

Algorithms and datastructures II

Lecture 12: Geometric algorithms

Jan Hubička

Department of Applied Mathematics
Charles University
Prague

Dec 20 2020

Convex hull problem

Convex hull

Given vertex of n points in \mathbb{R}^2 we want to find shortest closed curve such that its interior contains all points.

Convex hull problem

Convex hull

Given vertex of n points in \mathbb{R}^2 we want to find shortest closed curve such that its interior contains all points.

- ① We are going to represent the convex hull by a sequence of points on its boundary sorted either clockwise or counter-clockwise.
- ② For simplicity we assume that points have different x coordinates.
- ③ We will use technique called **Plane sweep**.

Convex hull problem

ConvexHull (a_1, \dots, a_n)

- ① Let b_1, \dots, b_n be points a_1, \dots, a_n sorted by x coordinate
- ② Put b_1 into upper and lower envelopes: $U \leftarrow L \leftarrow (b_1)$
- ③ For $b = b_2, \dots, b_n$:
 - ④ Recompute upper envelope:
 - ⑤ While $|U| \geq 2$, $U = (\dots u_{k-1}, u_k)$ and angle $u_{k-1}u_kb$ is oriented to left:
 - ⑥ Remove u_k from U .
 - ⑦ Add b to the end of U
- ⑧ Handle lower envelope symmetrically
- ⑨ Convex hull consists of H and D .

Convex hull problem

ConvexHull (a_1, \dots, a_n)

- ① Let b_1, \dots, b_n be points a_1, \dots, a_n sorted by x coordinate
- ② Put b_1 into upper and lower envelopes: $U \leftarrow L \leftarrow (b_1)$
- ③ For $b = b_2, \dots, b_n$:
 - ④ Recompute upper envelope:
 - ⑤ While $|U| \geq 2$, $U = (\dots u_{k-1}, u_k)$ and angle $u_{k-1}u_kb$ is oriented to left:
 - ⑥ Remove u_k from U .
 - ⑦ Add b to the end of U
- ⑧ Handle lower envelope symmetrically
- ⑨ Convex hull consists of H and D .

Time complexity: $O(n \log n)$

Convex hull problem

ConvexHull (a_1, \dots, a_n)

- ① Let b_1, \dots, b_n be points a_1, \dots, a_n sorted by x coordinate
- ② Put b_1 into upper and lower envelopes: $U \leftarrow L \leftarrow (b_1)$
- ③ For $b = b_2, \dots, b_n$:
 - ④ Recompute upper envelope:
 - ⑤ While $|U| \geq 2$, $U = (\dots u_{k-1}, u_k)$ and angle $u_{k-1}u_kb$ is oriented to left:
 - ⑥ Remove u_k from U .
 - ⑦ Add b to the end of U
 - ⑧ Handle lower envelope symmetrically
 - ⑨ Convex hull consists of H and D .

Time complexity: $O(n \log n)$

Determining orientation: Let $\vec{u} = (x_1, y_1)$ and $\vec{v} = (x_2, y_2)$ be row vectors. Let

$$M = \begin{pmatrix} \vec{u} \\ \vec{v} \end{pmatrix} = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$$

If $\det M = x_1y_2 - x_2y_1$ is non-negative then the angle is oriented to left.

Convex hull problem

ConvexHull (a_1, \dots, a_n)

- ① Let b_1, \dots, b_n be points a_1, \dots, a_n sorted by x coordinate
- ② Put b_1 into upper and lower envelopes: $U \leftarrow L \leftarrow (b_1)$
- ③ For $b = b_2, \dots, b_n$:
 - ④ Recompute upper envelope:
 - ⑤ While $|U| \geq 2$, $U = (\dots u_{k-1}, u_k)$ and angle $u_{k-1}u_kb$ is oriented to left:
 - ⑥ Remove u_k from U .
 - ⑦ Add b to the end of U
- ⑧ Handle lower envelope symmetrically
- ⑨ Convex hull consists of H and D .

