Algorithms and datastructures I Lecture 7: tree based data-structures

Jan Hubička

Department of Applied Mathematics Charles University Prague

March 24 2020

Kruskal algorithm, 1956

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree T.

Kruskal algorithm, 1956

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree *T*.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

FIND(u,v): O(1) (return true compare if c(u) = c(v)) UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

```
FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))
```

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: $O(m \log n + m + n^2) = O(m \log n + n^2)$

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Array based union-find

```
FIND(u,v): O(1) (return true compare if c(u) = c(v))
UNION(u,v): O(n) (search array v and change all occurrences of c(u) to c(v))
```

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Runtime of complete algorithm: $O(m \log n + m + n^2) = O(m \log n + n^2)$

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the size of the component. (it does improve time complexity).

Array P holds predecessor of a vertex (and ∅ for root).

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Find (u, v)

1. Return true if Root (u)=Root (v).

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (u, v)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If a = b: return
- 3. $P(b) \leftarrow a$

Find (u, v)

1. Return true if Root (u)=Root (v).

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (u, v)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If a = b: return
- 3. $P(b) \leftarrow a$

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of $\mathrm{Root}(\nu)$ is bounded by the maximal height of a shrub.

Array P holds predecessor of a vertex (and ∅ for root).

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (u, v)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If a = b: return
- 3. $P(b) \leftarrow a$

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

Array P holds predecessor of a vertex (and \emptyset for root). H on a root vertex holds the height of its tree.

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (u, v)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If a = b: return
- 3. If H(a) < H(b): $P(a) \leftarrow b$
- 4. If H(a) > H(b): $P(b) \leftarrow a$
- 5. If H(a) = H(b): $P(b) \leftarrow a$, $H(a) \leftarrow H(a) + 1$

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

Array P holds predecessor of a vertex (and ∅ for root). H on a root vertex holds the height of its tree.

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (u, v)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If a = b: return
- 3. If H(a) < H(b): $P(a) \leftarrow b$
- 4. If H(a) > H(b): $P(b) \leftarrow a$
- 5. If H(a) = H(b): $P(b) \leftarrow a$, $H(a) \leftarrow H(a) + 1$

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

Invariant

Shrub of height *h* has at least 2^h vertices

Array P holds predecessor of a vertex (and \emptyset for root). H on a root vertex holds the height of its tree.

Root (v)

- 1. While $P(v) \neq \emptyset$:
- 2. $v \leftarrow P(v)$
- 3. Return v.

Union (u, v)

- 1. $a \leftarrow \text{Root}(u), b \leftarrow \text{Root}(v)$
- 2. If a = b: return
- 3. If H(a) < H(b): $P(a) \leftarrow b$
- 4. If H(a) > H(b): $P(b) \leftarrow a$
- 5. If H(a) = H(b): $P(b) \leftarrow a$, $H(a) \leftarrow H(a) + 1$

Find (u, v)

1. Return true if Root (u)=Root (v).

Runtime of Root(v) is bounded by the maximal height of a shrub.

Smart optimization: remember height of a tree and always orient new edge from smaller to bigger tree.

Invariant

Shrub of height *h* has at least 2^h vertices

Theorem

Time complexity of UNION and FIND is $O(\log n)$.

Union-find with path compression

Root (v) with path compression variant 1

- 1. While $P(v) \neq \emptyset$:
- 2. $u \leftarrow v$
- 3. $v \leftarrow P(v)$
- 4. if $P(v) \neq \emptyset$ then:
- 5. $P(u) \leftarrow P(v)$
- 6. Return v.

Root (v) with path compression variant 2

- 1. $u \leftarrow v$
- 2. While $P(v) \neq \emptyset$:
- 3. v = P(v)
- 4. While $P(u) \neq \emptyset$:
- 5. $w \leftarrow P(u)$ 6. $P(u) \leftarrow v$
- -
- u ← w
 Return v.

