Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

Algorithms and datastructures I Lecture 11: Master theorem, Strassen algorithm, *k*-th smallest element

Jan Hubička

Department of Applied Mathematics Charles University Prague

April 28 2020

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
● ○	000	0	00	00

Divide & Conquer

"Divide and conquer is an algorithm design paradigm based on multi-branched recursion. A divide-and-conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem."

John von Neumann

MergeSort (x_1, \ldots, x_n) , John von Neumann, 1945

1. if
$$n = 1$$
: Return (x_1) .

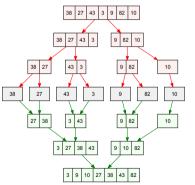
2.
$$(y_1, ..., y_{\lfloor \frac{n}{2} \rfloor}) \leftarrow \text{MergeSort}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor})$$

3.
$$(z_1, \ldots, z_{\lceil \frac{n}{2} \rceil}) \leftarrow \text{MergeSort} (x_{\lfloor \frac{n}{2} \rfloor+1}, \ldots, x_n)$$

4. Return Merge
$$((y_1, \ldots, y_{\lfloor \frac{n}{2} \rfloor}), (z_1, \ldots, z_{\lfloor \frac{n}{2} \rfloor}))$$

Time complexity (for
$$n = 2^k$$
)

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$
$$T(1) = 1$$



Recall Master theorem	Matrix multiplication	QuickSelect	Median of Medians
000	0	00	00

Multiplication (Karatsuba 1960)

$$X = \boxed{A \ B} = A \cdot 10^{\frac{n}{2}} + B$$

$$Y = \boxed{C \ D} = C \cdot 10^{\frac{n}{2}} + D$$

$$X \cdot Y = AC \cdot 10^{n} + (AD + BC) \cdot 10^{\frac{n}{2}} + BD$$

$$= AC \cdot 10^{n} + ((A + B)(C + D) - AC - BD) \cdot 10^{\frac{n}{2}} + BL$$

Anatolii Alexeievitch Karatsuba

 $T(n)=3T(\frac{n}{2})+cn$

$$T(n) = \sum_{i=0}^{\log n} \left(\frac{3}{2}\right)^{i} cn = cn \cdot \frac{\left(\frac{3}{2}\right)^{\log n+1} - 1}{\left(\frac{3}{2}\right) - 1} = \Theta\left(n \cdot \left(\frac{3}{2}\right)^{\log n}\right) = \Theta\left(n \cdot \left(\frac{3^{\log n}}{2^{\log n}}\right)\right) = \Theta(3^{\log n})$$
$$= \Theta\left(\left(2^{\log 3}\right)^{\log n}\right) = \Theta\left(2^{\log 3 \log n}\right) = \Theta\left(\left(2^{\log 3}\right)^{\log 3}\right) = \Theta\left(n^{\log 3}\right) = \Theta\left(n^{1.59\dots}\right).$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	● 0 0	0	00	00

What about general case?

General recurrence

$$T(1) = 1$$

$$T(n) = aT(\lfloor \frac{n}{b} \rfloor) + \Theta(n^{c})$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	● 0 0	0	00	00

What about general case?

General recurrence

$$T(1) = 1$$

$$T(n) = aT(\lfloor \frac{n}{b} \rfloor) + \Theta(n^{c})$$

# of subprob	size of subprob.	time per subprob	time per level

Recall Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00 000	0	00	00
Lets do the math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right)$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
	le e secolte			
Lets do t	ne math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Lets do th	ne math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Lets do tl	he math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta\left(n^c \sum_{i \ge 0} q^i\right)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
l ata da t	ha math			
Lets do t	nemain			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta(n^c \sum_{i \ge 0} q^i) = \Theta(n^c)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
l ata da t	ha math			
Lets do t	nemain			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta\left(n^c \sum_{i \ge 0} q^i\right) = \Theta(n^c)$ 3. q > 1: $T(n) = \Theta(a^k)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
l ata da t	ha math			
Lets do t	nemain			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta\left(n^c \sum_{i \ge 0} q^i\right) = \Theta(n^c)$ 3. q > 1: $T(n) = \Theta(a^k) = \Theta(a^{\log_b n})$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Lets do tl	he math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta(n^c \sum_{i \ge 0} q^i) = \Theta(n^c)$ 3. q > 1: $T(n) = \Theta(a^k) = \Theta(a^{\log_b n}) = \Theta((b^{\log_b a})^{\log_b n})$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Lets do tl	he math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta\left(n^c \sum_{i \ge 0} q^i\right) = \Theta(n^c)$ 3. q > 1: $T(n) = \Theta\left(a^k\right) = \Theta\left(a^{\log_b n}\right) = \Theta\left(\left(b^{\log_b a}\right)^{\log_b n}\right) = \Theta\left(\left(b^{\log_b n}\right)^{\log_b a}\right)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Lets do tl	he math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta\left(n^c \sum_{i \ge 0} q^i\right) = \Theta(n^c)$ 3. q > 1: $T(n) = \Theta\left(a^k\right) = \Theta\left(a^{\log_b n}\right) = \Theta\left(\left(b^{\log_b n}\right)^{\log_b n}\right) = \Theta\left(\left(b^{\log_b n}\right)^{\log_b n}\right) = \Theta\left(n^{\log_b n}\right)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
l ata da t	ha math			
Lets do t	nemain			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put $q = \frac{a}{b^c}$ and consider cases: 1. q = 1: $T(n) = \Theta(n^c \log n)$ 2. q < 1: $T(n) = \Theta(n^c \sum_{i \ge 0} q^i) = \Theta(n^c)$ 3. q > 1: $T(n) = \Theta(a^k) = \Theta(a^{\log_b n}) = \Theta((b^{\log_b n})^{\log_b n}) = \Theta((b^{\log_b n})^{\log_b n}) = \Theta(n^{\log_b n})$

