
Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Algorithms and datastructures II

Lecture 10: NP-completeness

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Dec 7 2020

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Decision problems

Definition
A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Definition (Reduction)

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A −→ B) if there exists
function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗ it holds A(x) = B(f (x)) and f can be computed in
polynomial time relative to |x |. Function f is also called (polynomial time) reduction.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Decision problems

Definition
A (decision) problem if a function from {0, 1}∗ (the set of all possible inputs) to {0, 1}.

Definition (Reduction)

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A −→ B) if there exists
function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗ it holds A(x) = B(f (x)) and f can be computed in
polynomial time relative to |x |. Function f is also called (polynomial time) reduction.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L ∈ P if and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f (|x |) and A(x) = L(x).

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) such that
K (x , y) = 1.

You can think of y as a certificate that L(x) = 1.

Observation
SAT ∈ NP.

Observation
P ⊆ NP.

P = NP is open since 1970’s.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L ∈ P if and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f (|x |) and A(x) = L(x).

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) such that
K (x , y) = 1.

You can think of y as a certificate that L(x) = 1.

Observation
SAT ∈ NP.

Observation
P ⊆ NP.

P = NP is open since 1970’s.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L ∈ P if and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f (|x |) and A(x) = L(x).

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) such that
K (x , y) = 1.

You can think of y as a certificate that L(x) = 1.

Observation
SAT ∈ NP.

Observation
P ⊆ NP.

P = NP is open since 1970’s.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L ∈ P if and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f (|x |) and A(x) = L(x).

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) such that
K (x , y) = 1.

You can think of y as a certificate that L(x) = 1.

Observation
SAT ∈ NP.

Observation
P ⊆ NP.

P = NP is open since 1970’s.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Definition (P)

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L ∈ P if and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f (|x |) and A(x) = L(x).

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) such that
K (x , y) = 1.

You can think of y as a certificate that L(x) = 1.

Observation
SAT ∈ NP.

Observation
P ⊆ NP.

P = NP is open since 1970’s.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .

2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .

3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

NP-completeness

Definition (NP-hardness)

Problem L is NP-hard if every problem from NP can be reduced to L.

Lemma
If some NP-hard problem L is in P then P = NP.

Definition (NP-completeness)

NP-hard problem L is called NP-complete iff it is in P.

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Lemma
Given two problems L,M ∈ NP. If L is NP-complete and L −→ M, then M is NP-complete.

Examples of NP-complete problems:
1 Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, . . .
2 Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, . . .
3 Numerical problems: Finding subset of a given sum, Knapsack, Ax = 1, . . .

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Stephen Cook, Leonid Levin

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Direction of attack:
1 Show that every problem in NP can be solved by CircuitSAT
2 Show reduction of CircuitSAT to SAT

Lemma
Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x ∈ {0, 1}∗ it holds that Bn(x) = L(x).)

Proof (sketch).

1 Consider problem L ∈ P and a polynomial time algorithm solving L.

2 For input of size n it will run in time T , use O(T) cells of memory.

3 We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

4 Time of the computation can be done by using T copies of the circuit connected sequentially.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Direction of attack:
1 Show that every problem in NP can be solved by CircuitSAT
2 Show reduction of CircuitSAT to SAT

Lemma
Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x ∈ {0, 1}∗ it holds that Bn(x) = L(x).)

Proof (sketch).

1 Consider problem L ∈ P and a polynomial time algorithm solving L.

2 For input of size n it will run in time T , use O(T) cells of memory.

3 We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

4 Time of the computation can be done by using T copies of the circuit connected sequentially.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Direction of attack:
1 Show that every problem in NP can be solved by CircuitSAT
2 Show reduction of CircuitSAT to SAT

Lemma
Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x ∈ {0, 1}∗ it holds that Bn(x) = L(x).)

Proof (sketch).

1 Consider problem L ∈ P and a polynomial time algorithm solving L.

2 For input of size n it will run in time T , use O(T) cells of memory.

3 We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

4 Time of the computation can be done by using T copies of the circuit connected sequentially.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Direction of attack:
1 Show that every problem in NP can be solved by CircuitSAT
2 Show reduction of CircuitSAT to SAT

Lemma
Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x ∈ {0, 1}∗ it holds that Bn(x) = L(x).)

Proof (sketch).

1 Consider problem L ∈ P and a polynomial time algorithm solving L.

2 For input of size n it will run in time T , use O(T) cells of memory.

3 We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

4 Time of the computation can be done by using T copies of the circuit connected sequentially.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Direction of attack:
1 Show that every problem in NP can be solved by CircuitSAT
2 Show reduction of CircuitSAT to SAT

Lemma
Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x ∈ {0, 1}∗ it holds that Bn(x) = L(x).)

