Algorithms and datastructures I Lecture 6: shortest paths and minimum spaning trees

Jan Hubička

Department of Applied Mathematics Charles University Prague

March 24 2020

Recall

0000

... and ask me questions during the lecture

Past lecture (self study)

Definition (Edge-valued graph)

We equip a given graph G = (V, E) with a function $\ell : E \to \mathbb{R}$ defining the length (or label) of a given edge. This way we create an edge-valued graph (sometimes also called network).

Past lecture (self study)

Definition (Edge-valued graph)

We equip a given graph G = (V, E) with a function $\ell : E \to \mathbb{R}$ defining the length (or label) of a given edge. This way we create an edge-valued graph (sometimes also called network).

Definition (Length of a walk)

Given a walk W in graph G, the length of W, written as $\ell(e)$ is defined as

$$\sum_{e \in E(W)} \ell(e).$$

Past lecture (self study)

Definition (Edge-valued graph)

We equip a given graph G = (V, E) with a function $\ell : E \to \mathbb{R}$ defining the length (or label) of a given edge. This way we create an edge-valued graph (sometimes also called network).

Definition (Length of a walk)

Given a walk W in graph G, the length of W, written as $\ell(e)$ is defined as

$$\sum_{e \in E(W)} \ell(e).$$

Definition (Distance in edge-valued graph)

Given two vertices $u, v \in V(G)$ their distance, denoted by d(u, v), is the minimum over lengths of all possible paths from u to v. Every path from u to v of length d(u, v) is called a shortest a path from u to v.

Negative versus non-negative lengths

Lemma (About simplifying walks)

Let G be an labelled graph such that all lengths are non-negative. Then for every walk W from u to v there exists a path P from u to v such that $\ell(P) \le \ell(W)$.

Dijkstra's algorithm

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. $state(v) \leftarrow unvisited$
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. state(v_0) \leftarrow open
- 6. $h(v_0) \leftarrow 0$
- 7. While there are open vertices:
- 8. Choose open vertex v with minimal h(v)
- 9. For every w such that $(v, w) \in E$
- 10. If $h(w) > h(v) + \ell(v, w)$ then:
- 11. $h(w) \leftarrow h(v) + \ell(v, w)$
- 12. $state(w) \leftarrow open$
- 13. $P(w) \leftarrow v$
- 14. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Dijkstra's algorithm

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. $state(v) \leftarrow unvisited$
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. state(v_0) \leftarrow open
- 6. $h(v_0) \leftarrow 0$
- 7. While there are open vertices:
- 8. Choose open vertex v with minimal h(v)
- 9. For every w such that $(v, w) \in E$
- 10. If $h(w) > h(v) + \ell(v, w)$ then:
- 11. $h(w) \leftarrow h(v) + \ell(v, w)$
- 12. $state(w) \leftarrow open$
- 13. $P(w) \leftarrow v$
- 14. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Relaxation (meta)algorithm

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. state(v) \leftarrow unvisited
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. $state(v_0) \leftarrow open$
 - 6. $h(v_0) \leftarrow 0$
- 7. While there exists open vertex *v*:
- 8. For every w such that $(v, w) \in E$
- 9. If $h(w) > h(v) + \ell(v, w)$ then:
- 10. $h(w) \leftarrow h(v) + \ell(v, w)$
- 11. $state(w) \leftarrow open$
- 12. $P(w) \leftarrow v$
- 13. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. $state(v) \leftarrow unvisited$
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. $state(v_0) \leftarrow open$
- 6. $h(v_0) \leftarrow 0$
- 7. While there exists open vertex v:
- 8. For every w such that $(v, w) \in E$
- 9. If $h(w) > h(v) + \ell(v, w)$ then:
- 10. $h(w) \leftarrow h(v) + \ell(v, w)$
- 11. $state(w) \leftarrow open$
- 12. $P(w) \leftarrow v$
- 13. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. $state(v) \leftarrow unvisited$
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. $state(v_0) \leftarrow open$
- 6. $h(v_0) \leftarrow 0$
- 7. While there exists open vertex *v*:
- 8. For every w such that $(v, w) \in E$
- 9. If $h(w) > h(v) + \ell(v, w)$ then:
- 10. $h(w) \leftarrow h(v) + \ell(v, w)$
- 11. $state(w) \leftarrow open$
- 12. $P(w) \leftarrow v$
- 13. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Invariant about values

h(v) never increases and always corresponds to a length of some walk.