Question

What if $n \le b^k$ for some integer k?

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Lets do th	ne math			

$$T(N) = \Theta\left(\sum_{i=0}^{k} N^{c} \frac{a^{i}}{b^{ic}}\right) = \Theta\left(N^{c} \sum_{i=0}^{k} \left(\frac{a}{b^{c}}\right)^{i}\right)$$

Put
$$q = \frac{a}{b^c}$$
 and consider cases:
1. $q = 1$: $T(n) = \Theta(n^c \log n)$
2. $q < 1$: $T(n) = \Theta\left(n^c \sum_{i \ge 0} q^i\right) = \Theta(n^c)$
3. $q > 1$: $T(n) = \Theta\left(a^k\right) = \Theta\left(a^{\log_b n}\right) = \Theta\left(\left(b^{\log_b n}\right)^{\log_b n}\right) = \Theta\left(\left(b^{\log_b n}\right)^{\log_b n}\right) = \Theta\left(n^{\log_b n}\right)$

Question

What if $n \leq b^k$ for some integer k?

Easy: Put $b^k \le n \le b^{k+1}$ and then $T(b^k) \le T(n) \le T(b^{k+1})$

Recall	Master theorem	Matrix multiplication	QuickSelect
00	000	0	00

Median of Medians

Master theorem

Theorem (Master theorem)

Recall	Master theorem	Matrix multiplication	QuickSelect
00	00●	0	00

Median of Medians

Master theorem

Theorem (Master theorem)

Given $a \in \mathbb{N}^+$, $b \ge 1$, $c \ge 1$ recurrence:

$$T(1) = 1$$

$$T(n) = aT(\lfloor \frac{n}{b} \rfloor) + \Theta(n^{c})$$

has solution:

- 1. $T(n) = \Theta(n^c \log n)$ if $\frac{a}{b^c} = 1$.
- 2. $T(n) = \Theta(n^c)$ if $\frac{a}{b^c} < 1$.
- 3. $T(n) = \Theta\left(n^{\log_b a}\right)$ if $\frac{a}{b^c} > 1$.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Master th	leorem			

Theorem (Master theorem)

Given $a \in \mathbb{N}^+$, $b \ge 1$, $c \ge 1$ recurrence:

$$T(1) = 1$$

$$T(n) = aT(\lfloor \frac{n}{b} \rfloor) + \Theta(n^{c})$$

has solution:

- 1. $T(n) = \Theta(n^c \log n)$ if $\frac{a}{b^c} = 1$.
- 2. $T(n) = \Theta(n^c)$ if $\frac{a}{b^c} < 1$.
- 3. $T(n) = \Theta(n^{\log_b a})$ if $\frac{a}{b^c} > 1$.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	•	00	00
-				

Strassen's algorithm

Volker Strassen

Strassen's algorithm, 1969

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$

0	000	•
Strassen's	algorithm	
		Strassen's algorithm, 1969 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$ where:
Volkor S	trasson	Т

Master theorem

Volker Strassen

Recall

S

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} P & Q \\ R & S \end{pmatrix} = \begin{pmatrix} T_1 + T_4 - T_5 + T_7 & T_3 + T_5 \\ T_2 + T_4 & T_1 - T_2 + T_3 + T_6 \end{pmatrix},$

QuickSelect

Median of Medians

Matrix multiplication

$$T_1 = (A+D) \cdot (P+S)$$

$$T_2 = (C+D) \cdot P$$

$$T_3 = A \cdot (Q-S)$$

$$T_4 = D \cdot (R-P)$$

$$T_5 = (A+B) \cdot S$$

$$T_6 = (C-A) \cdot (P+Q)$$

$$T_7 = (B-D) \cdot (R+S)$$

trassen's algorithm	
arassen's algorithm	
Volker Straccon	

Master theorem

Volker Strassen

Recall

S

Strassen's algorithm, 1969

.