Union-find with path compression

Root (v) with path compression variant 1

1. While $P(v) \neq \emptyset$:

2.

$$u \leftarrow v$$

3. $v \leftarrow P(v)$

4.

if
$$P(v) \neq \emptyset$$
 then:

5.

$$P(u) \leftarrow P(v)$$

6. Return v.

Root (v) with path compression variant 2

1.
$$u \leftarrow v$$

2. While $P(v) \neq \emptyset$:

$$3. v = P(v)$$

4. While $P(u) \neq \emptyset$:

5.
$$w \leftarrow P(u)$$

6.
$$P(u) \leftarrow v$$

7.
$$u \leftarrow w$$

8. Return v.

In 1975 Robert Tarjan shown that adding the path compression reduces the time to $O(\alpha(n))$ where α is the inverse of Ackerman function.

Union-find with path compression

Root (v) with path compression variant 1

1. While $P(v) \neq \emptyset$:

Recall

2.
$$u \leftarrow v$$

3. $v \leftarrow P(v)$

4. if
$$P(v) \neq \emptyset$$
 then:

5.

$$P(u) \leftarrow P(v)$$

6. Return v.

Root (v) with path compression variant 2

1.
$$u \leftarrow v$$

2. While $P(v) \neq \emptyset$:

$$v = P(v)$$

4. While $P(u) \neq \emptyset$:

5.
$$w \leftarrow P(u)$$

6.
$$P(u) \leftarrow v$$

7.
$$u \leftarrow w$$

8. Return v.

In 1975 Robert Tarjan shown that adding the path compression reduces the time to $O(\alpha(n))$ where α is the inverse of Ackerman function.

Ackerman function is very fast growing function. A(4) is approximately

Thus we can think of it as an O(1) implementation.

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(*v*): Find *v* in the set SHOW: Print whole set

MIN: Return minimum

Max: Return maximum

Succ(v): Find successor

PRED(v): Find predecessor

Basic implementations

	INSERT	DELETE	FIND	MIN/MAX	Succ/Pred
Linked list	O(n) or O(1)	O(n) or O(1)	O(n)	O(n)	O(n)

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set SHOW: Print whole set

MIN: Return minimum

MAX: Return maximum

Succ(v): Find successor

PRED(v): Find predecessor

Basic i	mplem	entations
---------	-------	-----------

	INSERT	DELETE	FIND	MIN/MAX	Succ/Pred
Linked list	O(n) or O(1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	O(n)	O(n)	O(n)
Array	O(n) or $O(1)$	O(n) or $O(1)$	O(n)	O(n)	O(n)

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set SHOW: Print whole set MIN: Return minimum MAX: Return maximum

Succ(v): Find successor PRED(v): Find predecessor

Basic implementations DELETE FIND MIN/MAX Succ/Pred INSERT Linked list O(n) or O(1)O(n) or O(1)O(n)O(n)O(n)Arrav O(n) or O(1)O(n) or O(1)O(n)O(n)O(n)Sorted array $O(\log n)$ or O(1)O(n)O(n) $O(\log n)$ O(1)

We would like to represent a set (or a dictionary) of some elements from an universum. We expect that elements of universum in set can be assigned and compared in O(1)

INSERT(v): Insert v to the set

DELETE(v): Delete v from the set

FIND(v): Find v in the set SHOW: Print whole set MIN: Return minimum MAX: Return maximum SUCC(v): Find successor

PRED(v): Find predecessor

Basic impl	Basic implementations					
		INSERT	DELETE	FIND	MIN/MAX	Succ/Pred
_	Linked list	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	O(n)	O(n)	O(n)
	Array	O(n) or $O(1)$	O(n) or $O(1)$	O(n)	O(n)	O(n)
	Sorted array	O(n)	O(n)	$O(\log n)$	0(1)	$O(\log n)$ or $O(1)$

Today: We design datastructure that does all in an logarithm.

