Jan Hubicka

Department of Applied Mathematics
Charles University
Prague

Oct 5 2020

Lecturer: Jan Hubicka, hubicka@kam.mff.cuni.cz.
® Consultations by appointment (email or zoom).
® Do we want a discussion forum, like discord or moodle?

https://stream.cuni.cz
https://iuuk.mff.cuni.cz/~hubicka/2020/adsII.html

Welcome String-searching
°0 0000000000

Algorithms and data-structures |l

Lecturer: Jan Hubi¢ka, hubicka@kam.mff.cuni.cz.
® Consultations by appointment (email or zoom).
® Do we want a discussion forum, like discord or moodle?

Lecture: Monday 9am over zoom.
® | ectures will be live: please come and do ask questions, tell me how you like the lecture!
® Recordings will be available on st ream. cuni.cz (linked from webpage).

® Recordings will include all questions and communication. If you ask me after the lecture ends, | will edit out
your question.

® | will try to keep lecture synchronized with Czech lecture by Jan Hric.
® |f you spot mistake, please let me know. The slides are brand new.

Webpage: https://iuuk.mff.cuni.cz/ hubicka/2020/adsII.html

https://stream.cuni.cz
https://iuuk.mff.cuni.cz/~hubicka/2020/adsII.html

@ String-searching

@ String-searching
® Network flows

@ String-searching
® Network flows
@ Algebraic algorithms (Fourier transformation)

@ String-searching

® Network flows

@ Algebraic algorithms (Fourier transformation)
@ Parallel algorithms

@ String-searching

® Network flows

@ Algebraic algorithms (Fourier transformation)
@ Parallel algorithms

® Geometric algorithms

@ String-searching

® Network flows

@ Algebraic algorithms (Fourier transformation)
@ Parallel algorithms

® Geometric algorithms

@ Introduction to complexity

@ String-searching

® Network flows

@ Algebraic algorithms (Fourier transformation)
@ Parallel algorithms

® Geometric algorithms

@ Introduction to complexity

@ Approximation algorithm

@ String-searching

® Network flows

@ Algebraic algorithms (Fourier transformation)
@ Parallel algorithms

® Geometric algorithms

@ Introduction to complexity

@ Approximation algorithm

® Probabilistic algorithms and cryptography

String-searching

Welcome
00

9000000000

I A

v

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)
@ «afi : j]: subword afilafi+ 1] afj — 1]

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)
@ «afi : j]: subword afilafi+ 1] afj — 1]
O of: j]: prefix of « of length j

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)
@ «afi : j]: subword afilafi+ 1] afj — 1]
O of: j]: prefix of « of length j
® «ofi :]: a suffix of «

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)
@ «afi : j]: subword afilafi+ 1] afj — 1]
O of: j]: prefix of « of length j
® «ofi :]: a suffix of «
® «of:]: whole word «

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

Some notation:
@ X: an alphabet (finite set of characters)
® 3 *: the set all finite words in alphabet &
® o, 3,...:words
@ |a|: length of the word a.
@ ¢: empty word (the only word of length 0)
® o3: concatenation of « and 3
@ «fi]: i-th character of « (starting from 0)
@ «afi : j]: subword afilafi+ 1] afj — 1]
O of: j]: prefix of « of length j
® «ofi :]: a suffix of «
® «of:]: whole word «

Occurrence of v in 7 is any index i such that n[i : i + |v|]] = v

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

@ Fori=0,...,|n —|v|—1:
® Ifnli:i+ |v|]] =v: output i

v = coconut
7 is some very long text about coconuts

Given a string v (“a needle”) and 7 (“a haystack”) find all occurrences of v in 7.

@ Fori=0,...,|n —|v|—1:
® Ifnli:i+ |v|]] =v: output i

v = coconut
7 is some very long text about coconuts

Time complexity: ©(|v| - |n|).

An incremental algorithm receives characters of n one by one and after receiving a new character it immediately
outputs possible new occurrences of v.

An incremental algorithm receives characters of n one by one and after receiving a new character it immediately
outputs possible new occurrences of v.

We would like to remember an state. This is longest prefix of v which is a suffix of 7.

Observation: Whenever algorithm enters state v it finds a new occurrence of v in the input.

Assume that algorithm seen string n, is in state o and receives a new character c. How to update the state?

An incremental algorithm receives characters of n one by one and after receiving a new character it immediately
outputs possible new occurrences of v.

We would like to remember an state. This is longest prefix of v which is a suffix of 7.

Observation: Whenever algorithm enters state v it finds a new occurrence of v in the input.
Assume that algorithm seen string n, is in state o and receives a new character c. How to update the state?

ac If acis a prefix of v
State (o, ¢) =

An incremental algorithm receives characters of n one by one and after receiving a new character it immediately
outputs possible new occurrences of v.

We would like to remember an state. This is longest prefix of v which is a suffix of 7.