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. $state(v) \leftarrow unvisited$
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. state(v_0) ← open
- 6. $h(v_0) \leftarrow 0$
- 7. While there exists open vertex *v*:
- 8. For every w such that $(v, w) \in E$
- 9. If $h(w) > h(v) + \ell(v, w)$ then:
- 10. $h(w) \leftarrow h(v) + \ell(v, w)$
- 11. $state(w) \leftarrow open$
- 12. $P(w) \leftarrow v$
- 13. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Invariant about values

h(v) never increases and always corresponds to a length of some walk.

Lemma (on reachability)

At the end of computation h(v) is finite $\iff v$ is reachable from v_0

Input: Graph G = (V, E), labelling of edges ℓ by non-negative reals and initial vertex v_0

- 1. For every vertex $v \in V$:
- 2. $state(v) \leftarrow unvisited$
- 3. $h(v) \leftarrow \infty$
- 4. $P(v) \leftarrow \text{undefined}$
- 5. state(v_0) ← open
- 6. $h(v_0) \leftarrow 0$
- 7. While there exists open vertex *v*:
- 8. For every w such that $(v, w) \in E$
- 9. If $h(w) > h(v) + \ell(v, w)$ then:
- 10. $h(w) \leftarrow h(v) + \ell(v, w)$
- 11. $state(w) \leftarrow open$
- 12. $P(w) \leftarrow v$
- 13. $state(v) \leftarrow closed$

Output: Array of distances h, array of predecessors P

Invariant about values

h(v) never increases and always corresponds to a length of some walk.

Lemma (on reachability)

At the end of computation h(v) is finite $\iff v$ is reachable from v_0

Lemma (on distance)

If there are no negative cycles in graph G, at the end of computation $h(v)=d(v_0,v)$

This is a relaxation algorithm created from Dijkstra's algorithm by replacing heap by queue (thus it always closes the vertex which was open for longest time).

Definition (Stage of a computation)

Stage of computation is defined as follows:

 S_0 is the stage algorithm opens v_0

 S_{i+1} closes all vertices opened during stage S_i

This is a relaxation algorithm created from Dijkstra's algorithm by replacing heap by queue (thus it always closes the vertex which was open for longest time).

Definition (Stage of a computation)

Stage of computation is defined as follows:

 S_0 is the stage algorithm opens v_0

 S_{i+1} closes all vertices opened during stage S_i

Invariant on stages

At the end of stage S_i the h(v) is bounded by above by the length of shortest walk from v_0 to v with at most i edges.

This is a relaxation algorithm created from Dijkstra's algorithm by replacing heap by queue (thus it always closes the vertex which was open for longest time).

Definition (Stage of a computation)

Stage of computation is defined as follows:

 S_0 is the stage algorithm opens v_0

 S_{i+1} closes all vertices opened during stage S_i

Invariant on stages

At the end of stage S_i the h(v) is bounded by above by the length of shortest walk from v_0 to v with at most i edges.

Corollary

If G has no negative cycles, the algorithm will finish.

This is a relaxation algorithm created from Dijkstra's algorithm by replacing heap by queue (thus it always closes the vertex which was open for longest time).

Definition (Stage of a computation)

Stage of computation is defined as follows:

 S_0 is the stage algorithm opens v_0

 S_{i+1} closes all vertices opened during stage S_i

Invariant on stages

At the end of stage S_i the h(v) is bounded by above by the length of shortest walk from v_0 to v with at most i edges.

Corollary

If G has no negative cycles, the algorithm will finish.

Theorem

If G has no negative cycles, Bellman-Ford algorithm will find the shortest distances in time O(nm).

Floyd-Washall algorithm

Let G be a graph with vertices $V = \{1, 2, \dots n\}$. Instead of distances from a given vertex v_0 we want to compute distance matrix D such that $D_{i,j} = d(i,j)$.

Floyd-Washall algorithm

Let G be a graph with vertices $V = \{1, 2, \dots n\}$. Instead of distances from a given vertex v_0 we want to compute distance matrix D such that $D_{i,i} = d(i, j)$.

Definition

Let D^k be a matrix such that $D^k_{i,j}$ is the length of shortest path from i to j such that all internal vertices are in $\{1,2,\ldots,k\}$.

Flovd-Washall algorithm

Let G be a graph with vertices $V = \{1, 2, \dots n\}$. Instead of distances from a given vertex v_0 we want to compute distance matrix D such that $D_{i,j} = d(i,j)$.

