Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Dec 7 2020

A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A — B) if there exists
function f : {0, 1}* — {0, 1}* such that for every x € {0, 1}* it holds A(x) = B(f(x)) and f can be computed in
polynomial time relative to |x|. Function f is also called (polynomial time) reduction.

A (decision) problem if a function from {0, 1}* (the set of all possible inputs) to {0, 1}.

Given problems A and B, we say that A is (polynomial time) reducible to B (and write A — B) if there exists
function f : {0, 1}* — {0, 1}* such that for every x € {0, 1}* it holds A(x) = B(f(x)) and f can be computed in
polynomial time relative to |x|. Function f is also called (polynomial time) reduction.

*“1can’t find an efficient algorithm, but neither can all these famous people.”

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L € Pif and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f(|x|) and A(x) = L(x).

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L € Pif and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f(|x|) and A(x) = L(x).

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) such that
K(x,y)=1.

You can think of y as a certificate that L(x) = 1.

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L € Pif and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f(|x|) and A(x) = L(x).

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) such that
K(x,y)=1.

You can think of y as a certificate that L(x) = 1.

SAT € NP.

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L € Pif and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f(|x|) and A(x) = L(x).

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) such that
K(x,y)=1.

You can think of y as a certificate that L(x) = 1.

SAT € NP.

P C NP.

P is the class of all (decision) problems that can be solved by a polynomial time algorithm.

L € Pif and only if there exists algorithm A and polynomial f such that for every input x running A(x) will finish in
time at most f(|x|) and A(x) = L(x).

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) such that
K(x,y)=1.

You can think of y as a certificate that L(x) = 1.

SAT € NP.

P C NP.

P = NP is open since 1970’s.

Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

NP-hard problem L is called NP-complete iff it is in P.

SAT is NP-complete.

Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

NP-hard problem L is called NP-complete iff it is in P.

SAT is NP-complete.

Given two problems L, M € NP. If L is NP-complete and L — M, then M is NP-complete.

Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

NP-hard problem L is called NP-complete iff it is in P.

SAT is NP-complete.

Given two problems L, M € NP. If L is NP-complete and L — M, then M is NP-complete.

Examples of NP-complete problems:
@ Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, ...

Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

NP-hard problem L is called NP-complete iff it is in P.

SAT is NP-complete.

Given two problems L, M € NP. If L is NP-complete and L — M, then M is NP-complete.

Examples of NP-complete problems:
@ Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, ...
® Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, ...

Problem L is NP-hard if every problem from NP can be reduced to L.

If some NP-hard problem L is in P then P = NP.

NP-hard problem L is called NP-complete iff it is in P.

SAT is NP-complete.

Given two problems L, M € NP. If L is NP-complete and L — M, then M is NP-complete.

Examples of NP-complete problems:
@ Logical problems: SAT, 3-SAT, 3,3-SAT, SAT for general formulas (not in CNF), Boolean CircuitSAT, ...
® Graph problems: IndSet, Clique, graph coloring, Hamiltonian path, Hamiltonian cycle, ...
® Numerical problems: Finding subset of a given sum, Knapsack, Ax =1, ...

Stephen Coo k, Leonid Levin

SAT is NP-complete.

Direction of attack:
@ Show that every problem in NP can be solved by CircuitSAT
® Show reduction of CircuitSAT to SAT

SAT is NP-complete.

Direction of attack:
@ Show that every problem in NP can be solved by CircuitSAT
® Show reduction of CircuitSAT to SAT

Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x € {0,1}* it holds that Bn(x) = L(x).)

SAT is NP-complete.

Direction of attack:
@ Show that every problem in NP can be solved by CircuitSAT
® Show reduction of CircuitSAT to SAT

Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bn with n inputs and one output that solves L.
(For every x € {0,1}* it holds that Bn(x) = L(x).)

@ Consider problem L € P and a polynomial time algorithm solving L.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} 0@00 0000

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)
SAT is NP-complete.

