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® Monte Carlo Algorithms: Deterministic speed, gamble on result

® Estimate value of .
[ ]
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® Interpret strings as necklaces. String « is a friend
of 3 if it differs only by rotation.
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Theorem (Fermat’s little theorem)

Given prime number p, integer a then a° = a mod p.

Proof.

@ Let a be a positive integer. Consider all strings of p
symbols using alphabet with a different symbols.
Total number of strings is aP.

® Interpret strings as necklaces. String « is a friend
of 3 if it differs only by rotation.
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The following are all strings of length 5 with 2 characters

where each line is a necklace:
© AAABB, AABBA, ABBAA,
© AABAB, ABABA, BABAA,
© AABBB, ABBBA, BBBAA,
O ABABB, BABBA, ABBAB,
© ABBBB, BBBBA, BBBAB,
O BAAAA, AAAAB, AAABA,
@ AAARR,
© BBBBB.

Clearly 32 — 2 is divisible by 5.

BBAAA, BAAAB,
ABAAB, BAABA,
BBAAB, BAABB,
BBABA, BABAB,
BBABB, BABBB,
AABAA, ABAAA,
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Theorem (Fermat’s little theorem)

Given prime number p, integer a then a° = a mod p.

Proof.

@ Let a be a positive integer. Consider all strings of p
symbols using alphabet with a different symbols.
Total number of strings is aP.

® Interpret strings as necklaces. String « is a friend
of 3 if it differs only by rotation.

® If a has length p then it has either 1 friend if it
consist of only one character and p friends
otherwise.
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The following are all strings of length 5 with 2 characters
where each line is a necklace:

© AAABB, AABBA, ABBAA, BBAAA, BAAAB,
® AABAB, ABABA, BABAA, ABAAB, BAABA,
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@ AARAR,

© BBBBB.

Clearly 32 — 2 is divisible by 5.
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Fermat’s little theorem

Theorem (Fermat’s little theorem)

Given prime number p, integer a then a° = a mod p.

Proof.

@ Let a be a positive integer. Consider all strings of p
symbols using alphabet with a different symbols.
Total number of strings is aP.

® Interpret strings as necklaces. String « is a friend
of 3 if it differs only by rotation.

® If a has length p then it has either 1 friend if it
consist of only one character and p friends
otherwise.

@ There are a strings with 1 friend and a® — a strings
with a friends. Thus aP — ais divisible by p.

a
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The following are all strings of length 5 with 2 characters
where each line is a necklace:

© AAABB, AABBA, ABBAA, BBAAA, BAAAB,
® AABAB, ABABA, BABAA, ABAAB, BAABA,
© AABBB, ABBBA, BBBAA, BBAAB, BAABB,
@ ABABB, BABBA, ABBAB, BBABA, BABAB,
© ABBBB, BBBBA, BBBAB, BBABB, BABBB,
O BAAAA, AAAAB, AAABA, AABAA, ABAAA,
@ AARAR,

© BBBBB.

Clearly 32 — 2 is divisible by 5.
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Given prime number p, integer a then a? = a mod p.

© Repeat k times:

® a <« random integer in range [2, n — 2].

® Ifa"'#1 mod n: return “nis composite”.
@ Return “nis probably prime”.

If nis composite and a satisfies a”~' =1 mod n, then ais called Fermat liar.

nis Carmichael numbers if all values a satisfying gcd(a, n) = 1 are Fermat liars. 561 =3-11.17

There are infinitely many Carmichael numbers.

For Carmichael number Fermant test performs poorly — it only return “n is composite” if the randomly chosen
value a divides n.



@ Decompose nas 2"d + 1 with d odd.
@ repeat k times:
a < random integer in range [2, n — 2].

(3]

O x<« a% modn.

® ifx=1orx=n—1:continue outer loop.
® repeatr — 1 times:

) X < x2 mod n.

() if x = n— 1: continue outer loop.

@ return “nis composite”.

® return “n is probably prime”.



@ Decompose nas 2"d + 1 with d odd.
@ repeat k times:
a < random integer in range [2, n — 2].

x < a? mod n.
if x =1 or x = n— 1: continue outer loop.
repeat r — 1 times:
X — x? mod n.
if x = n— 1: continue outer loop.
return “n is composite”.
® return “n is probably prime”.

Running time: O(k log® n)
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Rabin-Miller primality test

RabinMiller (n, k)

@ Decompose nas 2"d + 1 with d odd.
@ repeat k times:

(3]
(4]
(5]
(6]
(7]
(&)

o

a < random integer in range [2, n — 2].
x + a mod n.
if x =1 o0or x = n— 1: continue outer loop.
repeat r — 1 times:
X — x? mod n.
if x = n— 1: continue outer loop.
return “n is composite”.

@ return “nis probably prime”.

Running time: O(k log® n)

Definition (Strong probable prime)

Given an odd integer n = 2"d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < nwe
say that n is strong probable prime to base aif 8 =1 mod nand a2°d = —1 mod n for some 0 <s<r.

Public key cryptography
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0 a% =1 mod nand
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Given an odd integer n = 2"d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < nwe
say that n is strong probable prime to base a if

0 a° =1 mod nand
® 29 = 1 mod nforsome0<s<r.

Given prime number p, integer a then a> = a mod p.

The only square roots of 1 modulo p are 1 and —1.

Clearly 12 = (—1)? = 1. Consider polynomial X> — 1 =0 mod n. this is a polynomial of degree 2 and thus has
2 roots (over a finite field). O
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Given an odd integer n = 2"d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < nwe
say that n is strong probable prime to base a if

0 a° =1 mod nand
® 29 = 1 mod nforsome0<s<r.