Proof (sketch).

1 Consider problem L ∈ P and a polynomial time algorithm solving L.

2 For input of size n it will run in time T , use O(T) cells of memory.

3 We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

4 Time of the computation can be done by using T copies of the circuit connected sequentially.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)

SAT is NP-complete.

Direction of attack:
1 Show that every problem in NP can be solved by CircuitSAT
2 Show reduction of CircuitSAT to SAT

Lemma
Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x ∈ {0, 1}∗ it holds that Bn(x) = L(x).)

Proof (sketch).

1 Consider problem L ∈ P and a polynomial time algorithm solving L.

2 For input of size n it will run in time T , use O(T) cells of memory.

3 We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

4 Time of the computation can be done by using T copies of the circuit connected sequentially.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.

3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

SAT

1 Input: formula ϕ in CNF

2 Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ϕ(. . .) = 1

CircuitSAT

1 Input: Boolean circuit B with one output

2 Output: 1 if and only if there exists an
{0, 1}-assignment to inputs such that B(. . .) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K ∈ P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y ∈ {0, 1}∗ of length at most g(|x |) s.t. K (x , y) = 1.

Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

1 CircuitSAT ∈ P.

2 Now fix problem L ∈ NP, K ∈ P and polynomial g. WLOG assume that |y | depends only on n = |x |.
3 Apply lemma to obtain for given n circuit Bn solving K of size p(g(n)).

4 Add constants to fix input x , so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Lemma
CircuitSAT can be reduced to 3-SAT

Proof.

1 Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.

2 For every gate we introduce an variable representing its output.

3 NOT gate corresponds to CNF formula: (x ∨ y) ∧ (¬x ∨ ¬y).

4 AND gate corresponds to CNF formula: (z ∨ ¬x ∨ ¬y) ∧ (¬z ∨ x) ∧ (¬z ∨ y).

5 Combining formulas for all gates together leads to an input to 3-SAT.

Proof of Cook-Levin thoerem.
We have shown that CircruitSAT is NP-complete and then we gave reduction to 3-SAT. We also know that 3-SAT
is in NP and equivalent to SAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Lemma
CircuitSAT can be reduced to 3-SAT

Proof.

1 Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.

2 For every gate we introduce an variable representing its output.

3 NOT gate corresponds to CNF formula: (x ∨ y) ∧ (¬x ∨ ¬y).

4 AND gate corresponds to CNF formula: (z ∨ ¬x ∨ ¬y) ∧ (¬z ∨ x) ∧ (¬z ∨ y).

5 Combining formulas for all gates together leads to an input to 3-SAT.

Proof of Cook-Levin thoerem.
We have shown that CircruitSAT is NP-complete and then we gave reduction to 3-SAT. We also know that 3-SAT
is in NP and equivalent to SAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Lemma
CircuitSAT can be reduced to 3-SAT

Proof.

1 Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.

2 For every gate we introduce an variable representing its output.

3 NOT gate corresponds to CNF formula: (x ∨ y) ∧ (¬x ∨ ¬y).

4 AND gate corresponds to CNF formula: (z ∨ ¬x ∨ ¬y) ∧ (¬z ∨ x) ∧ (¬z ∨ y).

5 Combining formulas for all gates together leads to an input to 3-SAT.

Proof of Cook-Levin thoerem.
We have shown that CircruitSAT is NP-complete and then we gave reduction to 3-SAT. We also know that 3-SAT
is in NP and equivalent to SAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Lemma
CircuitSAT can be reduced to 3-SAT

Proof.

1 Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.

2 For every gate we introduce an variable representing its output.

3 NOT gate corresponds to CNF formula: (x ∨ y) ∧ (¬x ∨ ¬y).

4 AND gate corresponds to CNF formula: (z ∨ ¬x ∨ ¬y) ∧ (¬z ∨ x) ∧ (¬z ∨ y).

5 Combining formulas for all gates together leads to an input to 3-SAT.

Proof of Cook-Levin thoerem.
We have shown that CircruitSAT is NP-complete and then we gave reduction to 3-SAT. We also know that 3-SAT
is in NP and equivalent to SAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Cook-Levin theorem, 1971

Lemma
CircuitSAT can be reduced to 3-SAT

Proof.

1 Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.