Direction of attack:
@ Show that every problem in NP can be solved by CircuitSAT
® Show reduction of CircuitSAT to SAT

Lemma

Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bp with n inputs and one output that solves L.
(For every x € {0,1}* it holds that Bp(x) = L(x).)

Proof (sketch).

@ Consider problem L € P and a polynomial time algorithm solving L.
@® For input of size n it will run in time T, use O(T) cells of memory.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} 0@00 0000

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)
SAT is NP-complete.

Direction of attack:
@ Show that every problem in NP can be solved by CircuitSAT
® Show reduction of CircuitSAT to SAT

Lemma

Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bp with n inputs and one output that solves L.
(For every x € {0,1}* it holds that Bp(x) = L(x).)

Proof (sketch).

@ Consider problem L € P and a polynomial time algorithm solving L.
@® For input of size n it will run in time T, use O(T) cells of memory.
® We thus need computer with memory of size O(T). This can be represented by some boolean circuit.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} 0@00 0000

Cook-Levin theorem, 1971

Theorem (Cook’s theorem or Cook-Levin theorem)
SAT is NP-complete.

Direction of attack:
@ Show that every problem in NP can be solved by CircuitSAT
® Show reduction of CircuitSAT to SAT

Lemma

Let L be a problem in P. Then there exists polynomial p and an algorithm which in time p(n) builds boolean
circuits Bp with n inputs and one output that solves L.
(For every x € {0,1}* it holds that Bp(x) = L(x).)

Proof (sketch).

@ Consider problem L € P and a polynomial time algorithm solving L.

@® For input of size n it will run in time T, use O(T) cells of memory.

® We thus need computer with memory of size O(T). This can be represented by some boolean circuit.
@ Time of the computation can be done by using T copies of the circuit connected sequentially.

@ Input: formula ¢ in CNF

® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ¢(...) = 1

@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output

® Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ¢(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output
® Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that ¢(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) s.t. K(x, y) = 1.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} [e]e] le) 0000

Cook-Levin theorem, 1971

SAT CircuitSAT
@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output
@ Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that p(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

Definition (NP)
NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) s.t. K(x,y) = 1.

Theorem (Almost Cook-Levin thoerem)
Circuit SAT is NP-complete

Proof.
@ CircuitSAT € P.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} [e]e] le) 0000

Cook-Levin theorem, 1971

SAT CircuitSAT
@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output
@ Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that p(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) s.t. K(x,y) = 1.
Theorem (Almost Cook-Levin thoerem)

Circuit SAT is NP-complete

Proof.

@ CircuitSAT € P.
® Now fix problem L € NP, K € P and polynomial g. WLOG assume that |y| depends only on n = |x|.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} [e]e] le) 0000

Cook-Levin theorem, 1971

SAT CircuitSAT
@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output
@ Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that p(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) s.t. K(x,y) = 1.

Theorem (Almost Cook-Levin thoerem)
Circuit SAT is NP-complete

Proof.
@ CircuitSAT € P.
® Now fix problem L € NP, K € P and polynomial g. WLOG assume that |y| depends only on n = |x|.
® Apply lemma to obtain for given n circuit B, solving K of size p(g(n)).

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} [e]e] le) 0000

Cook-Levin theorem, 1971

SAT CircuitSAT
@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output
@ Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that p(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) s.t. K(x,y) = 1.

Theorem (Almost Cook-Levin thoerem)
Circuit SAT is NP-complete

Proof.
@ CircuitSAT € P.
® Now fix problem L € NP, K € P and polynomial g. WLOG assume that |y| depends only on n = |x|.
® Apply lemma to obtain for given n circuit B, solving K of size p(g(n)).
@ Add constants to fix input x, so the circuit only has y as an input. This is input for CircuitSAT.