Definition

Let D^k be a matrix such that $D^k_{i,j}$ is the length of shortest path from i to j such that all internal vertices are in $\{1, 2, \ldots, k\}.$

Flovd-Washall Algorithm

Input: Matrix of length of edges D^0

- 1. For $k = 0, \dots, n-1$
- 2. For i = 1, ..., n
- 3. For i = 1, ..., n
- $D_{i,i}^{k+1} = \min(D_{i,i}^k, D_{i,k+1}^k + D_{k+1,i}^K)$

Output: Matrix of distances Dⁿ

Let G be a graph with vertices $V = \{1, 2, \dots n\}$.

Instead of distances from a given vertex v_0 we want to compute distance matrix D such that $D_{i,j} = d(i,j)$.

Definition

Let D^k be a matrix such that $D^k_{i,j}$ is the length of shortest path from i to j such that all internal vertices are in $\{1,2,\ldots,k\}$.

Floyd-Washall Algorithm

Input: Matrix of length of edges D^0

- 1. For k = 0, ..., n-1
- 2. For i = 1, ..., n
- 3. For j = 1, ..., n
- 4. $D_{i,j}^{k+1} = \min(D_{i,j}^k, D_{i,k+1}^k + D_{k+1,j}^K)$

Output: Matrix of distances Dⁿ

Time complexity $\Theta(n^3)$.

Floyd-Washall algorithm

Let G be a graph with vertices $V = \{1, 2, \dots n\}$. Instead of distances from a given vertex v_0 we want to compute distance matrix D such that $D_{i,i} = d(i,j)$.

Definition

Let D^k be a matrix such that $D^k_{i,j}$ is the length of shortest path from i to j such that all internal vertices are in $\{1, 2, \dots, k\}$.

Floyd-Washall Algorithm

Input: Matrix of length of edges D^0

- 1. For k = 0, ..., n-1
- 2. For i = 1, ..., n
- 3. For j = 1, ..., n
- 4. $D_{i,j}^{k+1} = \min(D_{i,j}^k, D_{i,k+1}^k + D_{k+1,j}^K)$

Output: Matrix of distances Dⁿ

Time complexity $\Theta(n^3)$.

Memory complexity can be reduced by $\Theta(n^2)$ by modifying matrix "in place" (it holds that $D_{k+1}^{k+1} := D_{k+1}^k$, and $D_{k+1}^{k+1} = D_{k+1}^k$).

Minimum spanning tree

Definition

- 1. Let G = (V, E) be connected unoriented graph $w : E \to \mathbb{R}$ an weight function.
- 2. Let H be a subgraph of G, then the weight of H is the sum of weights of all edges in H.
- 3. Spanning tree of G is a subgraph T of G which is a tree and contains all vertices of G
- 4. Spanning tree is minimum if there is no spanning three of smaller weight.

Minimum spanning tree

Definition

- 1. Let G = (V, E) be connected unoriented graph $w : E \to \mathbb{R}$ an weight function.
- 2. Let H be a subgraph of G, then the weight of H is the sum of weights of all edges in H.
- 3. Spanning tree of G is a subgraph T of G which is a tree and contains all vertices of G
- 4. Spanning tree is minimum if there is no spanning three of smaller weight.

For simplicity: assume that for $e \neq e' \in E$ it holds that $w(e) \neq w(e')$ (weights are unique)

Jarník algorithm, 1930 (Prim, 1957, Dijkstra in 1959)

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $v_0 \leftarrow$ arbitrary vertx in V
- 2. $T \leftarrow (\{v_0\}, \emptyset)$
- 3. While there exists edge $\{u, v\} \in E$ such that $u \in V(T)$ and $v \notin V(T)$:
- Add minimal such edge to T

Output: Minimum spanning tree T.

Minimum spanning tree

Definition

- 1. Let G = (V, E) be connected unoriented graph $w : E \to \mathbb{R}$ an weight function.
- 2. Let H be a subgraph of G, then the weight of H is the sum of weights of all edges in H.
- 3. Spanning tree of G is a subgraph T of G which is a tree and contains all vertices of G
- 4. Spanning tree is minimum if there is no spanning three of smaller weight.

For simplicity: assume that for $e \neq e' \in E$ it holds that $w(e) \neq w(e')$ (weights are unique)

Jarník algorithm, 1930 (Prim, 1957, Dijkstra in 1959)

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $v_0 \leftarrow$ arbitrary vertx in V
- 2. $T \leftarrow (\{v_0\}, \emptyset)$
- 3. While there exists edge $\{u, v\} \in E$ such that $u \in V(T)$ and $v \notin V(T)$:
- 4. Add minimal such edge to T

Output: Minimum spanning tree T.

