Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Dec 14 2020

A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A — B) if there exists
function f : {0, 1}* — {0, 1}* such that for every x € {0, 1}* it holds A(x) = B(f(x)) and f can be computed in
polynomial time relative to |x|. Function f is also called (polynomial time) reduction.

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) such that
K(x,y)=1.

A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

Optimization problem has, for a given input x, set of acceptable solutions where every acceptable solution y has
cost c¢(y). We look for optimal solution with cost c*.

A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

Optimization problem has, for a given input x, set of acceptable solutions where every acceptable solution y has
cost c¢(y). We look for optimal solution with cost c*.

Given a > 1, a-approximation is an acceptable solution to the optimization problem with cost ¢’ satisfying

¢ < ac*.

Relative error (¢’ — ¢*)/c* is at most o« — 1.
Similarly we can study optimization problem maximizing the cost.

Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Anwer of VertexCoverApprox is a vertex cover

Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Anwer of VertexCoverApprox is a vertex cover

Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Anwer of VertexCoverApprox is a vertex cover

Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Every vertex cover contains at least one vertex from each edge considered by VertexCoverApprox. O

In 2005 Dinur and Safra proved that discovering 1.3606-approximation algorithm would imply P = NP.

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o @0 [e]e]e}

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

Ux,z) < Lx,y)+Ly,x)forall x,y,z

TSPapprox (edge-labelled graph G)

@ Find minimum spanning tree T in G.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o @0 [e]e]e}

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

Ux,z) < Lx,y)+Ly,x)forall x,y,z

TSPapprox (edge-labelled graph G)

@ Find minimum spanning tree T in G.
® Choose root r and execute DFS walk on T to produce a walk visiting all vertices

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o @0 [e]e]e}

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

Ux,z) < Lx,y)+Ly,x)forall x,y,z

TSPapprox (edge-labelled graph G)

@ Find minimum spanning tree T in G.
® Choose root r and execute DFS walk on T to produce a walk visiting all vertices
@ Use shortcuts instead of visiting every edge twice.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o @0 [e]e]e}

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

Ux,z) < Lx,y)+Ly,x)forall x,y,z

TSPapprox (edge-labelled graph G)

@ Find minimum spanning tree T in G.
® Choose root r and execute DFS walk on T to produce a walk visiting all vertices
@ Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by ¢(T) the length of T, by A the length of TSPapprox’ solution and by O the length of the optimal answer.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o @0 [e]e]e}

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

Ux,z) < Lx,y)+Ly,x)forall x,y,z

TSPapprox (edge-labelled graph G)

@ Find minimum spanning tree T in G.
® Choose root r and execute DFS walk on T to produce a walk visiting all vertices
@ Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by ¢(T) the length of T, by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A< 20(T)

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o @0 [e]e]e}

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

Ux,z) < Lx,y)+Ly,x)forall x,y,z

TSPapprox (edge-labelled graph G)

@ Find minimum spanning tree T in G.
® Choose root r and execute DFS walk on T to produce a walk visiting all vertices
@ Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by ¢(T) the length of T, by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A< 24(T) < 20.

If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t > 1,
there then P = NP.

If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t > 1,
there then P = NP.

We show that we can use this algorithm to decide on existence of the hamiltonian cycle.
@ Given graph G = (V, E) complete it to G’. Edges of G has length 1 and non-edges some length c.

If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t > 1,
there then P = NP.

We show that we can use this algorithm to decide on existence of the hamiltonian cycle.
@ Given graph G = (V, E) complete it to G’. Edges of G has length 1 and non-edges some length c.
@ If G has hamiltonian cycle then TSP solution for G’ has length n = |E|.

If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t > 1,
there then P = NP.

We show that we can use this algorithm to decide on existence of the hamiltonian cycle.
@ Given graph G = (V, E) complete it to G’. Edges of G has length 1 and non-edges some length c.
@ If G has hamiltonian cycle then TSP solution for G’ has length n = |E|.
@ If G has no hamiltonian cycle then the TSP solution for G’ has length at least n — 1 + c.

Recall: NP completeness Approximation algorithms Vertex cover

Travelling salesman problem Knapsack
(oo} [e]

[e] oce [e]e]e}

Travelling salesman

Theorem

If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t > 1,
there then P = NP.

Proof.
We show that we can use this algorithm to decide on existence of the hamiltonian cycle.
@ Given graph G = (V, E) complete it to G'. Edges of G has length 1 and non-edges some length c.
@ If G has hamiltonian cycle then TSP solution for G’ has length n = |E]|.
® If G has no hamiltonian cycle then the TSP solution for G’ has length at least n — 1 + c.
® Wewanttn < n—1+ c,sowecanchosec > (t—1)n+ 1.