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} [e]e] le) 0000

Cook-Levin theorem, 1971

SAT CircuitSAT
@ Input: formula ¢ in CNF @ Input: Boolean circuit B with one output
@ Output: 1 if and only if there exists an ® Output: 1 if and only if there exists an
{0, 1}-assignment to variables such that p(...) = 1 {0, 1}-assignment to inputs such that B(...) = 1

Definition (NP)

NP is the class of all (decision) problems L such that there exists some problem K € P and a polynomial g such
that for every input x it holds that L(x) = 1 iff there exists y € {0, 1}* of length at most g(|x|) s.t. K(x,y) = 1.

Theorem (Almost Cook-Levin thoerem)
Circuit SAT is NP-complete

Proof.
@ CircuitSAT € P.
® Now fix problem L € NP, K € P and polynomial g. WLOG assume that |y| depends only on n = |x|.
® Apply lemma to obtain for given n circuit B, solving K of size p(g(n)).
@ Add constants to fix input x, so the circuit only has y as an input. This is input for CircuitSAT.

CircuitSAT can be reduced to 3-SAT

@ Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.

CircuitSAT can be reduced to 3-SAT

@ Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.
@® For every gate we introduce an variable representing its output.

CircuitSAT can be reduced to 3-SAT

@ Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.
@® For every gate we introduce an variable representing its output.
@® NOT gate corresponds to CNF formula: (x V y) A (=x V —y).

CircuitSAT can be reduced to 3-SAT

@ Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.
@® For every gate we introduce an variable representing its output.

@® NOT gate corresponds to CNF formula: (x V y) A (=x V —y).

® AND gate corresponds to CNF formula: (zV —x V =y) A (=z V X) A (-z V y).

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
[e]e]e} oooe 0000

Cook-Levin theorem, 1971

Lemma
CircuitSAT can be reduced to 3-SAT

Proof.

@ Every boolean circuit can be, in polynomial time, converted to circuit only with AND and NOT gates.
@® For every gate we introduce an variable representing its output.

® NOT gate corresponds to CNF formula: (x VV y) A (=x V —y).

@ AND gate corresponds to CNF formula: (zV —x V =y) A (=zV x) A (=z V y).

® Combining formulas for all gates together leads to an input to 3-SAT.

Proof of Cook-Levin thoerem.

We have shown that CircruitSAT is NP-complete and then we gave reduction to 3-SAT. We also know that 3-SAT
is in NP and equivalent to SAT. a

““I cant find an efficient algorithm, but neither can all these famous people.”

Possible ways to attack hard problems:

““I cant find an efficient algorithm, but neither can all these famous people.”

Possible ways to attack hard problems:
@ Accept that we can solve only small inputs.

““I cant find an efficient algorithm, but neither can all these famous people.”

Possible ways to attack hard problems:
@ Accept that we can solve only small inputs.
@® Solve a special case of the problem.

““I cant find an efficient algorithm, but neither can all these famous people.”

Possible ways to attack hard problems:
@ Accept that we can solve only small inputs.
@® Solve a special case of the problem.
® Find approximate solutions

““I cant find an efficient algorithm, but neither can all these famous people.”

Possible ways to attack hard problems:
@ Accept that we can solve only small inputs.
@® Solve a special case of the problem.
® Find approximate solutions
@ Use a heuristics

““I cant find an efficient algorithm, but neither can all these famous people.”

Possible ways to attack hard problems:
@ Accept that we can solve only small inputs.
® Solve a special case of the problem.
® Find approximate solutions
@ Use a heuristics
6 Combine above methods

Let T be a (graph) forest and ¢ its leaf. Then at least one of the maximum independent sets in T contains £.

Let T be a (graph) forest and ¢ its leaf. Then at least one of the maximum independent sets in T contains £.

@ M[v] +true.

@ If vis a leaf: Return.

@ For each son w of v:

® M <« IndSetInForest (subtree of T with root w, M).
0 If mlw] = true: M[v] « false.

6O Return M.