2 For every gate we introduce an variable representing its output.

3 NOT gate corresponds to CNF formula: (x ∨ y) ∧ (¬x ∨ ¬y).

4 AND gate corresponds to CNF formula: (z ∨ ¬x ∨ ¬y) ∧ (¬z ∨ x) ∧ (¬z ∨ y).

5 Combining formulas for all gates together leads to an input to 3-SAT.

Proof of Cook-Levin thoerem.
We have shown that CircruitSAT is NP-complete and then we gave reduction to 3-SAT. We also know that 3-SAT
is in NP and equivalent to SAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

What to do with hard problems?

Possible ways to attack hard problems:

1 Accept that we can solve only small inputs.

2 Solve a special case of the problem.

3 Find approximate solutions

4 Use a heuristics

5 Combine above methods

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

What to do with hard problems?

Possible ways to attack hard problems:

1 Accept that we can solve only small inputs.

2 Solve a special case of the problem.

3 Find approximate solutions

4 Use a heuristics

5 Combine above methods

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

What to do with hard problems?

Possible ways to attack hard problems:

1 Accept that we can solve only small inputs.

2 Solve a special case of the problem.

3 Find approximate solutions

4 Use a heuristics

5 Combine above methods

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

What to do with hard problems?

Possible ways to attack hard problems:

1 Accept that we can solve only small inputs.

2 Solve a special case of the problem.

3 Find approximate solutions

4 Use a heuristics

5 Combine above methods

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

What to do with hard problems?

Possible ways to attack hard problems:

1 Accept that we can solve only small inputs.

2 Solve a special case of the problem.

3 Find approximate solutions

4 Use a heuristics

5 Combine above methods

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

What to do with hard problems?

Possible ways to attack hard problems:

1 Accept that we can solve only small inputs.

2 Solve a special case of the problem.

3 Find approximate solutions

4 Use a heuristics

5 Combine above methods

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Lemma
Let T be a (graph) forest and ` its leaf. Then at least one of the maximum independent sets in T contains `.

IndSetInForest (T with root v , boolean array M indexed by vertices)

1 M[v]←true.

2 If v is a leaf: Return.

3 For each son w of v :

4 M ← IndSetInForest (subtree of T with root w , M).

5 If m[w] = true: M[v]← false.

6 Return M.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Lemma
Let T be a (graph) forest and ` its leaf. Then at least one of the maximum independent sets in T contains `.

IndSetInForest (T with root v , boolean array M indexed by vertices)

1 M[v]←true.

2 If v is a leaf: Return.

3 For each son w of v :

4 M ← IndSetInForest (subtree of T with root w , M).

5 If m[w] = true: M[v]← false.

6 Return M.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Coloring interval graphs

Definition (Interval graph)

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each
interval and an edge between vertices whose intervals intersect.

A

B
C

D

E F
G

B

A

C

D

E

F

G

IntervalGraphColoring (intervals [x1, y1] . . . [xn, yn])

1 b ← 0.

2 B ← ∅.
3 Sort set {x1, y1, . . . , xn, yn}.
4 For {x1, y1, . . . , xn, yn} in increasing order:

5 If we process some xi :

6 If B 6= ∅: Remove color from B; store it to ci

7 else: b ← b + 1, ci ← b

8 If we process some yi :

9 Add ci to B.

10 Return coloring c1, . . . , cn.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Coloring interval graphs

Definition (Interval graph)

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each
interval and an edge between vertices whose intervals intersect.

A

B
C

D

E F
G

B

A

C

D

E

F

G

IntervalGraphColoring (intervals [x1, y1] . . . [xn, yn])

1 b ← 0.

2 B ← ∅.
3 Sort set {x1, y1, . . . , xn, yn}.
4 For {x1, y1, . . . , xn, yn} in increasing order:

5 If we process some xi :

6 If B 6= ∅: Remove color from B; store it to ci

7 else: b ← b + 1, ci ← b

8 If we process some yi :

9 Add ci to B.

10 Return coloring c1, . . . , cn.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Coloring interval graphs

Definition (Interval graph)

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each
interval and an edge between vertices whose intervals intersect.

A

B
C

D

E F
G

B

A

C

D

E

F

G

IntervalGraphColoring (intervals [x1, y1] . . . [xn, yn])

1 b ← 0.

2 B ← ∅.
3 Sort set {x1, y1, . . . , xn, yn}.
4 For {x1, y1, . . . , xn, yn} in increasing order:

5 If we process some xi :

6 If B 6= ∅: Remove color from B; store it to ci

7 else: b ← b + 1, ci ← b

8 If we process some yi :

9 Add ci to B.

10 Return coloring c1, . . . , cn.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Knapsack problem

Knapsack problem

Given set of n objects with weights w1, . . . ,wn, costs c1, . . . , cn and maximum weight W your knapsack can
carry. Find subset P ⊆ {1, 2, . . . , n} such that w(P) =

∑
i∈P wi is at most W and the cost c(P) =

∑
i∈P ci is

maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C =
∑

ci .

