

Algorithms and datastructures II

Lecture 13: Randomized algorithms and public cryptography

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Jan 4 2021

Randomized algorithms

① **Las Vegas Algorithms**: always give correct result, gamble on speed

- Quicksort with random choice of median
- Quickselect with random choice of median
- ...

Randomized algorithms

① **Las Vegas Algorithms**: always give correct result, gamble on speed

- Quicksort with random choice of median
- Quickselect with random choice of median
- ...

② **Monte Carlo Algorithms**: Deterministic speed, gamble on result

- Estimate value of π .
- ...

Fermat's little theorem

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

Proof.

Fermat's little theorem

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

Proof.

- 1 Let a be a positive integer. Consider all strings of p symbols using alphabet with a different symbols.
Total number of strings is a^p .

Fermat's little theorem

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

Proof.

- 1 Let a be a positive integer. Consider all strings of p symbols using alphabet with a different symbols.
Total number of strings is a^p .
- 2 Interpret strings as necklaces. String α is a friend of β if it differs only by rotation.

Fermat's little theorem

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

Proof.

- ① Let a be a positive integer. Consider all strings of p symbols using alphabet with a different symbols. Total number of strings is a^p .
- ② Interpret strings as **necklaces**. String α is a **friend** of β if it differs only by rotation.

□

Example

The following are all strings of length 5 with 2 characters where each line is a necklace:

- ① AAABB, AABBA, ABAAA, BBAAA, BAAAB,
- ② AABAB, ABABA, BABAA, ABAAB, BAABA,
- ③ AABBB, ABBBA, BBBAA, BBAAB, BAABB,
- ④ ABABB, BABBA, ABBAB, BBABA, BABAB,
- ⑤ ABBBB, BBBBA, BBBAB, BBABB, BABBB,
- ⑥ BAAAA, AAAAB, AAABA, AABAA, ABAAA,
- ⑦ AAAAA,
- ⑧ BBBBB.

Clearly $32 - 2$ is divisible by 5.

Fermat's little theorem

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

Proof.

- 1 Let a be a positive integer. Consider all strings of p symbols using alphabet with a different symbols. Total number of strings is a^p .
- 2 Interpret strings as **necklaces**. String α is a **friend** of β if it differs only by rotation.
- 3 If α has length p then it has either 1 friend if it consist of only one character and p friends otherwise.

□

Example

The following are all strings of length 5 with 2 characters where each line is a necklace:

- 1 AAABB, AABBA, ABAAA, BBAAA, BAAAB,
- 2 AABAB, ABABA, BABAA, ABAAB, BAABA,
- 3 AABBB, ABBBA, BBBAA, BBAAB, BAABB,
- 4 ABABB, BABBA, ABBAB, BBABA, BABAB,
- 5 ABBBB, BBBBA, BBBAB, BBABB, BABBB,
- 6 BAAAA, AAAAB, AAABA, AABAA, ABAAA,
- 7 AAAAA,
- 8 BBBBB.

Clearly $32 - 2$ is divisible by 5.

Fermat's little theorem

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

Proof.

- 1 Let a be a positive integer. Consider all strings of p symbols using alphabet with a different symbols. Total number of strings is a^p .
- 2 Interpret strings as **necklaces**. String α is a **friend** of β if it differs only by rotation.
- 3 If α has length p then it has either 1 friend if it consist of only one character and p friends otherwise.
- 4 There are a strings with 1 friend and $a^p - a$ strings with a friends. Thus $a^p - a$ is divisible by p .

□

Example

The following are all strings of length 5 with 2 characters where each line is a necklace:

- 1 AAABB, AABBA, ABAAA, BBAAA, BAAAB,
- 2 AABAB, ABABA, BABAA, ABAAB, BAABA,
- 3 AABBB, ABBBA, BBBAA, BBAAB, BAABB,
- 4 ABABB, BABBA, ABBAB, BBABA, BABAB,
- 5 ABBBB, BBBBA, BBBAB, BBABB, BABBB,
- 6 BAAAA, AAAAB, AAABA, AABAA, ABAAA,
- 7 AAAAA,
- 8 BBBBB.