Time complexity: $O(n \log n)$

Observation

Problem of sorting real numbers can be reduced to convex hull problem.

intersections of line segments

Intersection of line segments

Given line segments ℓ_1, \dots, ℓ_n determine all their mutual intersections

For simplicity we will assume that lines are in general position:

- ① no 3 line segments intersect in one point,
- ② intersection of any two disjoint lines is at most one point, and
- ③ every line has different starting and ending y -coordinate.

intersections of line segments

Intersection of line segments

Given line segments ℓ_1, \dots, ℓ_n determine all their mutual intersections

For simplicity we will assume that lines are in general position:

- ① no 3 line segments intersect in one point,
- ② intersection of any two disjoint lines is at most one point, and
- ③ every line has different starting and ending y -coordinate.

intersections of line segments

Intersection of line segments

Given line segments ℓ_1, \dots, ℓ_n determine all their mutual intersections

For simplicity we will assume that lines are in general position:

- ① no 3 line segments intersect in one point,
- ② intersection of any two disjoint lines is at most one point, and
- ③ every line has different starting and ending y -coordinate.

Intersections (ℓ_1, \dots, ℓ_n)

- ① Initialize I (intersections with the moving line) to \emptyset .
- ② Add to calendar C all initial points of all lines.
- ③ Until C is not empty:
 - ④ Remove first event.
 - ⑤ If event was beginning of a line: add new line to I .
 - ⑥ If event was the end of line: remove it from I .
 - ⑦ If event was intersection: report it and exchange lines in I .
 - ⑧ Update all intersection events (at most 2 are added or removed)

intersections of line segments

Intersections (ℓ_1, \dots, ℓ_n)

- ① Initialize \mathcal{I} (intersections with the moving line) to \emptyset .
- ② Add to calendar \mathcal{C} all initial points of all lines.
- ③ Until \mathcal{C} is not empty:
 - ④ Remove first event.
 - ⑤ If event was beginning of a line: add new line to \mathcal{I} .
 - ⑥ If event was the end of line: remove it from \mathcal{I} .
 - ⑦ If event was intersection: report it and exchange lines in \mathcal{I} .
 - ⑧ Update all intersection events (at most 2 are added or removed)

Representation of calendar: we need operations Insert, ExtractMin, Remove.

intersections of line segments

Intersections (ℓ_1, \dots, ℓ_n)

- ① Initialize \mathcal{I} (intersections with the moving line) to \emptyset .
- ② Add to calendar \mathcal{C} all initial points of all lines.
- ③ Until \mathcal{C} is not empty:
 - ④ Remove first event.
 - ⑤ If event was beginning of a line: add new line to \mathcal{I} .
 - ⑥ If event was the end of line: remove it from \mathcal{I} .
 - ⑦ If event was intersection: report it and exchange lines in \mathcal{I} .
 - ⑧ Update all intersection events (at most 2 are added or removed)

Representation of calendar: we need operations Insert, ExtractMin, Remove.

There are at most $3n$ events in calendar. Binary tree will work in $O(\log n)$ for operation

Representation of the intersection: we need operations Insert, Remove, Next and Previous

intersections of line segments

Intersections (ℓ_1, \dots, ℓ_n)

- ① Initialize \mathcal{I} (intersections with the moving line) to \emptyset .
- ② Add to calendar \mathcal{C} all initial points of all lines.
- ③ Until \mathcal{C} is not empty:
- ④ Remove first event.
- ⑤ If event was beginning of a line: add new line to \mathcal{I} .
- ⑥ If event was the end of line: remove it from \mathcal{I} .
- ⑦ If event was intersection: report it and exchange lines in \mathcal{I} .
- ⑧ Update all intersection events (at most 2 are added or removed)

Representation of calendar: we need operations Insert, ExtractMin, Remove.