1 Denote by Ak (c) the minimum of weights of subsets P ⊆ {1, 2, . . . , k} satisfying c(P) = c.
2 Proceed by induction:

1 A0(0) = 0, A0(1) = A0(2) = · · · = A0(C) =∞.
2 Given Ak−1 compute

Ak (c) = min(Ak−1(c), Ak−1(c − ck) + wk)

3 Once An is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal c such that An(c) ≤ W

4 To determine the set P one can remember how the values Ak (c) was determined.

(This is pseudopolynomial algorithm).

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Knapsack problem

Knapsack problem

Given set of n objects with weights w1, . . . ,wn, costs c1, . . . , cn and maximum weight W your knapsack can
carry. Find subset P ⊆ {1, 2, . . . , n} such that w(P) =

∑
i∈P wi is at most W and the cost c(P) =

∑
i∈P ci is

maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C =
∑

ci .

1 Denote by Ak (c) the minimum of weights of subsets P ⊆ {1, 2, . . . , k} satisfying c(P) = c.

2 Proceed by induction:
1 A0(0) = 0, A0(1) = A0(2) = · · · = A0(C) =∞.
2 Given Ak−1 compute

Ak (c) = min(Ak−1(c), Ak−1(c − ck) + wk)

3 Once An is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal c such that An(c) ≤ W

4 To determine the set P one can remember how the values Ak (c) was determined.

(This is pseudopolynomial algorithm).

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Knapsack problem

Knapsack problem

Given set of n objects with weights w1, . . . ,wn, costs c1, . . . , cn and maximum weight W your knapsack can
carry. Find subset P ⊆ {1, 2, . . . , n} such that w(P) =

∑
i∈P wi is at most W and the cost c(P) =

∑
i∈P ci is

maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C =
∑

ci .

1 Denote by Ak (c) the minimum of weights of subsets P ⊆ {1, 2, . . . , k} satisfying c(P) = c.
2 Proceed by induction:

1 A0(0) = 0, A0(1) = A0(2) = · · · = A0(C) =∞.

2 Given Ak−1 compute
Ak (c) = min(Ak−1(c), Ak−1(c − ck) + wk)

3 Once An is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal c such that An(c) ≤ W

4 To determine the set P one can remember how the values Ak (c) was determined.

(This is pseudopolynomial algorithm).

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Knapsack problem

Knapsack problem

Given set of n objects with weights w1, . . . ,wn, costs c1, . . . , cn and maximum weight W your knapsack can
carry. Find subset P ⊆ {1, 2, . . . , n} such that w(P) =

∑
i∈P wi is at most W and the cost c(P) =

∑
i∈P ci is

maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C =
∑

ci .

1 Denote by Ak (c) the minimum of weights of subsets P ⊆ {1, 2, . . . , k} satisfying c(P) = c.
2 Proceed by induction:

1 A0(0) = 0, A0(1) = A0(2) = · · · = A0(C) =∞.
2 Given Ak−1 compute

Ak (c) = min(Ak−1(c), Ak−1(c − ck) + wk)

3 Once An is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal c such that An(c) ≤ W

4 To determine the set P one can remember how the values Ak (c) was determined.

(This is pseudopolynomial algorithm).

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?

Knapsack problem

Knapsack problem

Given set of n objects with weights w1, . . . ,wn, costs c1, . . . , cn and maximum weight W your knapsack can
carry. Find subset P ⊆ {1, 2, . . . , n} such that w(P) =

∑
i∈P wi is at most W and the cost c(P) =

∑
i∈P ci is

maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C =
∑

ci .

1 Denote by Ak (c) the minimum of weights of subsets P ⊆ {1, 2, . . . , k} satisfying c(P) = c.
2 Proceed by induction:

1 A0(0) = 0, A0(1) = A0(2) = · · · = A0(C) =∞.
2 Given Ak−1 compute

Ak (c) = min(Ak−1(c), Ak−1(c − ck) + wk)

3 Once An is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal c such that An(c) ≤ W

4 To determine the set P one can remember how the values Ak (c) was determined.

(This is pseudopolynomial algorithm).

	Recall:Problems and reductions
	Cook-Levin theorem
	What to do about hard problems?