Clearly $32 - 2$ is divisible by 5.

Fermat test

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

FermatTest (n, k)

- ① Repeat k times:
 - ② $a \leftarrow$ random integer in range $[2, n - 2]$.
 - ③ If $a^{n-1} \neq 1 \pmod n$: return " n is composite".
- ④ Return " n is probably prime".

Fermat test

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

FermatTest (n, k)

- ① Repeat k times:
 - ② $a \leftarrow$ random integer in range $[2, n - 2]$.
 - ③ If $a^{n-1} \neq 1 \pmod n$: return " n is composite".
 - ④ Return " n is probably prime".

Observation

If n is prime, then FermatTest will return " n is probably prime".

Fermat test

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

FermatTest (n, k)

- ① Repeat k times:
 - ② $a \leftarrow$ random integer in range $[2, n - 2]$.
 - ③ If $a^{n-1} \neq 1 \pmod n$: return " n is composite".
- ④ Return " n is probably prime".

If n is composite and a satisfies $a^{n-1} = 1 \pmod n$, then a is called **Fermat liar**.

Fermat test

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

FermatTest (n, k)

- ① Repeat k times:
- ② $a \leftarrow$ random integer in range $[2, n - 2]$.
- ③ If $a^{n-1} \neq 1 \pmod n$: return " n is composite".
- ④ Return " n is probably prime".

If n is composite and a satisfies $a^{n-1} = 1 \pmod n$, then a is called **Fermat liar**.

Definition

n is **Carmichael numbers** if all values a satisfying $\gcd(a, n) = 1$ are Fermat liars.

$561 = 3 \cdot 11 \cdot 17$

Fermat test

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p = a \pmod p$.

FermatTest (n, k)

- ① Repeat k times:
- ② $a \leftarrow$ random integer in range $[2, n - 2]$.
- ③ If $a^{n-1} \neq 1 \pmod n$: return " n is composite".
- ④ Return " n is probably prime".

If n is composite and a satisfies $a^{n-1} = 1 \pmod n$, then a is called **Fermat liar**.

Definition

n is **Carmichael numbers** if all values a satisfying $\gcd(a, n) = 1$ are Fermat liars.

$561 = 3 \cdot 11 \cdot 17$

Fact (Bad news)

There are infinitely many Carmichael numbers.

For Carmichael number Fermat test performs poorly — it only return " n is composite" if the randomly chosen value a divides n .

Rabin-Miller primality test

RabinMiller (n, k)

- ① Decompose n as $2^r d + 1$ with d odd.
- ② repeat k times:
 - ③ $a \leftarrow$ random integer in range $[2, n - 2]$.
 - ④ $x \leftarrow a^d \pmod n$.
 - ⑤ if $x = 1$ or $x = n - 1$: continue outer loop.
 - ⑥ repeat $r - 1$ times:
 - ⑦ $x \leftarrow x^2 \pmod n$.
 - ⑧ if $x = n - 1$: continue outer loop.
 - ⑨ return “ n is composite”.
 - ⑩ return “ n is probably prime”.

Rabin-Miller primality test

RabinMiller (n, k)

- ① Decompose n as $2^r d + 1$ with d odd.
- ② repeat k times:
 - ③ $a \leftarrow$ random integer in range $[2, n - 2]$.
 - ④ $x \leftarrow a^d \pmod n$.
 - ⑤ if $x = 1$ or $x = n - 1$: continue outer loop.
 - ⑥ repeat $r - 1$ times:
 - ⑦ $x \leftarrow x^2 \pmod n$.
 - ⑧ if $x = n - 1$: continue outer loop.
 - ⑨ return " n is composite".
 - ⑩ return " n is probably prime".

