
Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Algorithms and datastructures II

Lecture 11: Approximation algorithms

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Dec 14 2020

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Decision problems

Definition
A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Definition (Reduction)

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A −→ B) if there exists
function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗ it holds A(x) = B(f (x)) and f can be computed in
polynomial time relative to |x |. Function f is also called (polynomial time) reduction.

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) such that
K (x , y) = 1.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

NP-completeness

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Decision versus optimization problems

Definition (Decition problem)

A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Definition (Optimization problem)

Optimization problem has, for a given input x , set of acceptable solutions where every acceptable solution y has
cost c(y). We look for optimal solution with cost c∗.

Definition (α-approximation)

Given α > 1, α-approximation is an acceptable solution to the optimization problem with cost c′ satisfying

c′ ≤ αc∗.

Relative error (c′ − c∗)/c∗ is at most α− 1.
Similarly we can study optimization problem maximizing the cost.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Decision versus optimization problems

Definition (Decition problem)

A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Definition (Optimization problem)

Optimization problem has, for a given input x , set of acceptable solutions where every acceptable solution y has
cost c(y). We look for optimal solution with cost c∗.

Definition (α-approximation)

Given α > 1, α-approximation is an acceptable solution to the optimization problem with cost c′ satisfying

c′ ≤ αc∗.

Relative error (c′ − c∗)/c∗ is at most α− 1.
Similarly we can study optimization problem maximizing the cost.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Decision versus optimization problems

Definition (Decition problem)

A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Definition (Optimization problem)

Optimization problem has, for a given input x , set of acceptable solutions where every acceptable solution y has
cost c(y). We look for optimal solution with cost c∗.

Definition (α-approximation)

Given α > 1, α-approximation is an acceptable solution to the optimization problem with cost c′ satisfying

c′ ≤ αc∗.

Relative error (c′ − c∗)/c∗ is at most α− 1.
Similarly we can study optimization problem maximizing the cost.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Vertex Cover Problem
Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

VertexCoverApprox (G)

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Observation
Anwer of VertexCoverApprox is a vertex cover

Observation
Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Proof.
Every vertex cover contains at least one vertex from each edge considered by VertexCoverApprox.

In 2005 Dinur and Safra proved that discovering 1.3606-approximation algorithm would imply P = NP.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Vertex Cover Problem
Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

VertexCoverApprox (G)

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Observation
Anwer of VertexCoverApprox is a vertex cover

Observation
Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Proof.
Every vertex cover contains at least one vertex from each edge considered by VertexCoverApprox.

In 2005 Dinur and Safra proved that discovering 1.3606-approximation algorithm would imply P = NP.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Vertex Cover Problem
Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

VertexCoverApprox (G)

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Observation
Anwer of VertexCoverApprox is a vertex cover

Observation
Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Proof.
Every vertex cover contains at least one vertex from each edge considered by VertexCoverApprox.

In 2005 Dinur and Safra proved that discovering 1.3606-approximation algorithm would imply P = NP.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Vertex Cover Problem
Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

VertexCoverApprox (G)

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Observation
Anwer of VertexCoverApprox is a vertex cover

Observation
Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Proof.
Every vertex cover contains at least one vertex from each edge considered by VertexCoverApprox.

In 2005 Dinur and Safra proved that discovering 1.3606-approximation algorithm would imply P = NP.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Vertex Cover Problem
Vertex cover of a graph is a set of vertices that includes at least one vertex of every edge of the graph.

VertexCoverApprox (G)

Repeatedly take both endpoints of an edge and remove all edges containing them from graph.

Observation
Anwer of VertexCoverApprox is a vertex cover

Observation
Anwer of VertexCoverApprox is at most twice bigger than the optimal solution.

Proof.
Every vertex cover contains at least one vertex from each edge considered by VertexCoverApprox.

In 2005 Dinur and Safra proved that discovering 1.3606-approximation algorithm would imply P = NP.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it.

We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T) ≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T) ≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T) ≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T) ≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T) ≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T)

≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

This problem is NP-hard because the existence of hamiltonian cycle reduces to it. We show approximation
algorithm if the distances satisfies the triangle inequality:

`(x , z) < `(x , y) + `(y , x) for all x , y , z

TSPapprox (edge-labelled graph G)

1 Find minimum spanning tree T in G.

2 Choose root r and execute DFS walk on T to produce a walk visiting all vertices

3 Use shortcuts instead of visiting every edge twice.

Theorem
Length of cycle given by TSPapprox not worse than twice the length of an optimal solution.

Proof.
Denote by `(T) the length of T , by A the length of TSPapprox’ solution and by O the length of the optimal answer.

A < 2`(T) ≤ 2O.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Theorem
If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t ≥ 1,
there then P = NP.

Proof.
We show that we can use this algorithm to decide on existence of the hamiltonian cycle.

1 Given graph G = (V ,E) complete it to G′. Edges of G has length 1 and non-edges some length c.

2 If G has hamiltonian cycle then TSP solution for G′ has length n = |E |.
3 If G has no hamiltonian cycle then the TSP solution for G’ has length at least n − 1 + c.

4 We want tn < n − 1 + c, so we can chose c > (t − 1)n + 1.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Theorem
If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t ≥ 1,
there then P = NP.