Lemma

Algorithm will finish in < n steps and will return some spanning tree.

Definition (Elementary cut)

Given graph G = (V, E), we call $C \subseteq E$ an elementary cut if there exists $A, B \subseteq V$ such that $A \cap B = 0$ $A \cup B = V$ and $C = \{\{a, b\} \in E | a \in A, b \in B\}$.

Definition (Elementary cut)

Given graph G = (V, E), we call $C \subseteq E$ an elementary cut if there exists $A, B \subseteq V$ such that $A \cap B = 0$ $A \cup B = V$ and $C = \{\{a, b\} \in E | a \in A, b \in B\}$.

Lemma (Cut lemma)

Let G be a graph and w a weight function with unique weights, C an elementary cut in G and e minimum edge in C. Then e belongs to every minimum spanning tree in G.

Jarník algorithm

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $v_0 \leftarrow$ arbitrary vertx in V
- 2. $T \leftarrow (\{v_0\}, \emptyset)$
- 3. While there exists edge $\{u, v\} \in E$ such that $u \in V(T)$ and $v \notin V(T)$:
- 4. Add minimal such edge to T

Output: Minimum spanning tree *T*.

Definition (Elementary cut)

Given graph G = (V, E), we call $C \subseteq E$ an elementary cut if there exists $A, B \subseteq V$ such that $A \cap B = 0$ $A \cup B = V$ and $C = \{\{a, b\} \in E | a \in A, b \in B\}$.

Lemma (Cut lemma)

Let G be a graph and w a weight function with unique weights, C an elementary cut in G and e minimum edge in C. Then e belongs to every minimum spanning tree in G.

Jarník algorithm

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $v_0 \leftarrow$ arbitrary vertx in V
- 2. $T \leftarrow (\{v_0\}, \emptyset)$
- 3. While there exists edge $\{u, v\} \in E$ such that $u \in V(T)$ and $v \notin V(T)$:
- 4. Add minimal such edge to T

Output: Minimum spanning tree *T*.

Consequences to Jarník algorithm:

- 1. Every edge chosen by the algorithm is minimum in some elementary cut.
- 2. $T \subseteq M$ for every minimum spanning tree M.
- 3. T = M for every minimum spanning tree M.

Theorem

Let G be a connected graph and w a weight function with unique weight. Jarník algorithm will find its spanning tree in time O(nm).

Definition (Elementary cut)

Given graph G = (V, E), we call $V \subseteq E$ an elementary cut if there exists $A, B \subseteq V$ such that: $A \cap B = \emptyset$ $A \cup B = C$ and $C = \{\{a, b\} \in E | a \in A, b \in B\}$.

Definition (Elementary cut)

Given graph G = (V, E), we call $V \subseteq E$ an elementary cut if there exists $A, B \subseteq V$ such that:

$$A \cap B = \emptyset$$
 $A \cup B = C$ and $C = \{\{a, b\} \in E | a \in A, b \in B\}$.

Lemma (Cut lemma)

Let G be a graph and w a weight function with unique weights, C an elementary cut in G and e minimum edge in C. Then e belongs to every minimum spanning tree in G.

Proof.

Assume, to the contrary that there is elementary cut C, minimum edge $e \in C$ and minimum spanning tree T such that $e \notin T$.

Definition (Elementary cut)

Given graph G = (V, E), we call $V \subseteq E$ an elementary cut if there exists $A, B \subseteq V$ such that: $A \cap B = \emptyset$ $A \cup B = C$ and $C = \{\{a, b\} \in E | a \in A, b \in B\}$.

Lemma (Cut lemma)

Let G be a graph and w a weight function with unique weights, C an elementary cut in G and e minimum edge in C. Then e belongs to every minimum spanning tree in G.

Proof.

Assume, to the contrary that there is elementary cut C, minimum edge $e \in C$ and minimum spanning tree T such that $e \notin T$. Then we can produce spanning tree T' of even smaller weight!

Borůvka algorithm, 1926

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $T \leftarrow (V, \emptyset)$
- 2. While *T* is not connected:
- 3. Decompose T to (connected) components $T_1, \ldots T_k$.
- 4. For every tree T_i find minimum edge e_i between T_i and rest of a graph.
- 5. Add to T edges $\{e_1, \ldots, e_k\}$

Output: Minimum spanning tree T.

Borůvka algorithm, 1926

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $T \leftarrow (V, \emptyset)$
- 2. While T is not connected:
- 3. Decompose T to (connected) components $T_1, \ldots T_k$.
- 4. For every tree T_i find minimum edge e_i between T_i and rest of a graph.
- 5. Add to T edges $\{e_1, \ldots, e_k\}$

Output: Minimum spanning tree *T*.