Observation: Whenever algorithm enters state v it finds a new occurrence of v in the input.
Assume that algorithm seen string n, is in state o and receives a new character c. How to update the state?

ac If acis a prefix of v
State (o, ¢) = < €

Welcome String-searching
(oo} 0O00@000000

Incremental algorithm

An incremental algorithm receives characters of 7 one by one and after receiving a new character it immediately
outputs possible new occurrences of v.

Basic idea
We would like to remember an state. This is longest prefix of v which is a suffix of 7.

Observation: Whenever algorithm enters state v it finds a new occurrence of v in the input.
Assume that algorithm seen string 7, is in state o and receives a new character ¢. How to update the state?

ac If acis a prefix of v
State (o, ¢) = { €
a’c o'cis aprefix of v and o is a suffix of «

We want to compute backward function b which tells for every prefix « of v the longest proper suffix o’ (of «) that
is also a prefix of v.

Welcome String-searching
(e]e] 0000@00000

Knuth—Morris—Pratt (KMP) algorithm (1974)

We want to compute backward function b which tells for every prefix o of v the longest property suffix o’ (of «)
that is also a prefix of v.

@ State 0, ..., |v|
(state s corresponds to prefix v[: s])

@® Forward edges: s — s+ 1

@ Backward edges: pointing from s > 0 to j such that
v[: j] is a proper suffix of v[: s]

@ State 0, ..., |v| @ While s # 0 and v[s] # c:
(state s corresponds to prefix v[: s]) @ s« bs].

@ Forward edges: s — s+ 1 @ livs]=c s+ s+1.

© Backward edges: pointing from s > 0 to j such that O Return s

v[: j] is a proper suffix of v[: s]

® s« 0.

® Fori=0,...,|n —1:

@ s < Step (s, n[i)-

® lfs=|v|:reporti— |v|+1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Search will run in time O(|n|) © While s # 0 and v[s] # c:

D O

@ lfy[s]=cis+ s+ 1.
@ Search itself is clearly O(|n)|) ® Return s

® s« 0.

® Fori=0,...,|n —1:

©@ s« Step (s, n[i]).

® |lfs=|v|:reporti— |v|+ 1.

O

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Search will run in time O(|n|) © While s £ 0 and v[s] # c:

D O

@ lfy[s]=cis+ s+ 1.
@ Search itself is clearly O(|n)|) ® Return s

® Number of forward transitions in Step is O(|7]|)

® s« 0.

® Fori=0,...,|n —1:

© s < Step (s, n[i])-

® |lfs=|v|:reporti— |v|+ 1.

O

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Search will run in time O(|n|) © While s £ 0 and v[s] # c:

D O

@ lfy[s]=cis+ s+ 1.
@ Search itself is clearly O(|n)|) © Return s

® Number of forward transitions in Step is O(|7]|)

© Number of backward transitions in Step is O(|n]) _

O
® s« 0.
® Fori=0,...,|n —1:
@ s« Step (s, n[i])-
® |Ilfs=|v|:reporti— |v|+ 1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Search will run in time O(|n|) © While s £ 0 and v[s] # c:

Pt o e

@ lfy[s]=cis+ s+ 1.
@ Search itself is clearly O(|n)|) ® Return s

® Number of forward transitions in Step is O(|7]|)

© Number of backward transitions in Step is O(|n]) _

O
® s« 0.
® Fori=0,...,|n —1:
@ s < Step (s, n[i)-
® |lfs=|v|:reporti— |v|+ 1.

Overall runtime ©(|n|).

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

How to obtain the automaton?

@ While s # 0and v[s] # c:
® s« bs].

@ lfy[s]=cis+ s+ 1.

O Return s

® s« 0.

® Fori=0,...,|n —1:

® s« Step (s, n[i]).

® |lfs=|v|:reporti— |v|+ 1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

How to obtain the automaton? We will steal it!

Imagine that someone has the automaton and we want

to figure all backward edges © While s # 0 and v[s] # c:
® s« bs].
@ lfy[s]=cis+ s+ 1.
O Return s

® s« 0.

® Fori=0,...,|n —1:

@ s« Step (s, n[i])-

® |lfs=|v|:reporti— |v|+ 1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Welcome String-searching
(oo} 0O000000e00

Knuth—Morris—Pratt (KMP) algorithm (1974)

How to obtain the automaton? We will steal it!

Step (s, ¢):
Imagine that someone has the automaton and we want .
to figure all backward edges © While s # 0 and v[s] # c:
® s+« b[s].
To determine b(s) we need to search v[1 : §] _
Recall: b(s) is j such that v[: j] is the longest proper © lfvs]=cis s+
O Return s

suffix of v[: §]

Search (n, automaton for v):
Q@ s« 0.
® Fori=0,...,|n —1:

® s« Step (s, n[i]).
® Ifs=|v|:reporti— |v|+1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Welcome String-searching
(oo} 0O000000e00

Knuth—Morris—Pratt (KMP) algorithm (1974)

How to obtain the automaton? We will steal it!