Running time: $O(k \log^3 n)$

Rabin-Miller primality test

RabinMiller (n, k)

- ① Decompose n as $2^r d + 1$ with d odd.
- ② repeat k times:
 - ③ $a \leftarrow$ random integer in range $[2, n - 2]$.
 - ④ $x \leftarrow a^d \pmod n$.
 - ⑤ if $x = 1$ or $x = n - 1$: continue outer loop.
 - ⑥ repeat $r - 1$ times:
 - ⑦ $x \leftarrow x^2 \pmod n$.
 - ⑧ if $x = n - 1$: continue outer loop.
 - ⑨ return " n is composite".
 - ⑩ return " n is probably prime".

Running time: $O(k \log^3 n)$

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if $a^d \equiv 1 \pmod n$ and $a^{2^s d} \equiv -1 \pmod n$ for some $0 \leq s \leq r$.

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Observation

The only square roots of 1 modulo p are 1 and -1 .

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Observation

The only square roots of 1 modulo p are 1 and -1 .

Proof.

Clearly $1^2 = (-1)^2 = 1$.

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Observation

The only square roots of 1 modulo p are 1 and -1 .

Proof.

Clearly $1^2 = (-1)^2 = 1$. Consider polynomial $X^2 - 1 = 0 \pmod{n}$. this is a polynomial of degree 2 and thus has 2 roots (over a finite field). □

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Observation

The only square roots of 1 modulo p are 1 and -1 .

Theorem

Every odd prime n is also strong probable prime to base a for every valid choice of a .

Each term of sequence $a^{2^r d}, a^{2^{r-1} d}, \dots, a^d$ is a square root of previous.

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Observation

The only square roots of 1 modulo p are 1 and -1 .

Theorem

Every odd prime n is also strong probable prime to base a for every valid choice of a .

Each term of sequence $a^{2^r d}, a^{2^{r-1} d}, \dots, a^d$ is a square root of previous. We have $a^{2^r d} \equiv 1 \pmod{p}$.

Strong probable primes

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

Theorem (Fermat's little theorem)

Given prime number p , integer a then $a^p \equiv a \pmod{p}$.

Observation

The only square roots of 1 modulo p are 1 and -1 .

Theorem

Every odd prime n is also strong probable prime to base a for every valid choice of a .

Each term of sequence $a^{2^r d}, a^{2^{r-1} d}, \dots, a^d$ is a square root of previous. We have $a^{2^r d} \equiv 1 \pmod{p}$. It follows that second term is either 1 or -1 . If it is -1 we are done. Otherwise repeat argument.

Accuracy of Rabin-Miller primality test

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

We call a **strong liar** for n if n is composite and n is strong probable prime to base a .

Accuracy of Rabin-Miller primality test

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

We call a **strong liar** for n if n is composite and n is strong probable prime to base a .

Fact

If n is composite then at most $1/4$ bases a are strong liars.

Accuracy of Rabin-Miller primality test

Definition (Strong probable prime)

Given an odd integer $n = 2^r d + 1$ where r is a positive integer and d is an odd positive integer and $0 < a < n$ we say that n is **strong probable prime to base a** if

- ① $a^d \equiv 1 \pmod{n}$ and
- ② $a^{2^s d} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r$.

We call a **strong liar** for n if n is composite and n is strong probable prime to base a .

Fact

If n is composite then at most $1/4$ bases a are strong liars.

Corollary

If n is composite then running k iterations of the Miller–Rabin test will declare n probably prime with a probability at most 4^{-k} .

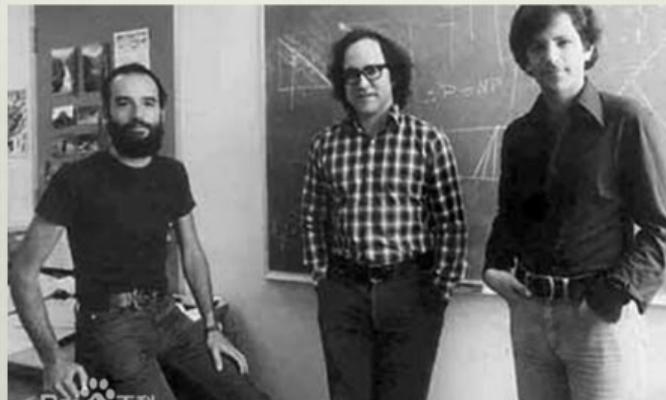
Public key cryptography

Suppose that Alice and Bob wants to send private messages over a public channel.