Theorem

Algorithm will terminate in $\lfloor \log_2(n) \rfloor$ iterations and will return minimum spanning tree

Borůvka algorithm, 1926

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $T \leftarrow (V, \emptyset)$
- 2. While *T* is not connected:
- 3. Decompose T to (connected) components $T_1, \ldots T_k$.
- 4. For every tree T_i find minimum edge e_i between T_i and rest of a graph.
- 5. Add to T edges $\{e_1, \ldots, e_k\}$

Output: Minimum spanning tree T.

Theorem

Algorithm will terminate in $\lfloor \log_2(n) \rfloor$ iterations and will return minimum spanning tree

Proof.

After k iteration every connected component has at least 2^k vertices.

Borůvka algorithm, 1926

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $T \leftarrow (V, \emptyset)$
- 2. While *T* is not connected:
- 3. Decompose T to (connected) components $T_1, \ldots T_k$.
- 4. For every tree T_i find minimum edge e_i between T_i and rest of a graph.
- 5. Add to T edges $\{e_1, \ldots, e_k\}$

Output: Minimum spanning tree T.

Theorem

Algorithm will terminate in $\lfloor \log_2(n) \rfloor$ iterations and will return minimum spanning tree

Proof.

After k iteration every connected component has at least 2^k vertices.

Each edge e_i chosen is minimum in an elementary cut consisting of all edges out of T_i .

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. $T \leftarrow (V, \emptyset)$
- 2. While T is not connected:
- 3. Decompose T to (connected) components $T_1, \ldots T_k$.
- 4. For every tree T_i find minimum edge e_i between T_i and rest of a graph.
- 5. Add to T edges $\{e_1, \ldots, e_k\}$

Output: Minimum spanning tree *T*.

Theorem

Algorithm will terminate in $\lfloor \log_2(n) \rfloor$ iterations and will return minimum spanning tree

Proof.

After k iteration every connected component has at least 2^k vertices.

Each edge e_i chosen is minimum in an elementary cut consisting of all edges out of T_i .

Remark: Algorithm was later rediscovered by Florek, Łukasiewicz, Perkal, Steinhaus a Zubrzycki in 1951 and in 1960's by Sollin. It is useful in parallel computation and known as Sollin's algorithm.

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree T.

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree T.

Lemma

Kruskal algorithm will terminate and return minimum spanning tree.

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree T.

Time complexity: O(nm).

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree *T*.

Definition (Union-find data-structure)

Data-structure Union-find represents connected components and supports operations

FIND(u, v) return true iff u and v are in same components

UNION(u, v) adds edge $\{u, v\}$ that unions the two components to a single component.

Kruskal algorithm, 1956

Input: Connected graph G = (V, E) and weight function w with unique weights

- 1. Sort edges by weights; $w(e_1) \leq \cdots \leq w(e_m)$
- 2. $T \leftarrow (V, \emptyset)$
- 3. For i = 1, ... m:
- 4. $u, v \leftarrow \text{vertices in edge } e_i$
- 5. If u and v are in different components of T:
- 6. $T \leftarrow T + e_i$.

Output: Minimum spanning tree *T*.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

We will show a data-structure which implements both FIND and UNION in $O(\log n)$. From his we obtain $O(m \log n)$ running time.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

FIND(u, v): O(1) (compare if c(u) = c(v))

UNION(u, v): O(n) (search array v and change all occurences of c(u) to c(v)

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

FIND(u, v): O(1) (compare if c(u) = c(v))

UNION(u, v): O(n) (search array v and change all occurrences of c(u) to c(v)

Runtime of complete algorithm: $O(m \log n + m + n^2) = O(m \log n + n^2)$

Theorem

Kruskal algorithm finds minimal spanning tree in time $O(m \log n + mT_f(n) + nT_u(n))$ where T_f is time complexity of FIND and T_u is a time complexity of UNION on graph with n vertices.

Idea: use array c. For a given vertex v put c(v) to ID of a component it belongs to.

FIND(u, v): O(1) (compare if c(u) = c(v))

UNION(u, v): O(n) (search array v and change all occurences of c(u) to c(v)

Runtime of complete algorithm: $O(m \log n + m + n^2) = O(m \log n + n^2)$

Homework: Try to analyze variant where you always rename the smaller component in time O(s) where s is the size of the component. (it does improve time complexity).