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each
interval and an edge between vertices whose intervals intersect.

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each
interval and an edge between vertices whose intervals intersect.

Ab———+ E+H— FFH—H

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
000 0000 0000

Coloring interval graphs

Definition (Interval graph)

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each
interval and an edge between vertices whose intervals intersect.

IntervalGraphColoring (intervals [x1, y1] . .. [Xn, ¥n])
D
A ® b+ 0.

0 B+ (.

® Sortset {x1,y1,...,Xn, Yn}-

B G ® For {xy,y1,...,Xn, ¥n} inincreasing order:
® If we process some x;:
(6 If B # (): Remove color from B; store it to ¢;
(7] else:b<+b+1,ci+ b

ol | Gl ! ® If we process some y;:
(o}
®

Add c; to B.
Return coloring ¢y, . . ., cn.

Given set of n objects with weights wy, ..., wn, costs ¢y, ..., cn and maximum weight W your knapsack can
carry. Find subset P C {1,2,..., n} such that w(P) = >, p w; is at most W and the cost ¢(P) = >_;cp Cj is
maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C = 3 ¢;.

Given set of n objects with weights wy, ..., wn, costs ¢y, ..., cn and maximum weight W your knapsack can
carry. Find subset P C {1,2,..., n} such that w(P) = >, p w; is at most W and the cost ¢(P) = >_;cp Cj is
maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C = 3 ¢;.
@ Denote by A, (c) the minimum of weights of subsets P C {1,2,..., k} satisfying ¢(P) = c.

Given set of n objects with weights wy, ..., wn, costs ¢y, ..., cn and maximum weight W your knapsack can
carry. Find subset P C {1,2,..., n} such that w(P) = >, p w; is at most W and the cost ¢(P) = >_;cp Cj is
maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C = 3 ¢;.
@ Denote by A, (c) the minimum of weights of subsets P C {1,2,..., k} satisfying ¢(P) = c.
® Proceed by induction:
© Ay(0) =0, Ap(1) = Ap(2) = - - - = Ag(C) = oo.

Given set of n objects with weights wy, ..., wn, costs ¢y, ..., cn and maximum weight W your knapsack can
carry. Find subset P C {1,2,..., n} such that w(P) = >, p w; is at most W and the cost ¢(P) = >_;cp Cj is
maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C = 3 ¢;.
@ Denote by A, (c) the minimum of weights of subsets P C {1,2,..., k} satisfying ¢(P) = c.
® Proceed by induction:
@ A)(0) =0, Ai(1) = A(2) = -+ = Ap(C) = o0.
@® Given A,_ compute
Ak(C) = min(Ak_1 (C), Ak_1(C — Ck) + Wk)

Recall:Problems and reductions Cook-Levin theorem What to do about hard problems?
000 0000 feelel]

Knapsack problem

Knapsack problem

Given set of n objects with weights wy, ..., wp, costs ¢y, . .., ¢, and maximum weight W your knapsack can
carry. Find subset P C {1,2,...,n} such that w(P) = >~ p w; is at most W and the cost ¢(P) = >~ Cj is
maximum possible.

We can use dynamic programming to solve the problem in polynomial time in C = 3 ¢;.
@ Denote by Ax(c) the minimum of weights of subsets P C {1,2, ..., k} satisfying c(P) = c.

® Proceed by induction:
O Ai(0) =0, A(1) = Ao(2) = - - = Ay(C) = oo.
@® Given A,_ compute
Ak(c) = min(Ax—1(c), Ax—1(C — Ck) + k)

® Once A, is determined we know for every possible cost the subset P of that cost minimizing the weight. It
remains to find maximal ¢ such that As(c) < W

© To determine the set P one can remember how the values A, (c) was determined.
(This is pseudopolynomial algorithm).

	Recall:Problems and reductions
	Cook-Levin theorem
	What to do about hard problems?

