Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Dec 20 2020

Given vertex of n points in R2 we want to find shortest closed curve such that its interior contains all points.

Given vertex of n points in R2 we want to find shortest closed curve such that its interior contains all points.

@ We are going to represent the convex hull by a sequence of points on its boundary sorted either clockwise
or counter-clockwise.

® For simplicity we assume that points have different x coordinates.

© We will use technique called Plane sweep.

@ Let by, ... by be points ay, ..., an sorted by x coordinate

@® Put by into upper and lower envelopes: U < L < (by)

® Forb=b,,...bn:

©® Recompute upper envelope:

() While |U| > 2, U = (... ux_1, ux) and angle ux_1uxb is oriented to left:
[6) Remove vy from U.

(7] Add b to the end of U

® Handle lower envelope symmetrically

©® Convex hull consists of H and D.

@ Let by, ... by be points ay, ..., an sorted by x coordinate

@® Put by into upper and lower envelopes: U < L < (by)

® Forb=b,,...bn:

©® Recompute upper envelope:

() While |U| > 2, U = (... ux_1, ux) and angle ux_1uxb is oriented to left:
[6) Remove vy from U.

(7] Add b to the end of U

® Handle lower envelope symmetrically

©® Convex hull consists of H and D.

Time complexity: O(nlog n)

Convex hull Intersection of line segments Vornoi diagrams
oe (oo} 0000

Convex hull problem

ConvexHull (ay, ..., an)

@ Let by, ... by be points ay, ..., ap sorted by x coordinate

@® Put by into upper and lower envelopes: U < L < (by)

® Forb=bo,...bn:

©® Recompute upper envelope:

() While |U| > 2, U = (... ux_1, ux) and angle ux_1uxb is oriented to left:
[6) Remove vy from U.

(7] Add b to the end of U

® Handle lower envelope symmetrically

® Convex hull consists of H and D.

Time complexity: O(nlog n)
Determining orientation: Let i = (xq, y1) and V = (X,) be row vectors. Let
v=0) - %)
v X2 Y2

If det M = xq¥o — Xo)1 is non-negative then the angle is oriented to left.

@ Let by, ... by be points ay, ..., an sorted by x coordinate

@® Put by into upper and lower envelopes: U < L < (by)

® Forb=b,,...bn:

©® Recompute upper envelope:

() While |U| > 2, U = (... ux_1, ux) and angle ux_1uxb is oriented to left:
[6) Remove vy from U.

(7] Add b to the end of U

® Handle lower envelope symmetrically

©® Convex hull consists of H and D.

Time complexity: O(nlog n)

Problem of sorting real numbers can be reduced to convex hull problem.

Given line segments /¢4, . .. ¢, determine all their mutual intersections

For simplicity we will assume that lines are in general position:
@ no 3 line segments intersect in one point,
@ intersection of any two disjoint lines is at most one point, and
@ every line has different starting and ending y-coordinate.

Given line segments /¢4, . .. ¢, determine all their mutual intersections

For simplicity we will assume that lines are in general position:
@ no 3 line segments intersect in one point,
@ intersection of any two disjoint lines is at most one point, and
@ every line has different starting and ending y-coordinate.

Convex hull Intersection of line segments
00 [1e}

intersections of line segments

Intersection of line segments

Given line segments ¢4, . .. £, determine all their mutual intersections

For simplicity we will assume that lines are in general position:
@ no 3 line segments intersect in one point,
@ intersection of any two disjoint lines is at most one point, and
@ every line has different starting and ending y-coordinate.

Intersections (41, ...¢n)

@ |Initialize / (intersections with the moving line) to 0.

® Add to calendar C all initial points of all lines.

® Until C is not empty:

Remove first event.

If event was beginning of a line: add new line to /.

If event was the end of line: remove it from /.

If event was intersection: report it and exchange lines in /.
Update all intersection events (at most 2 are added or removed)

©90 00

Vornoi diagrams
0000

Convex hull Intersection of line segments Vornoi diagrams
(oo} oe 0000

intersections of line segments

Intersections (¢1, ... %¢n)

@ Initialize / (intersections with the moving line) to 0.

® Add to calendar C all initial points of all lines.

® Until C is not empty:

® Remove first event.

@® If event was beginning of a line: add new line to /.

® If event was the end of line: remove it from /.

@ If event was intersection: report it and exchange lines in /.

® Update all intersection events (at most 2 are added or removed)

Representation of calendar: we need operations Insert, ExtractMin, Remove.

Convex hull
(oo}

Intersection of line segments Vornoi diagrams
oe 0000

intersections of line segments

Intersections (¢1, ... %¢n)

@ Initialize / (intersections with the moving line) to 0.
® Add to calendar C all initial points of all lines.
® Until C is not empty:

(4]
(5]
(6]
(7]
(8]

Remove first event.

If event was beginning of a line: add new line to /.

If event was the end of line: remove it from /.

If event was intersection: report it and exchange lines in /.
Update all intersection events (at most 2 are added or removed)

Representation of calendar: we need operations Insert, ExtractMin, Remove.
There are at most 3n events in calendar. Binary tree will work in O(log n) for operation

Representation of the intersection: we need operations Insert, Remove, Next and Previous

Convex hull
(oo}

Intersection of line segments Vornoi diagrams
oe 0000

intersections of line segments

Intersections (¢1, ... %¢n)

@ Initialize / (intersections with the moving line) to 0.
® Add to calendar C all initial points of all lines.
® Until C is not empty:

(4]
(5]
(6]
(7]
(8]

Remove first event.