Definition (Binary tree)

Binary tree is:

- 1. a rooted tree where
- 2. every vertex has at most 2 sons and
- 3. we where distinguish left and right son of every vertex

Definition (Binary tree)

Binary tree is:

- 1. a rooted tree where
- 2. every vertex has at most 2 sons and
- 3. we where distinguish left and right son of every vertex

```
Notation: for a vertex v in a binary tree we denote by
```

- I(v) and r(v) the left and right son of v,
- p(v) the parent of v.
- T(v) the subtree rooted in v,
- L(v) and R(v) the subtree rooted in left and right son of v,
- h(v) the height of T(v).

Definition (Binary tree)

Binary tree is:

- 1. a rooted tree where
- 2. every vertex has at most 2 sons and
- 3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by

- I(v) and r(v) the left and right son of v,
- p(v) the parent of v.
- T(v) the subtree rooted in v,
- L(v) and R(v) the subtree rooted in left and right son of v,
- h(v) the height of T(v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

- 1. $\forall_{x \in I(v)} : x < v$ and
- 2. $\forall_{v \in B(v)} : y > v$.

Show(v): Print all values in a tree with root v

- 1. If $v = \emptyset$: return
- 2. Show (/(v))
- 3. Print v
- 4. Show (r(v))

Show(v): Print all values in a tree with root v

- If *v* = ∅: return
- 2. Show (/(v))
- 3. Print v
- 4. Show (*r*(*v*))

Find(v,x): Find key x in a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x = k(v): return v
- 3. If x < k(v): return Find(l(v),x)
- 4. If x > k(v): return Find(r(v),x)

Show(v): Print all values in a tree with root v

- 1. If $v = \emptyset$: return
- 2. Show (/(v))
- 3. Print v
- 4. Show (r(v))

Min(v): Return minimum of a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If $I(v) = \emptyset$: return v
- 3. Return Min(I(v))

Find(v,x): Find key x in a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x = k(v): return v
- 3. If x < k(v): return Find(l(v),x)
- 4. If x > k(v): return Find(r(v),x)

Show(v): Print all values in a tree with root v

- 1. If $\mathbf{v} = \emptyset$: return
- 2. Show (/(v))
- 3. Print v
- 4. Show (r(v))

Min(v): Return minimum of a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If $I(v) = \emptyset$: return v
- 3. Return Min(I(v))

Find(v,x): Find key x in a tree with root v

- 1. If $\mathbf{v} = \emptyset$: return \emptyset
- 2. If x = k(v): return v
- 3. If x < k(v): return Find(l(v),x)
- 4. If x > k(v): return Find(r(v),x)

Insert(v,x): Insert x to a tree with root v

- If v = ∅: create new vertex v with key x and return it
- 2. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Insert } (r(v), x)$
- 4. If x = k(v): then x already exists in the tree and there is nothing to do.

Show(ν): Print all values in a tree with root ν

- 1. If $v = \emptyset$: return
- 2. Show (/(v))
- 3. Print v
- 4. Show (r(v))

Min(v): Return minimum of a tree with root v

- 1. If $\mathbf{v} = \emptyset$: return \emptyset
- 2. If $I(v) = \emptyset$: return v
- 3. Return Min(/(v))

Find(v,x): Find key x in a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x = k(v): return v
- 3. If x < k(v): return Find(l(v), x)
- 4. If x > k(v): return Find(r(v),x)

Insert(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: create new vertex v with key x and return it
- 2. If x < k(v): $l(v) \leftarrow \text{Insert } (l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Insert } (r(v), x)$
- 4. If x = k(v): then x already exists in the tree and there is nothing to do.