Proof.
We show that we can use this algorithm to decide on existence of the hamiltonian cycle.

1 Given graph G = (V ,E) complete it to G′. Edges of G has length 1 and non-edges some length c.

2 If G has hamiltonian cycle then TSP solution for G′ has length n = |E |.
3 If G has no hamiltonian cycle then the TSP solution for G’ has length at least n − 1 + c.

4 We want tn < n − 1 + c, so we can chose c > (t − 1)n + 1.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Theorem
If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t ≥ 1,
there then P = NP.

Proof.
We show that we can use this algorithm to decide on existence of the hamiltonian cycle.

1 Given graph G = (V ,E) complete it to G′. Edges of G has length 1 and non-edges some length c.

2 If G has hamiltonian cycle then TSP solution for G′ has length n = |E |.

3 If G has no hamiltonian cycle then the TSP solution for G’ has length at least n − 1 + c.

4 We want tn < n − 1 + c, so we can chose c > (t − 1)n + 1.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Theorem
If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t ≥ 1,
there then P = NP.

Proof.
We show that we can use this algorithm to decide on existence of the hamiltonian cycle.

1 Given graph G = (V ,E) complete it to G′. Edges of G has length 1 and non-edges some length c.

2 If G has hamiltonian cycle then TSP solution for G′ has length n = |E |.
3 If G has no hamiltonian cycle then the TSP solution for G’ has length at least n − 1 + c.

4 We want tn < n − 1 + c, so we can chose c > (t − 1)n + 1.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Travelling salesman

Theorem
If exists an t-approximation algorithm for TSP (without the assumption of triangle inequality), for some t ≥ 1,
there then P = NP.

Proof.
We show that we can use this algorithm to decide on existence of the hamiltonian cycle.

1 Given graph G = (V ,E) complete it to G′. Edges of G has length 1 and non-edges some length c.

2 If G has hamiltonian cycle then TSP solution for G′ has length n = |E |.
3 If G has no hamiltonian cycle then the TSP solution for G’ has length at least n − 1 + c.

4 We want tn < n − 1 + c, so we can chose c > (t − 1)n + 1.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Recall: Knapsack problem

Knapsack problem

Given set of n objects with weights w1, . . . ,wn, costs c1, . . . , cn and maximum weight W your knapsack can
carry. Find subset P ⊆ {1, 2, . . . , n} such that w(P) =

∑
i∈P wi is at most W and the cost c(P) =

∑
i∈P ci is

maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C =
∑

ci .

1 Denote by Ak (c) the minimum of weights of subsets P ⊆ {1, 2, . . . , k} satisfying c(P) = c.
2 Proceed by induction:

1 A0(0) = 0, A0(1) = A0(2) = · · · = A0(C) =∞.
2 Given Ak−1 compute

Ak (c) = min(Ak−1(c), Ak−1(c − ck) + wk)

3 Once An is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal c such that An(c) ≤ W

4 To determine the set P one can remember how the values Ak (c) was determined.

(This is pseudo-polynomial algorithm) running in time O(nC).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =

∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =

∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥

∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n =

c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

KnapsackApprox (w1, . . . ,wn, c1, . . . , cn, ε)

1 Remove from input all items heavier than W

2 Compute cmax = maxi ci and choose M = bn/εc.
3 For i = 1, . . . , n put ĉ ← bci ·M/cmaxc.
4 Apply dynamic programming to solve knapsack with costs ĉ1, . . . ĉn.

5 Return solution with same items as chosen by the approximate solution.

Ĉ ≤ nM = O(n2/ε) and thus runtime is o(nĈ) = O(n3/ε).

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =

∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥

∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
=

ĉ(Q) ·
cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥

ĉ(P) ·
cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥

c(P)−
n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥

c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥

c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) =

(1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

Recall: NP completeness Approximation algorithms Vertex cover Travelling salesman problem Knapsack

Theorem
Solution by KnapsackApprox has relative error at most ε.

Proof.
Let P be optimal solution, c(P) its cost, Q KnapsackApprox’ solution and cost ĉ(Q). We need to determine c(Q).

ĉ(P) =
∑
i∈P

ĉi =
∑
i∈P

⌊
ci ·

M
cmax

⌋
≥
∑
i∈P

(
ci ·

M
cmax

− 1
)
≥

∑
i∈P

ci ·
M

cmax

− n = c(P) ·
M

cmax
− n.

c(Q) =
∑
i∈Q

ci ≥
∑
i∈Q

ĉi ·
cmax

M
=

∑
i∈Q

ĉi

 · cmax

M
= ĉ(Q) ·

cmax

M
≥ ĉ(P) ·

cmax

M
.

c(Q) ≥
(

c(P) ·
M

cmax
− n
)
·

cmax

M
≥ c(P)−

n · cmax

n/ε
≥ c(P)− εcmax ≥ c(P)− εc(P) = (1− ε) · c(P).

Definition
Algorithm which for every ε > 0 finds in a polynomial time (1− ε)-approximation is called polynomial-time
approximation scheme (PTAS).
If the time complexity is also polynomial in 1/ε it is called full polynomial-time approximation scheme (FPTAS).

	Recall: NP completeness
	Approximation algorithms
	Vertex cover
	Travelling salesman problem
	Knapsack