If event was beginning of a line: add new line to /.

If event was the end of line: remove it from /.

If event was intersection: report it and exchange lines in /.
Update all intersection events (at most 2 are added or removed)

Representation of calendar: we need operations Insert, ExtractMin, Remove.
There are at most 3n events in calendar. Binary tree will work in O(log n) for operation

Representation of the intersection: we need operations Insert, Remove, Next and Previous
We can again use binary tree. x coordinates are not good as keys since they keep changing, however we can
keep references to lines since relative order does not change from step to step.

Overall there are O(n + i) events where i is number of intersections and runtime is O((n + i) log n)

Vornoi diagrams

Intersection of line segments
0000

Convex hull
00 00

Vornoi diagram

Definition (Vornoi diagram)

Vornoi diagram for a given set of locations xi, ... x, € R? is a system of areas By, ..., B, C R? such that B;
consists of all points p € R? with the property that the distance from p to x; is smaller or equal to the distance
from p to any other location.

Vornoi diagram for a given set of locations xi, ... x, € R? is a system of areas By, ..., B, C R? such that B;
consists of all points p € R? with the property that the distance from p to x; is smaller or equal to the distance
from p to any other location.

Vornoi diagram for a given set of locations xi, ... x, € R? is a system of areas By, ..., B, C R? such that B;

consists of all points p € R? with the property that the distance from p to x; is smaller or equal to the distance
from p to any other location.

Vornoi diagram has linear combinatorial complexity. For n locations it consists of O(n) vertices and faces.

Let G be a connected planar graph with no edge multiplicities. Let v > 3 be number of vertices, e number of
edges and f number of faces. Then:

Q@ e<3v-6
® v+ f = e+ 2 (Euler formula)

Convex hull Intersection of line segments Vornoi diagrams
(oo} (oo} @000

Vornoi diagram

Definition (Vornoi diagram)

Vornoi diagram for a given set of locations Xy, ... x, € R? is a system of areas By, ..., B, C R? such that B;
consists of all points p € R? with the property that the distance from p to x; is smaller or equal to the distance
from p to any other location.

Lemma
Vornoi diagram has linear combinatorial complexity. For n locations it consists of O(n) vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let v > 3 be number of vertices, e number of
edges and f number of faces. Then:

Q@ e<3v-6
® v+ f = e+ 2 (Euler formula)

Proof (of lemma).

Vornoi diagram for n locations has n areas so it leads to f = n+ 1 faces.

Convex hull Intersection of line segments Vornoi diagrams
(oo} (oo} @000

Vornoi diagram

Definition (Vornoi diagram)

Vornoi diagram for a given set of locations Xy, ... x, € R? is a system of areas By, ..., B, C R? such that B;
consists of all points p € R? with the property that the distance from p to x; is smaller or equal to the distance
from p to any other location.

Lemma
Vornoi diagram has linear combinatorial complexity. For n locations it consists of O(n) vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let v > 3 be number of vertices, e number of
edges and f number of faces. Then:

Q@ e<3v-6
® v+ f = e+ 2 (Euler formula)

Proof (of lemma).

Vornoi diagram for n locations has n areas so it leads to f = n+ 1 faces.
Its dual has v/ = f vertices and has no edge multiplicities. Thus ¢’ < 3v/ —6and e < 3f —6 = 3n— 3.

Convex hull Intersection of line segments Vornoi diagrams
(oo} (oo} @000

Vornoi diagram

Definition (Vornoi diagram)

Vornoi diagram for a given set of locations Xy, ... x, € R? is a system of areas By, ..., B, C R? such that B;
consists of all points p € R? with the property that the distance from p to x; is smaller or equal to the distance
from p to any other location.

Lemma
Vornoi diagram has linear combinatorial complexity. For n locations it consists of O(n) vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let v > 3 be number of vertices, e number of
edges and f number of faces. Then:

Q@ e<3v-6
® v+ f = e+ 2 (Euler formula)

Proof (of lemma).

Vornoi diagram for n locations has n areas so it leads to f = n+ 1 faces.
Its dual has v/ = f vertices and has no edge multiplicities. Thus ¢’ < 3v/ —6and e < 3f —6 = 3n— 3.
Number of verticesisv =e+2—-f<(3n—-3)+2—-(n+1)=2n-2. O

Beachline

Beachline

Beachline

Location event

Beachline

Circle event

Location event

Beachline

Circle event

Location event

Convex hull Intersection of line segments Vornoi diagrams
(oo} (oo} [e]e] Ie]

Fortune’s algorithm

Fortune (x1,. .., Xn)

@ Create empty calendar C and add all location events.

® Create empty beachline B.

® While C is nonempty:

® Remove first event.

® If it was location event:

(6] Find in S parabolla corresponding to the x-coordinate.

(7] Split it and insert new parabolla.

(&) Add new edge to the diagram (with no enpoints).

® Ifit was circle event:

® Remove parabolla P.

® Add a new vertex to the diagram where two edges ends and one starts.
® Recompute beachline events O(1) will be removed and O(1) will be created..

Time complexity: O(nlog n).

Convex hull Intersection of line segments Vornoi diagrams
[e]e} (e]e} oooe

	Convex hull
	Intersection of line segments
	Vornoi diagrams