Homework: Figure out implementation of Succ and PRED

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $I(v) = r(v) = \emptyset$: return \emptyset

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $I(v) = r(v) = \emptyset$: return \emptyset
- 6. If $I(v) = \emptyset$: return r(v)

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $I(v) = r(v) = \emptyset$: return \emptyset
- 6. If $I(v) = \emptyset$: return r(v)
- 7. If $r(v) = \emptyset$: return l(v)

Delete in binary search tree

Delete(v,x): Insert x to a tree with root v

- 1. If $v = \emptyset$: return \emptyset
- 2. If x < k(v): $l(v) \leftarrow \text{Delete}(l(v), x)$
- 3. If x > k(v): $r(v) \leftarrow \text{Delete}(r(v), x)$
- 4. If x = k(v):
- 5. If $I(v) = r(v) = \emptyset$: return \emptyset
- 6. If $I(v) = \emptyset$: return r(v)
- 7. If $r(v) = \emptyset$: return l(v)
- 8. $s \leftarrow Min(v)$
- 9. $k(v) \leftarrow k(s)$
- 10. $r(v) \leftarrow \text{Delete}(r(v),s)$

Time complexity

Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h is a height of the tree.

Sadly the height of a binary search tree can be n.

Time complexity

Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h is a height of the tree.

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if $\forall_v : ||L(v)| - |R(v)|| \le 1$.

Depth of perfectly balanced tree is $\lfloor \log n \rfloor$.

Time complexity

Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on binary search tree runs in time O(h) where h is a height of the tree.

Definition (Perfectly ballanced tree)

Binary search tree is perfectly balanced if $\forall_v : ||L(v)| - |R(v)|| \le 1$.

Depth of perfectly balanced tree is $\lfloor \log n \rfloor$.

Theorem

The time complexity of insert on perfectly balanced tree is $\Omega(n)$.

Put $n = 2^k - 1$ and then perform Insert(1), Insert(2),..., Insert(n). Continue by Delete(1), Insert(n + 1), Delete(2), Insert(n + 2),...

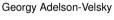
Georgy Adelson-Velsky

Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

$$\forall_{v}: |h(l(v)) - h(r(v))| \leq 1.$$



Evgenii Landis

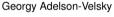
Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

$$\forall_{v}: \big|h(I(v)) - h(r(v))\big| \leq 1.$$

Lemma

Every AVL-tree with n vertices has depth $\Theta(\log n)$



Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

$$\forall_{v}: \big|h(I(v)) - h(r(v))\big| \leq 1.$$

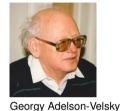
Lemma

Every AVL-tree with n vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree.

Show that
$$A_0 = 0$$
, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$



Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

$$\forall_{v}: \big|h(l(v)) - h(r(v))\big| \leq 1.$$

Lemma

Every AVL-tree with n vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree.

Show that $A_0 = 0$, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$

Observe $A_n > 2^{\frac{n}{2}}$:

$$A_n = A_{n-1} + A_{n-2} + 1 \ge 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}}$$

Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

$$\forall_{v}: \big|h(l(v)) - h(r(v))\big| \leq 1.$$

Lemma

Every AVL-tree with n vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree.

Show that $A_0 = 0$, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$

Observe $A_n \geq 2^{\frac{n}{2}}$:

$$A_n = A_{n-1} + A_{n-2} + 1 \ge 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}} = 2^{\frac{n}{2}} \left(2^{-\frac{1}{2}} + 2^{-1} \right)$$

Georgy Adelson-Velsky

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

$$\forall_{v}: \big|h(l(v)) - h(r(v))\big| \leq 1.$$

Lemma

Every AVL-tree with n vertices has depth $\Theta(\log n)$

Proof.

Denote by A_n the minimal number of vertices of an AVL-tree.

Show that $A_0 = 0$, $A_1 = 1$, $A_n = A_{n-1} + A_{n-2} + 1$

Observe $A_n \geq 2^{\frac{n}{2}}$:

$$A_n = A_{n-1} + A_{n-2} + 1 \geq 2^{\frac{n-1}{2}} + 2^{\frac{n-2}{2}} = 2^{\frac{n}{2}} \left(2^{-\frac{1}{2}} + 2^{-1} \right) > 2^n (0.707 + 0.5) > 2^{\frac{n}{2}}.$$

Insert operation

Remember for every vertex a sign $\delta(v) = h(I(v)) - h(r(v))$

Insert(v,x)

- 1. Insert element to a binary search tree
- 2. Re-balance the tree

Insert case --

Insert case -+