Public key cryptography

Suppose that Alice and Bob wants to send private messages over a public channel.

Ron Rivest, Adi Shamir and
Leonard Adleman



Public key cryptography

Suppose that Alice and Bob wants to send private messages over a public channel.

RSA (1978)

RSA (Rivest–Shamir–Adleman) consists of 3 steps:

- ① Key generation
- ② Key distribution
- ③ Encryption
- ④ Decryption

Public key cryptography

Suppose that Alice and Bob want to send private messages over a public channel.

RSA (1978)

RSA (Rivest–Shamir–Adleman) consists of 3 steps:

- ① Key generation
- ② Key distribution
- ③ Encryption
- ④ Decryption

Basic principle

We can find very large integers e , d and n such that

$$(m^e)^d = m \pmod{n}.$$

For every $0 \leq m < n$. Knowing e , n and m it is hard to find d .

Public key cryptography

Suppose that Alice and Bob want to send private messages over a public channel.

RSA (1978)

RSA (Rivest–Shamir–Adleman) consists of 3 steps:

- ① Key generation
- ② Key distribution
- ③ Encryption
- ④ Decryption

Basic principle

We can find very large integers e , d and n such that

$$(m^e)^d = m \pmod{n}.$$

For every $0 \leq m < n$. Knowing e , n and m it is hard to find d .

We can also exchange exponents:

$$(m^d)^e = m \pmod{n}.$$

RSA

Key generation

- 1 Choose distinct prime numbers p and q .
(p and q are kept secret and can be found using Rabin-Miller test)

RSA

Key generation

- ① Choose distinct prime numbers p and q .
(p and q are kept secret and can be found using Rabin-Miller test)
- ② $n \leftarrow pq$.
(n is the **modulus** and released as a public key)

RSA

Key generation

- ① Choose distinct prime numbers p and q .
(p and q are kept secret and can be found using Rabin-Miller test)
- ② $n \leftarrow pq$.
(n is the **modulus** and released as a public key)
- ③ Compute $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
(λ is **Carmichael's totient function**: $\lambda(n)$ is the minimal number m satisfying $a^m \equiv 1 \pmod{n}$ for all $0 \leq a \leq n$ such that a is **coprime** to n : $\text{gcd}(a, n) = 1$)

RSA

Key generation

- ① Choose distinct prime numbers p and q .
(p and q are kept secret and can be found using Rabin-Miller test)
- ② $n \leftarrow pq$.
(n is the **modulus** and released as a public key)
- ③ Compute $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
(λ is **Carmichael's totient function**: $\lambda(n)$ is the minimal number m satisfying $a^m \equiv 1 \pmod{n}$ for all $0 \leq a \leq n$ such that a is **coprime** to n : $\text{gcd}(a, n) = 1$)
- ④ Choose e such that $1 \leq e \leq \lambda(n)$ and e is coprime to $\lambda(n)$.
(e is released as part of public key.)

RSA

Key generation

- ① Choose distinct prime numbers p and q .
(p and q are kept secret and can be found using Rabin-Miller test)
- ② $n \leftarrow pq$.
(n is the **modulus** and released as a public key)
- ③ Compute $\lambda(n) = \text{lcm}(p-1, q-1)$.
(λ is **Carmichael's totient function**: $\lambda(n)$ is the minimal number m satisfying $a^m \equiv 1 \pmod{n}$ for all $0 \leq a \leq n$ such that a is **coprime** to n : $\text{gcd}(a, n) = 1$)
- ④ Choose e such that $1 \leq e \leq \lambda(n)$ and e is coprime to $\lambda(n)$.
(e is released as part of public key.)
- ⑤ Determine $d = e^{-1} \pmod{\lambda(n)}$ using extended Euclidean algorithm.
(d is kept secret)

