABABB, BABBA, ABBAB, BBABA, BABAB,

5 ABBBB, BBBBA, BBBAB, BBABB, BABBB,

6 BAAAA, AAAAB, AAABA, AABAA, ABAAA,

7 AAAAA,

8 BBBBB.

Clearly 32− 2 is divisible by 5.
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Fermat test

Theorem (Fermat’s little theorem)

Given prime number p, integer a then ap = a mod p.

FermatTest (n, k )

1 Repeat k times:

2 a← random integer in range [2, n − 2].

3 If an−1 6= 1 mod n: return “n is composite”.

4 Return “n is probably prime”.

If n is composite and a satisfies an−1 = 1 mod n, then a is called Fermat liar.

Definition
n is Carmichael numbers if all values a satisfying gcd(a, n) = 1 are Fermat liars. 561 = 3 · 11 · 17

Fact (Bad news)

There are infinitely many Carmichael numbers.

For Carmichael number Fermant test performs poorly — it only return “n is composite” if the randomly chosen
value a divides n.
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Rabin-Miller primality test

RabinMiller (n, k )

1 Decompose n as 2r d + 1 with d odd.

2 repeat k times:

3 a← random integer in range [2, n − 2].

4 x ← ad mod n.

5 if x = 1 or x = n − 1: continue outer loop.

6 repeat r − 1 times:

7 x ← x2 mod n.

8 if x = n − 1: continue outer loop.

9 return “n is composite”.

10 return “n is probably prime”.

Running time: O(k log3 n)

Definition (Strong probable prime)

Given an odd integer n = 2r d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < n we
say that n is strong probable prime to base a if ad = 1 mod n and a2sd = −1 mod n for some 0 ≤ s ≤ r .
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Strong probable primes

Definition (Strong probable prime)

Given an odd integer n = 2r d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < n we
say that n is strong probable prime to base a if

1 ad = 1 mod n and

2 a2sd = −1 mod n for some 0 ≤ s ≤ r .

Theorem (Fermat’s little theorem)

Given prime number p, integer a then ap = a mod p.

Observation
The only square roots of 1 modulo p are 1 and −1.

Theorem
Every odd prime n is also strong probable prime to base a for every valid choice of a.

Each term of sequence a2r d , a2r−1
d , . . . , ad is a square root of previous. We have a2r d = 1 mod p.

It follows that second term is either 1 or −1. If it is −1 we are done. Otherwise repeat argument.
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Accuracy of Rabin-Miller primality test

Definition (Strong probable prime)

Given an odd integer n = 2r d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < n we
say that n is strong probable prime to base a if

1 ad = 1 mod n and

2 a2sd = −1 mod n for some 0 ≤ s ≤ r .

We call a strong liar for n if n is composite and n is strong probable prime to base a.

Fact
If n is composite then at most 1/4 bases a are strong liars.

Corollary

if n is composite then running k iterations of the Miller–Rabin test will declare n probably prime with a probability
at most 4−k .
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Public key cryptography

Suppose that Alice and Bob wants to send private messages over a public channel.

RSA (1978)

RSA (Rivest–Shamir–Adleman) consists of 3 steps:

1 Key generation

2 Key distribution

3 Encryption

4 Decryption

Basic principle

We can find very large integers e, d and n such that

(me)d = m mod n.

For every 0 ≤ m < n. Knowing e, n and m it is hard to find d .
We can also exchange exponents:

(md )e = m mod n.
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RSA

Key generation

1 Choose distinct prime numbers p and q.
(p and q are kept secret and can be found using Rabin-Miller test)

2 n← pq.
(n is the modulus and released as a public key)

3 Compute λ(n) = lcm(p − 1, q − 1).
(λ is Carmichael’s totient function: λ(n) is the minimal number m satisfying am = 1 mod n for all 0 ≤ a ≤ n
such that a is coprime to n: gcd(a, n) = 1)

4 Choose e such that 1 ≤ e ≤ λ(n) and e is coprime to λ(n).
(e is released as part of public key.)

5 Determine d = e−1 mod λ(n) using extended Euclidean algorithm.
(d is kept secret)

Key distribution

Alice will generate key and communicate (n, e) via reliable (not necessarily secret) route.
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RSA

Encryption

Bob chooses a message m (an integer satisfying 0 ≤ m < n) and computes

c = me mod n

and transmits c to Alice.

Decryption

Alice computes
cd = (me)d = m mod n
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Example and correctness

1 Choose two distinct prime numbers p and q.
(Such as p = 61 and q = 53.)

2 Compute n = pq.
(n = 61 · 53 = 3233.)

3 Compute the Carmichael’s totient function of the
product as λ(n) = lcm(p − 1, q − 1).
(λ(3233) = lcm(60, 52) = 78.)

4 Choose any number 1 < e < 780 that is coprime to
780.
(Let e = 17.)

5 Compute d , the modular multiplicative inverse of e
modulo λ(n).
(d = 413 as 1 = (17 · 413) mod 780.)

6 The public key is (n = 3233, e = 17).
Encryption is: c(m) = m17 mod 3233.
(put m = 65, c = 6517 mod 3233 = 2790.)

7 The private key is (n = 3233, d = 413).
Decryption is: m(c) = c413 mod 3233.
(c = 2790, m = 2790413 mod 3233 = 65.)

Theorem
(me)d = m mod pq

Proof.
Since λ(pq) = lcm(p − 1, q − 1) is divisible by p − 1
and q − 1 we have

ed − 1 = h(p − 1) = k(q − 1)

for some h and q.
We show that med = m mod p. Consider two cases

1 m = 0 mod p: then med is a multiple of p and
med = 0 = m mod p.

2 m 6= 0 mod p: med = med−1m = mh(p−1)m =
(mp−1)hm = 1hm = m mod p
(By Fermat little theorem mp−1 = 1 mod p)

Analogously med = m mod q and thus med = m
mod pq
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