Knapsack

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem
@00

(oo} [e] [e] (e]e]

Recall: Knapsack problem

Knapsack problem

Given set of n objects with weights wy, ..., wp, costs ¢y, . .., ¢, and maximum weight W your knapsack can
carry. Find subset P C {1,2,...,n} such that w(P) = >, p w; is at most W and the cost ¢(P) = >_;p Cj is
maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C = ¢;.
@ Denote by A, (c) the minimum of weights of subsets P C {1,2,. .., k} satisfying ¢(P) = c.

® Proceed by induction:
© Ao(0) =0, Ag(1) = Ag(2) = - - = Ao(C) = cc.
@® Given A,_1 compute
A(c) = min(Ax—1(c), Ax—1(c — ck) + k)

® Once A is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal ¢ such that Ax(c) < W

© To determine the set P one can remember how the values A, (c) was determined.
(This is pseudo-polynomial algorithm) running in time O(nC).

@ Remove from input all items heavier than W

® Compute Cmax = max; ¢; and choose M = |n/e].

@ Fori=1,...,nput¢ <« ¢+ M/Cmax]-

© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.

@ Return solution with same items as chosen by the approximate solution.

@ Remove from input all items heavier than W
® Compute Cmax = max; ¢; and choose M = |n/e].
@ Fori=1,...,nput¢ <« ¢+ M/Cmax]-

© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
@ Return solution with same items as chosen by the approximate solution.

€ < nM = O(n?/e) and thus runtime is o(nC) = O(n3/e).

Solution by KnapsackApprox has relative error at most e.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o (e]e] oeo

KnapsackApprox (wy, ..., Wn, Cy, ..., Cn, €)

@ Remove from input all items heavier than W

® Compute Cmax = max; ¢; and choose M = |n/e].

@ Fori=1,...,nputc <+ ¢ - M/Cmax]-

© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
® Return solution with same items as chosen by the approximate solution.

C < nM = O(n?/¢) and thus runtime is o(nC) = O(n®/e).

Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, ¢(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢c(Q).

&P =

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o (e]e] oeo

KnapsackApprox (wy, ..., Wn, Cy, ..., Cn, €)

@ Remove from input all items heavier than W

® Compute Cmax = max; ¢; and choose M = |n/e].

@ Fori=1,...,nputc <+ ¢ - M/Cmax]-

© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
® Return solution with same items as chosen by the approximate solution.

C < nM = O(n?/¢) and thus runtime is o(nC) = O(n®/e).

Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, ¢(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢c(Q).

&P) = S&-=

ieP

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o (e]e] oeo

KnapsackApprox (wy, ..., Wn, Cy, ..., Cn, €)
@ Remove from input all items heavier than W
® Compute Cmax = max; ¢; and choose M = |n/e].
@ Fori=1,...,nputc <+ ¢ - M/Cmax]-
© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
® Return solution with same items as chosen by the approximate solution.

C < nM = O(n?/¢) and thus runtime is o(nC) = O(n®/e).

Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, ¢(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢c(Q).

&Py = Z?«‘/:Z{Ci' MJZ

ieP ieP Cmax

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o (e]e] oeo

KnapsackApprox (wy, ..., Wn, Cy, ..., Cn, €)
@ Remove from input all items heavier than W
® Compute Cmax = max; ¢; and choose M = |n/e].
@ Fori=1,...,nputc <+ ¢ - M/Cmax]-
© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
® Return solution with same items as chosen by the approximate solution.

C < nM = O(n?/¢) and thus runtime is o(nC) = O(n®/e).

Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, ¢(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢c(Q).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o (e]e] oeo

KnapsackApprox (wy, ..., Wn, Cy, ..., Cn, €)
@ Remove from input all items heavier than W
® Compute Cmax = max; ¢; and choose M = |n/e].
@ Fori=1,...,nputc <+ ¢ - M/Cmax]-
© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
® Return solution with same items as chosen by the approximate solution.

C < nM = O(n?/¢) and thus runtime is o(nC) = O(n®/e).

Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, ¢(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢c(Q).

o) = Ta=-Xla |2 (age-1)2 (Ta o | -n-

icP Cmax

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack
(e} o o (e]e] oeo

KnapsackApprox (wy, ..., Wn, Cy, ..., Cn, €)
@ Remove from input all items heavier than W
® Compute Cmax = max; ¢; and choose M = |n/e].
@ Fori=1,...,nputc <+ ¢ - M/Cmax]-
© Apply dynamic programming to solve knapsack with costs ¢, . . . Cn.
® Return solution with same items as chosen by the approximate solution.