There are at most $3n$ events in calendar. Binary tree will work in $O(\log n)$ for operation

Representation of the intersection: we need operations Insert, Remove, Next and Previous

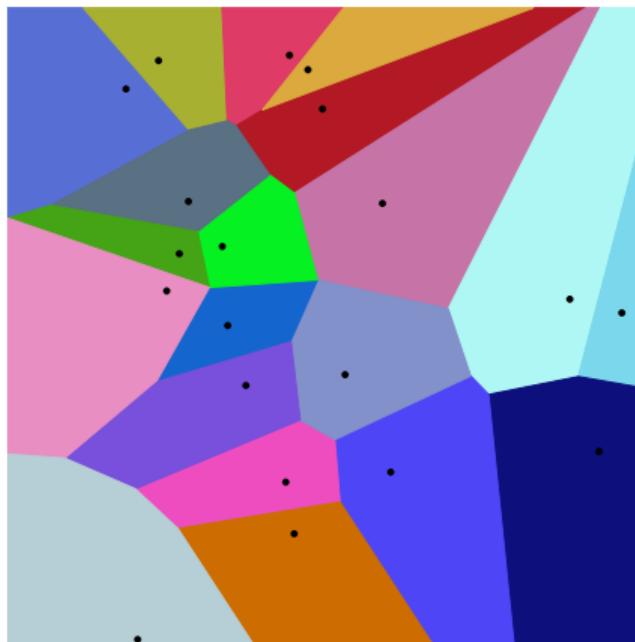
We can again use binary tree. x coordinates are not good as keys since they keep changing, however we can keep references to lines since relative order does not change from step to step.

Overall there are $O(n + i)$ events where i is number of intersections and runtime is $O((n + i) \log n)$

Voronoi diagram

Definition (Voronoi diagram)

Voronoi diagram for a given set of locations $x_1, \dots, x_n \in \mathbb{R}^2$ is a system of areas $B_1, \dots, B_n \subseteq \mathbb{R}^2$ such that B_i consists of all points $p \in \mathbb{R}^2$ with the property that the distance from p to x_i is smaller or equal to the distance from p to any other location.



Voronoi diagram

Definition (Voronoi diagram)

Voronoi diagram for a given set of locations $x_1, \dots, x_n \in \mathbb{R}^2$ is a system of areas $B_1, \dots, B_n \subseteq \mathbb{R}^2$ such that B_i consists of all points $p \in \mathbb{R}^2$ with the property that the distance from p to x_i is smaller or equal to the distance from p to any other location.

Voronoi diagram

Definition (Voronoi diagram)

Voronoi diagram for a given set of locations $x_1, \dots, x_n \in \mathbb{R}^2$ is a system of areas $B_1, \dots, B_n \subseteq \mathbb{R}^2$ such that B_i consists of all points $p \in \mathbb{R}^2$ with the property that the distance from p to x_i is smaller or equal to the distance from p to any other location.

Lemma

Voronoi diagram has linear combinatorial complexity. For n locations it consists of $O(n)$ vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let $v \geq 3$ be number of vertices, e number of edges and f number of faces. Then:

- ① $e \leq 3v - 6$
- ② $v + f = e + 2$ (Euler formula)

Voronoi diagram

Definition (Voronoi diagram)

Voronoi diagram for a given set of locations $x_1, \dots, x_n \in \mathbb{R}^2$ is a system of areas $B_1, \dots, B_n \subseteq \mathbb{R}^2$ such that B_i consists of all points $p \in \mathbb{R}^2$ with the property that the distance from p to x_i is smaller or equal to the distance from p to any other location.

Lemma

Voronoi diagram has linear combinatorial complexity. For n locations it consists of $O(n)$ vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let $v \geq 3$ be number of vertices, e number of edges and f number of faces. Then:

- ① $e \leq 3v - 6$
- ② $v + f = e + 2$ (Euler formula)

Proof (of lemma).

Voronoi diagram for n locations has n areas so it leads to $f = n + 1$ faces.

Voronoi diagram

Definition (Voronoi diagram)

Voronoi diagram for a given set of locations $x_1, \dots, x_n \in \mathbb{R}^2$ is a system of areas $B_1, \dots, B_n \subseteq \mathbb{R}^2$ such that B_i consists of all points $p \in \mathbb{R}^2$ with the property that the distance from p to x_i is smaller or equal to the distance from p to any other location.

Lemma

Voronoi diagram has linear combinatorial complexity. For n locations it consists of $O(n)$ vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let $v \geq 3$ be number of vertices, e number of edges and f number of faces. Then:

- ① $e \leq 3v - 6$
- ② $v + f = e + 2$ (Euler formula)

Proof (of lemma).