Given prime number p, integer a then a> = a mod p.

The only square roots of 1 modulo p are 1 and —1.

Every odd prime n is also strong probable prime to base a for every valid choice of a.

Each term of sequence 229, &2 'd, ..., a® is a square root of previous. We have 229 = 1 mod p.
It follows that second term is either 1 or —1. If it is —1 we are done. Otherwise repeat argument.
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say that n is strong probable prime to base a if

©® a°=1 mod nand
® a9 = —1 mod nforsome 0 < s < r.
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If nis composite then at most 1/4 bases a are strong liars.



Given an odd integer n = 2"d + 1 where r is a positive integer and d is an odd positive integer and 0 < a < nwe
say that n is strong probable prime to base a if

0 a° =1 mod nand
® a9 = —1 mod nforsome0<s<r.

We call a strong liar for nif nis composite and n is strong probable prime to base a.

If nis composite then at most 1/4 bases a are strong liars.

if nis composite then running k iterations of the Miller—Rabin test will declare n probably prime with a probability
at most 4K,
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Public key cryptography

Suppose that Alice and Bob wants to send private messages over a public channel.

Ron Rivest, Adi Shamir and
Leonard Adleman
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Suppose that Alice and Bob wants to send private messages over a public channel.

RSA (Rivest—-Shamir—Adleman) consists of 3 steps:
@ Key generation
® Key distribution
® Encryption
@ Decryption

We can find very large integers e, d and n such that
(m®)? =m mod n.
For every 0 < m < n. Knowing e, nand mit is hard to find d.

We can also exchange exponents:
(m%)®=m mod n.
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@ Choose distinct prime numbers p and g.
(p and q are kept secret and can be found using Rabin-Miller test)
@ N pq.
(nis the modulus and released as a public key)
® Compute A\(n) =lem(p — 1,9 —1).
(X is Carmichael’s totient function: A(n) is the minimal number m satisfying 8" =1 mod nforall0 <a<n
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RSA

Key generation

@ Choose distinct prime numbers p and g.
(p and q are kept secret and can be found using Rabin-Miller test)
@ N pq.
(n is the modulus and released as a public key)
® Compute A\(n) = lem(p— 1,9 —1).
(X is Carmichael’s totient function: A(n) is the minimal number m satisfying 8” =1 mod nforall0 <a<n
such that ais coprime to n: ged(a, n) = 1)

® Choose e such that 1 < e < A(n) and e is coprime to A(n).
(e is released as part of public key.)

© Determine d = e=! mod A(n) using extended Euclidean algorithm.
(d is kept secret)
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RSA

Key generation
@ Choose distinct prime numbers p and g.
(p and q are kept secret and can be found using Rabin-Miller test)

@ n < pq.
(n is the modulus and released as a public key)

® Compute A\(n) = lem(p— 1,9 —1).
(X is Carmichael’s totient function: A(n) is the minimal number m satisfying 8” =1 mod nforall0 <a<n
such that ais coprime to n: ged(a, n) = 1)

® Choose e such that 1 < e < A(n) and e is coprime to A(n).
(e is released as part of public key.)

© Determine d = e=! mod A(n) using extended Euclidean algorithm.
(d is kept secret)

Key distribution
Alice will generate key and communicate (n, e) via reliable (not necessarily secret) route.



Bob chooses a message m (an integer satisfying 0 < m < n) and computes

c=m° modn
and transmits ¢ to Alice.

Alice computes
cd=(m*=m modn
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@ Choose two distinct prime numbers p and q.
(Such as p =61 and g = 53.)

® Compute n = pq.
(n=61-53 =23233))

® Compute the Carmichael’s totient function of the
product as A(n) = lcm(p —1,q — 1).
(A\(3233) = Icm(60, 52) = 78.)

® Choose any number 1 < e < 780 that is coprime to
780.
(Lete =17.)

@ Compute d, the modular multiplicative inverse of e
modulo A(n).
(d=413as 1= (17-413) mod 780.)

® The public key is (n = 3233, e = 17).
Encryption is: ¢(m) = m'” mod 3233.
(put m =65, ¢ = 65'7 mod 3233 = 2790.)
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Example and correctness

@ Choose two distinct prime numbers p and q.
(Such as p =61 and g = 53.)

® Compute n = pq.
(n=61-53 =23233.)

® Compute the Carmichael’s totient function of the
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780.
(Lete=17.)
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@ The public key is (n = 3233, e = 17).
Encryption is: ¢(m) = m'” mod 3233.
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@ The private key is (n = 3233, d = 413).
Decryption is: m(c) = ¢*'® mod 3233.
(c = 2790, m = 2790*' mod 3233 = 65.)

Public key cryptography
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@ Choose two distinct prime numbers p and q.
(Such as p =61 and g = 53.)

® Compute n = pq.
(n=61-53 =23233.)

® Compute the Carmichael’s totient function of the
product as A\(n) = lem(p — 1,9 — 1).
(A\(3233) = Icm(60,52) = 78.)
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(m®)d = m mod pg

Proof.
Since A\(pq) = lem(p — 1,q — 1) is divisible by p — 1
and g — 1 we have
ed—1=h(p—1)=k(g—1)
for some h and q.
We show that m®® = m mod p. Consider two cases

@ m=0 mod p: then m¢? is a multiple of p and
mé9 =0=m mod p.
® m#0 mod p: m*? = med—"Tm = mhP-Vm =
(mP~"'m=1"m=m mod p
(By Fermat little theorem mP=" =1 mod p)
Analogously m®® = m mod g and thus m®? = m
mod pq

The End
o
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