C < nM = O(n?/¢) and thus runtime is o(nC) = O(n®/e).

Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, ¢(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢c(Q).

&P) = Z@FZ{Q" MJZZ(C/- M —1>2 Zc/-ﬂ —n=c¢(P)-

icp Cmax Cmax

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

—n.

ic [E3s max

ieP ieP ieP

c(Q)

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

c(Q) =

e r (e

Cmax iEP

Sa=3 o

icp iep Cmax

Zc,-z

i€eQ

—n.

M > —n=c(P)-

= 1) > <ZC,‘- B
g T

Cmax

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

—n.

g ()2 (S) e gt

Cmax icP icP

qP) = > g=> [c,--

ieP ieP

@ = Yaxy o=

i€eQ i€eQ

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP ieP

o0 =SBl e (o) (Go) nmem

0 = Foxpa - (5] % -

i€Q i€eQ i€Q

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP

o0 =SBl e (o) (Go) nmem

(@ = Yoz Zé,--C”—,‘;*=(Zé,-)~";;X=é(O)-°"A‘;*z

i€Q i€eQ i€Q

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP

o0 =SBl e (o) (Go) nmem

Q) = oz oS- (Z&’) S~ y(a)- e 2 o(p) - T

i€Q i€eQ i€Q

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP

o0 =SBl e (o) (Go) nmem

A Cmax _ A . Cmax -) Cmax ~ . Cmax
c(Q) = Zciz ZC"'T = <Zc,> Y =@ = = eP) S
i€eQ i€eQ i€eQ
Cmax
> . — . >

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP

ap) = Z&’IZ[C"CZXJZZ("‘"CZX”)Z(ZPC"'CM)‘”:C(P)'CM —n
20 G —

(@ = Taxda =) G =u@ T zer) G
i€eQ i€eQ i€eQ

o@ > (o(P) o —n)- T > o(p) - Pl >

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP

ap) = Z&’IZ[C"CZXJZZ("‘"CZX”)Z(ZPC"'CM)‘”:C(P)'CM —n
20 G —

o(Q) Sazya-E=o (g I o) I pp). 22
ieQ ieQ ieQ

Q) > (c(P). M n) : C“A";X > ¢(P) — % > ¢(P) — €Cmax >

Solution by KnapsackApprox has relative error at most e.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

ieP ieP ieP

ie

c(Q)

~ Cmax ~ Cmax ~ Cmax ~ Cmax

Zc,-z ZC/"7= <ZC/‘)'7=C(Q)' >e(P). ——.

ieQ ieQ ieQ

Q) > (c(P). M n) LG s o(Py — 1O S 0(P) — ecmax > C(P) — ec(P) =
max M n/E

Recall: NP completeness Approximation algorithms Vertex cover

Travelling salesman problem Knapsack
(e} o

[e) (e]e} ooe
Theorem

Solution by KnapsackApprox has relative error at most e.

Proof.

Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

&P = igzpéf:;[a-%xJZZ(cf' - ‘1)2(20"'0:\11)_"0(’3)'121_"'

Cmax icP

A Cmax PN cmax PN Cmax ~ Cmax
«Q = d.a=> & i —(Ci)‘ =¢(Q)- > &(P)- :

c(Q)

\Y
//~
2
N

Recall: NP completeness Approximation algorithms Vertex cover

Travelling salesman problem Knapsack
(e} o o

[e]e] ooe
Theorem
Solution by KnapsackApprox has relative error at most e.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ¢(Q). We need to determine ¢(Q).

Cmax

o a M M M M
o) = Y= |a e |2 (a0 gm-1) 2 (Teaom | -n=cP) 2=
ieP icP Cmax icp Cmax Coms

A Cmax ~ cmax ~ Cmax ~ CI’TIBX
(@ = Yaxy g —(q)- me_ 5(@) - S > p(p) - e,

c(Q)

V
—
2
&

Definition

Algorithm which for every e > 0 finds in a polynomial time (1 — €)-approximation is called polynomial-time
approximation scheme (PTAS).

If the time complexity is also polynomial in 1/¢ it is called full polynomial-time approximation scheme (FPTAS).

	Recall: NP completeness
	Approximation algorithms
	Vertex cover
	Travelling salesman problem
	Knapsack