RSA

Key generation

- ① Choose distinct prime numbers p and q .
(p and q are kept secret and can be found using Rabin-Miller test)
- ② $n \leftarrow pq$.
(n is the **modulus** and released as a public key)
- ③ Compute $\lambda(n) = \text{lcm}(p-1, q-1)$.
(λ is **Carmichael's totient function**: $\lambda(n)$ is the minimal number m satisfying $a^m \equiv 1 \pmod{n}$ for all $0 \leq a \leq n$ such that a is **coprime** to n : $\text{gcd}(a, n) = 1$)
- ④ Choose e such that $1 \leq e \leq \lambda(n)$ and e is coprime to $\lambda(n)$.
(e is released as part of public key.)
- ⑤ Determine $d = e^{-1} \pmod{\lambda(n)}$ using extended Euclidean algorithm.
(d is kept secret)

Key distribution

Alice will generate key and communicate (n, e) via reliable (not necessarily secret) route.

RSA

Encryption

Bob chooses a message m (an integer satisfying $0 \leq m < n$) and computes

$$c = m^e \pmod{n}$$

and transmits c to Alice.

Decryption

Alice computes

$$c^d = (m^e)^d = m \pmod{n}$$

Example and correctness

- 1 Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)

Example and correctness

- ➊ Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ➋ Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ⑤ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \bmod 780$.)

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ⑤ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \pmod{780}$.)
- ⑥ The public key is $(n = 3233, e = 17)$.
Encryption is: $c(m) = m^{17} \pmod{3233}$.
(put $m = 65, c = 65^{17} \pmod{3233} = 2790$.)

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ⑤ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \pmod{780}$.)
- ⑥ The public key is $(n = 3233, e = 17)$.
Encryption is: $c(m) = m^{17} \pmod{3233}$.
(put $m = 65, c = 65^{17} \pmod{3233} = 2790$.)
- ⑦ The private key is $(n = 3233, d = 413)$.
Decryption is: $m(c) = c^{413} \pmod{3233}$.
($c = 2790, m = 2790^{413} \pmod{3233} = 65$.)

Example and correctness

- ➊ Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ➋ Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ➌ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p - 1, q - 1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ➍ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ➎ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \pmod{780}$.)
- ➏ The public key is $(n = 3233, e = 17)$.
Encryption is: $c(m) = m^{17} \pmod{3233}$.
(put $m = 65, c = 65^{17} \pmod{3233} = 2790$.)
- ➐ The private key is $(n = 3233, d = 413)$.
Decryption is: $m(c) = c^{413} \pmod{3233}$.
($c = 2790, m = 2790^{413} \pmod{3233} = 65$.)

Theorem

$$(m^e)^d = m \pmod{pq}$$

Proof.

Since $\lambda(pq) = \text{lcm}(p - 1, q - 1)$ is divisible by $p - 1$ and $q - 1$ we have

$$ed - 1 = h(p - 1) = k(q - 1)$$

for some h and q .

Example and correctness

- ➊ Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ➋ Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ➌ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p-1, q-1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ➍ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ➎ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \pmod{780}$.)
- ➏ The public key is $(n = 3233, e = 17)$.
Encryption is: $c(m) = m^{17} \pmod{3233}$.
(put $m = 65, c = 65^{17} \pmod{3233} = 2790$.)
- ➐ The private key is $(n = 3233, d = 413)$.
Decryption is: $m(c) = c^{413} \pmod{3233}$.
($c = 2790, m = 2790^{413} \pmod{3233} = 65$.)

Theorem

$$(m^e)^d = m \pmod{pq}$$

Proof.

Since $\lambda(pq) = \text{lcm}(p-1, q-1)$ is divisible by $p-1$ and $q-1$ we have

$$ed - 1 = h(p-1) = k(q-1)$$

for some h and q .