Voronoi diagram for n locations has n areas so it leads to $f = n + 1$ faces.

Its dual has $v' = f$ vertices and has no edge multiplicities. Thus $e' \leq 3v' - 6$ and $e \leq 3f - 6 = 3n - 3$.

Voronoi diagram

Definition (Voronoi diagram)

Voronoi diagram for a given set of locations $x_1, \dots, x_n \in \mathbb{R}^2$ is a system of areas $B_1, \dots, B_n \subseteq \mathbb{R}^2$ such that B_i consists of all points $p \in \mathbb{R}^2$ with the property that the distance from p to x_i is smaller or equal to the distance from p to any other location.

Lemma

Voronoi diagram has linear combinatorial complexity. For n locations it consists of $O(n)$ vertices and faces.

Fact

Let G be a connected planar graph with no edge multiplicities. Let $v \geq 3$ be number of vertices, e number of edges and f number of faces. Then:

- ① $e \leq 3v - 6$
- ② $v + f = e + 2$ (Euler formula)

Proof (of lemma).

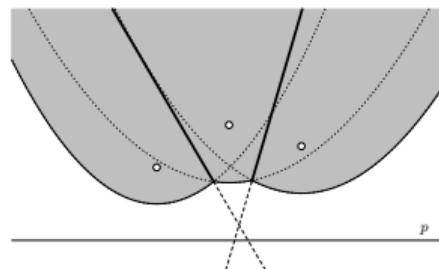
Voronoi diagram for n locations has n areas so it leads to $f = n + 1$ faces.

Its dual has $v' = f$ vertices and has no edge multiplicities. Thus $e' \leq 3v' - 6$ and $e \leq 3f - 6 = 3n - 3$.

Number of vertices is $v = e + 2 - f \leq (3n - 3) + 2 - (n + 1) = 2n - 2$.