Step (s, ¢):
Imagine that someone has the automaton and we want .
to figure all backward edges © While s # 0 and v[s] # c:
® s+« b[s].
To determine b(s) we need to search v[1 : §] _
Recall: b(s) is j such that v[: j] is the longest proper © lfvls] =cs s+
O Return s

suffix of v[: §]

KMPConstruction (v): Search (n, automaton for v):

@ b[0] <—undefined, b[1] +- 0, s + 0. © s« 0

® Fori=0,...,|n —1:
® s+ Step (s, nli])-
® Ifs=|v|:reporti— |v|+1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Welcome String-searching
(oo} 0O000000e00

Knuth—Morris—Pratt (KMP) algorithm (1974)

How to obtain the automaton? We will steal it!

Step (s, ¢):
Imagine that someone has the automaton and we want .
to figure all backward edges © While s # 0 and v[s] # c:
® s+« b[s].
To determine b(s) we need to search v[1 : §] _
Recall: b(s) is j such that v[: j] is the longest proper © lfvls]=cis s+
O Return s

suffix of v[: §]

KMPConstruction (v): Search (n, automaton for v):

@ b[0] <—undefined, b[1] +- 0, s + 0.
@ Fori=2,..., v

® s+« Step (s, v[i—1]).

O Db+ s.

Q@ s« 0.

® Fori=0,...,|n —1:

® s+« Step (s, n[i]).

O Ifs=|v|:reporti— |v|+1.

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Welcome String-searching
(oo} 0O000000e00

Knuth—Morris—Pratt (KMP) algorithm (1974)

How to obtain the automaton? We will steal it!

Step (s, ¢):
Imagine that someone has the automaton and we want .
to figure all backward edges © While s # 0 and v[s] # ¢:
® s+« b[s].
To determine b(s) we need to search v[1 : s] _ A
Recall: b(s) is j such that v[: j] is the longest proper © lfvls]=cis s+
O Return s

suffix of v[: §]

KMPConstruction (v): Search (n, automaton for v):

@ b[0] <—undefined, b[1] +- 0, s + 0.
@ Fori=2,..., v

® s+« Step (s, v[i—1]).

O Db+ s.

Q@ s« 0.

® Fori=0,...,|n —1:

® s+« Step (s, n[i]).

O Ifs=|v|:reporti— |v|+1.

Theorem
Algorithm KMP will finish in time ©(|n| + |v|).

Invariant: The state s corresponds to the longest suffix of n[: /] that is a prefix of v.

Welcome String-searching
00 0000000080

Recall the rotating/sliding hash function

H(xqi, X2, .., xk) = (X4 PK=1 4 xoPK—2 4 ... 4 x4 P! +XKP0) mod N

For K = |v|, prime number P and N > 0.

Recall the rotating/sliding hash function

H(xqi, X2, .., xk) = (X4 PK=1 4 xoPK=2 4 f x_1 P! + XKPO) mod N
For K = |v|, prime number P and N > 0. Observe that:

H(Xxo, X3, ...y Xk41) = (XZPK_1 + X3PK—2 + .- —I—XKP1 + XK41 PO) mod N
(P-H(X1,X2,...,XK)—X1PK—|-XK+1) mod N

Recall the rotating/sliding hash function

H(x1, X, ..., xk) = (q PK=1 4+ 30PK=2 oo 4 x4 P' + x¢P°) mod N
For K = |v|, prime number P and N > 0. Observe that:

H(Xxo, X3, ...y Xk41) = (XZPK_1 +X3PK_2+-~~—|—XKP1 +XK+1P0) mod N
= (P-H(X1,X2,...,XK)—X1PK+XK+1) mod N

@ Choose prime Pand N > 1.

® Precompute P!”I mod N.

@ n<+ H(v).

© h«— H(nl: [v]]).

@ Fori=0,...|n|—|v|—1:

0O ifh=nandn[i:i+ |v|] =v:reporti.

@ h« (P-h—n[i] Pl +nli+K]) mod N.

Recall the rotating/sliding hash function

H(x1, X, ..., xk) = (q PK=1 4+ 30PK=2 oo 4 x4 P' + x¢P°) mod N
For K = |v|, prime number P and N > 0. Observe that:

H(Xxo, X3, ...y Xk41) = (XZPK_1 +X3PK_2+-~~—|—XKP1 +XK+1P0) mod N
= (P-H(X1,X2,...,XK)—X1PK+XK+1) mod N

@ Choose prime Pand N > 1.

® Precompute P!”I mod N.

@ n<+ H(v).

© h«— H(nl: [v]]).

@ Fori=0,...|n|—|v|—1:

0O ifh=nandn[i:i+ |v|] =v:reporti.

@ h« (P-h—n[i] Pl +nli+K]) mod N.

Expected time complexity: O(|v| + |n| + C|v| + |n|/N - |v|) where C is number of occurences reported.

	Welcome
	String-searching