We show that $m^{ed} = m \pmod{p}$. Consider two cases

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p-1, q-1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ⑤ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \bmod 780$.)
- ⑥ The public key is ($n = 3233$, $e = 17$).
Encryption is: $c(m) = m^{17} \bmod 3233$.
(put $m = 65$, $c = 65^{17} \bmod 3233 = 2790$.)
- ⑦ The private key is ($n = 3233$, $d = 413$).
Decryption is: $m(c) = c^{413} \bmod 3233$.
($c = 2790$, $m = 2790^{413} \bmod 3233 = 65$.)

Theorem

$$(m^e)^d = m \bmod pq$$

Proof.

Since $\lambda(pq) = \text{lcm}(p-1, q-1)$ is divisible by $p-1$ and $q-1$ we have

$$ed - 1 = h(p-1) = k(q-1)$$

for some h and q .

We show that $m^{ed} = m \bmod p$. Consider two cases

- ① $m = 0 \bmod p$: then m^{ed} is a multiple of p and $m^{ed} = 0 = m \bmod p$.

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p-1, q-1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ⑤ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \bmod 780$.)
- ⑥ The public key is ($n = 3233$, $e = 17$).
Encryption is: $c(m) = m^{17} \bmod 3233$.
(put $m = 65$, $c = 65^{17} \bmod 3233 = 2790$.)
- ⑦ The private key is ($n = 3233$, $d = 413$).
Decryption is: $m(c) = c^{413} \bmod 3233$.
($c = 2790$, $m = 2790^{413} \bmod 3233 = 65$.)

Theorem

$$(m^e)^d = m \bmod pq$$

Proof.

Since $\lambda(pq) = \text{lcm}(p-1, q-1)$ is divisible by $p-1$ and $q-1$ we have

$$ed - 1 = h(p-1) = k(q-1)$$

for some h and q .

We show that $m^{ed} = m \bmod p$. Consider two cases

- ① $m = 0 \bmod p$: then m^{ed} is a multiple of p and $m^{ed} = 0 = m \bmod p$.
- ② $m \neq 0 \bmod p$: $m^{ed} = m^{ed-1}m = m^{h(p-1)}m = (m^{p-1})^h m = 1^h m = m \bmod p$
(By Fermat little theorem $m^{p-1} = 1 \bmod p$)

Example and correctness

- ① Choose two distinct prime numbers p and q .
(Such as $p = 61$ and $q = 53$.)
- ② Compute $n = pq$.
($n = 61 \cdot 53 = 3233$.)
- ③ Compute the Carmichael's totient function of the product as $\lambda(n) = \text{lcm}(p-1, q-1)$.
($\lambda(3233) = \text{lcm}(60, 52) = 78$.)
- ④ Choose any number $1 < e < 780$ that is coprime to 780.
(Let $e = 17$.)
- ⑤ Compute d , the modular multiplicative inverse of e modulo $\lambda(n)$.
($d = 413$ as $1 = (17 \cdot 413) \bmod 780$.)
- ⑥ The public key is $(n = 3233, e = 17)$.
Encryption is: $c(m) = m^{17} \bmod 3233$.
(put $m = 65, c = 65^{17} \bmod 3233 = 2790$.)
- ⑦ The private key is $(n = 3233, d = 413)$.
Decryption is: $m(c) = c^{413} \bmod 3233$.
($c = 2790, m = 2790^{413} \bmod 3233 = 65$.)

Theorem

$$(m^e)^d = m \bmod pq$$

Proof.

Since $\lambda(pq) = \text{lcm}(p-1, q-1)$ is divisible by $p-1$ and $q-1$ we have

$$ed - 1 = h(p-1) = k(q-1)$$

for some h and q .

We show that $m^{ed} = m \bmod p$. Consider two cases

- ① $m = 0 \bmod p$: then m^{ed} is a multiple of p and $m^{ed} = 0 = m \bmod p$.
- ② $m \neq 0 \bmod p$: $m^{ed} = m^{ed-1}m = m^{h(p-1)}m = (m^{p-1})^h m = 1^h m = m \bmod p$
(By Fermat little theorem $m^{p-1} = 1 \bmod p$)

Analogously $m^{ed} = m \bmod q$ and thus $m^{ed} = m \bmod pq$

□

Thank you