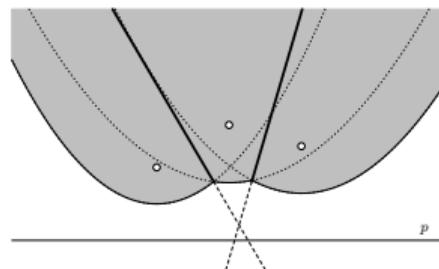
□

Fortune's algorithm



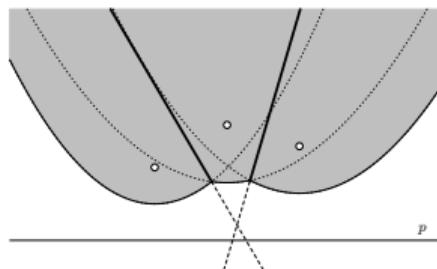
Beachline

Fortune's algorithm

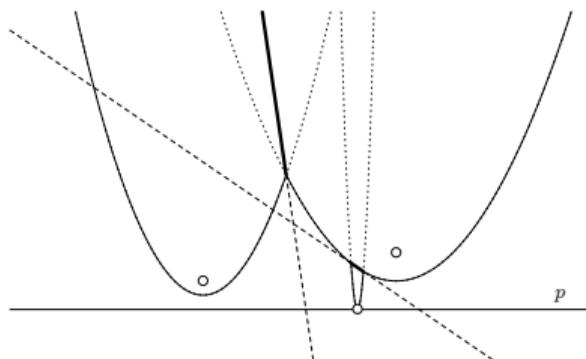


Beachline

Fortune's algorithm

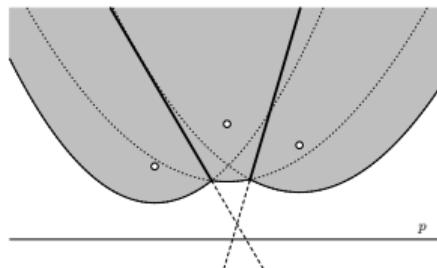


Beachline

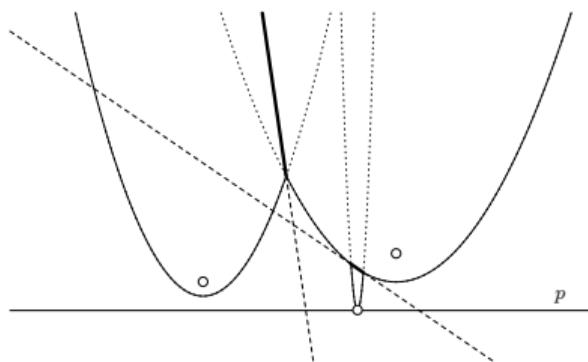


Location event

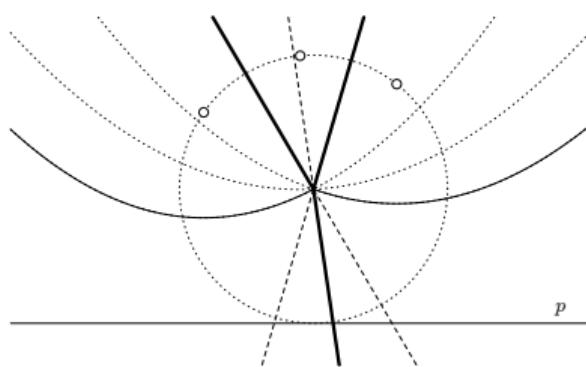
Fortune's algorithm



Beachline

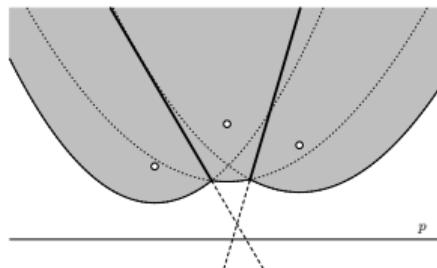


Location event

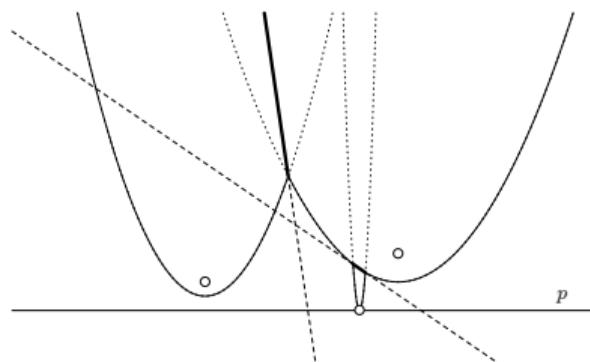


Circle event

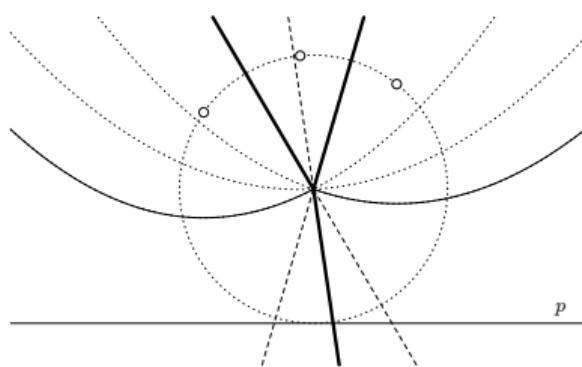
Fortune's algorithm



Beachline



Location event



Circle event

Fortune's algorithm

Fortune (x_1, \dots, x_n)

- ① Create empty calendar C and add all location events.
- ② Create empty beachline B .
- ③ While C is nonempty:
 - ④ Remove first event.
 - ⑤ If it was location event:
 - ⑥ Find in S parabolla corresponding to the x -coordinate.
 - ⑦ Split it and insert new parabolla.
 - ⑧ Add new edge to the diagram (with no enpoints).
 - ⑨ If it was circle event:
 - ⑩ Remove parabolla P .
 - ⑪ Add a new vertex to the diagram where two edges ends and one starts.
 - ⑫ Recompute beachline events $O(1)$ will be removed and $O(1)$ will be created..

Time complexity: $O(n \log n)$.

