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Welcome String-searching

Today: string-searching (“searching needle in a haystack”)

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

Some notation:

1 Σ: an alphabet (finite set of characters)

2 Σ∗: the set all finite words in alphabet Σ

3 α, β, . . . : words

4 |α|: length of the word α.

5 ε: empty word (the only word of length 0)

6 αβ: concatenation of α and β

7 α[i]: i-th character of α (starting from 0)

8 α[i : j]: subword α[i]α[i + 1] · · ·α[j − 1]

9 α[: j]: prefix of α of length j

10 α[i :]: a suffix of α

11 α[:]: whole word α

Occurrence of ν in η is any index i such that η[i : i + |ν|] = ν
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Naive approach

string-searching

Given a string ν (“a needle”) and η (“a haystack”) find all occurrences of ν in η.

Search (ν, η):

1 For i = 0, . . . , |η| − |ν| − 1:

2 If η[i : i + |ν|] = ν: output i

ν = coconut
η is some very long text about coconuts

Time complexity: Θ(|ν| · |η|).
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Welcome String-searching

Incremental algorithm

An incremental algorithm receives characters of η one by one and after receiving a new character it immediately
outputs possible new occurrences of ν.

Basic idea
We would like to remember an state. This is longest prefix of ν which is a suffix of η.

Observation: Whenever algorithm enters state ν it finds a new occurrence of ν in the input.

Assume that algorithm seen string η, is in state α and receives a new character c. How to update the state?

State (α, c) =


αc If αc is a prefix of ν
ε

α′c α′c is a prefix of ν and α′ is a suffix of α

We want to compute backward function b which tells for every prefix α of ν the longest proper suffix α′ (of α) that
is also a prefix of ν.
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Knuth–Morris–Pratt (KMP) algorithm (1974)
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Knuth–Morris–Pratt (KMP) algorithm (1974)

We want to compute backward function b which tells for every prefix α of ν the longest property suffix α′ (of α)
that is also a prefix of ν.

Searching automaton

1 State 0, . . . , |ν|
(state s corresponds to prefix ν[: s])

2 Forward edges: s → s + 1

3 Backward edges: pointing from s > 0 to j such that
ν[: j] is a proper suffix of ν[: s]

Step (s, c):

1 While s 6= 0 and ν[s] 6= c:

2 s ← b[s].

3 If ν[s] = c: s ← s + 1.

4 Return s

Search (η, automaton for ν):

1 s ← 0.

2 For i = 0, . . . , |η| − 1:

3 s ← Step (s, η[i]).

4 If s = |ν|: report i − |ν|+ 1.

Theorem
Algorithm KMP will finish in time Θ(|η|+ |ν|) and will find all occurences of ν in η.

Invariant: The state s corresponds to the longest suffix of η[: i] that is a prefix of ν.
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Knuth–Morris–Pratt (KMP) algorithm (1974)

Lemma
Search will run in time O(|η|)

Proof.

1 Search itself is clearly O(|η|)

2 Number of forward transitions in Step is O(|η|)
3 Number of backward transitions in Step is O(|η|)

Overall runtime Θ(|η|).

Step (s, c):

1 While s 6= 0 and ν[s] 6= c:

2 s ← b[s].

3 If ν[s] = c: s ← s + 1.

4 Return s

Search (η, automaton for ν)

1 s ← 0.

2 For i = 0, . . . , |η| − 1:

3 s ← Step (s, η[i]).

4 If s = |ν|: report i − |ν|+ 1.

Theorem
Algorithm KMP will finish in time Θ(|η|+ |ν|) and will find all occurences of ν in η.
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Knuth–Morris–Pratt (KMP) algorithm (1974)

How to obtain the automaton?

We will steal it!

Imagine that someone has the automaton and we want
to figure all backward edges

To determine b(s) we need to search ν[1 : s]
Recall: b(s) is j such that ν[: j] is the longest proper
suffix of ν[: s]

KMPConstruction (ν):

1 b[0]←undefined, b[1]← 0, s ← 0.

2 For i = 2, . . . , |ν|:
3 s ← Step (s, ν[i − 1]).

4 b[i]← s.

Step (s, c):

1 While s 6= 0 and ν[s] 6= c:

2 s ← b[s].

3 If ν[s] = c: s ← s + 1.

4 Return s
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Imagine that someone has the automaton and we want
to figure all backward edges

To determine b(s) we need to search ν[1 : s]
Recall: b(s) is j such that ν[: j] is the longest proper
suffix of ν[: s]

KMPConstruction (ν):

1 b[0]←undefined, b[1]← 0, s ← 0.

2 For i = 2, . . . , |ν|:
3 s ← Step (s, ν[i − 1]).

4 b[i]← s.

Step (s, c):

1 While s 6= 0 and ν[s] 6= c:

2 s ← b[s].

3 If ν[s] = c: s ← s + 1.

4 Return s

Search (η, automaton for ν):

1 s ← 0.
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Rabin–Karp algorithm (1987)

Recall the rotating/sliding hash function

H(x1, x2, . . . , xK ) = (x1PK−1 + x2PK−2 + · · ·+ xK−1P1 + xK P0) mod N

For K = |ν|, prime number P and N > 0.

Observe that:

H(x2, x3, . . . , xK +1) = (x2PK−1 + x3PK−2 + · · ·+ xK P1 + xK +1P0) mod N

= (P · H(x1, x2, . . . , xK )− x1PK + xK +1) mod N

RabinKarpSearch (ν, η):

1 Choose prime P and N > 1.

2 Precompute P|ν| mod N.

3 n← H(ν).

4 h← H(η[: |ν|]).

5 For i = 0, . . . |η| − |ν| − 1:

6 if h = n and η[i : i + |ν|] = ν: report i .

7 h← (P · h − η[i] · P|ν| + η[i + K ]) mod N.

Expected time complexity: O(|ν|+ |η|+ C|ν|+ |η|/N · |ν|) where C is number of occurences reported.
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