Matrix multiplication

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} P & Q \\ R & S \end{pmatrix} = \begin{pmatrix} T_1 + T_4 - T_5 + T_7 & T_3 + T_5 \\ T_2 + T_4 & T_1 - T_2 + T_3 + T_6 \end{pmatrix},$$

QuickSelect

where:

$$T_1 = (A+D) \cdot (P+S)$$

$$T_2 = (C+D) \cdot P$$

$$T_3 = A \cdot (Q-S)$$

$$T_4 = D \cdot (R-P)$$

$$T_5 = (A+B) \cdot S$$

$$T_6 = (C-A) \cdot (P+Q)$$

$$T_7 = (B-D) \cdot (R+S)$$

7 multiplications instead of 8 \Rightarrow time complexity $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2) = \Theta(n^{\log_2 7}) = O(n^{2.808}).$

Median of Medians

Recall 00	Master theorem	Matrix multiplication	Quicks
Strassen's al	gorithm		

Strassen's algorithm, 1969

Volker Strassen

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} P & Q \\ R & S \end{pmatrix} = \begin{pmatrix} T_1 + T_4 - T_5 + T_7 & T_3 + T_5 \\ T_2 + T_4 & T_1 - T_2 + T_3 + T_6 \end{pmatrix},$

where:

$$T_1 = (A+D) \cdot (P+S)$$

$$T_2 = (C+D) \cdot P$$

$$T_3 = A \cdot (Q-S)$$

$$T_4 = D \cdot (R-P)$$

$$T_5 = (A+B) \cdot S$$

$$T_6 = (C-A) \cdot (P+Q)$$

$$T_7 = (B-D) \cdot (R+S)$$

7 multiplications instead of 8 \Rightarrow time complexity $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2) = \Theta(n^{\log_2 7}) = O(n^{2.808}).$

Current record: $(n^{2.373})$ with really big constant factors

QuickSelect

Median of Medians

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	••	00

Problem: Find *k*-th smallest element of a sequence (x_1, \ldots, x_n) .

Sir Tony Horae

QuickSelect((x_1, \ldots, x_n) , k), Sir Tony Horae 1961

1. Choose pivot p.

2. Split
$$(x_1, \ldots, x_n)$$
 to $L = \{x_i : x_i < p\}, E = \{x_i : x_i = p\}, R = \{x_i : x_i > p\}.$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	•0	00

Problem: Find *k*-th smallest element of a sequence (x_1, \ldots, x_n) .

Sir Tony Horae

QuickSelect((x_1, \ldots, x_n) , k), Sir Tony Horae 1961

- 1. Choose pivot p.
- 2. Split (x_1, \ldots, x_n) to $L = \{x_i : x_i < p\}, E = \{x_i : x_i = p\}, R = \{x_i : x_i > p\}.$
- 3. If $k \leq |L|$: return QuickSelect(*L*,*k*).

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	● O	00

Problem: Find *k*-th smallest element of a sequence (x_1, \ldots, x_n) .

Sir Tony Horae

QuickSelect((x_1, \ldots, x_n) , k), Sir Tony Horae 1961

- 1. Choose pivot p.
- 2. Split (x_1, \ldots, x_n) to $L = \{x_i : x_i < p\}, E = \{x_i : x_i = p\}, R = \{x_i : x_i > p\}.$
- 3. If $k \leq |L|$: return QuickSelect(*L*,*k*).
- 4. If $k \leq |L| + |E|$: return k.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	● O	00

Problem: Find *k*-th smallest element of a sequence (x_1, \ldots, x_n) .

Sir Tony Horae

QuickSelect((x_1, \ldots)	, <i>x</i> _n), k), Sir	Tony Horae 1961
------------------------------	------------------------------------	-----------------

- 1. Choose pivot p.
- 2. Split (x_1, \ldots, x_n) to $L = \{x_i : x_i < p\}, E = \{x_i : x_i = p\}, R = \{x_i : x_i > p\}.$
- 3. If $k \leq |L|$: return QuickSelect(*L*,*k*).
- 4. If $k \leq |L| + |E|$: return k.
- 5. return QuickSelect(L, k |L| |E|).

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	● O	00

Problem: Find *k*-th smallest element of a sequence (x_1, \ldots, x_n) .

Sir Tony Horae

QuickSelect((x_1, \ldots)	, <i>x</i> _n), k), Sir	Tony Horae 1961
------------------------------	------------------------------------	-----------------

- 1. Choose pivot p.
- 2. Split (x_1, \ldots, x_n) to $L = \{x_i : x_i < p\}, E = \{x_i : x_i = p\}, R = \{x_i : x_i > p\}.$
- 3. If $k \leq |L|$: return QuickSelect(*L*,*k*).
- 4. If $k \leq |L| + |E|$: return k.
- 5. return QuickSelect(L, k |L| |E|).

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	0	00

1. Assume that *p* is always maximum.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	0	00

1. Assume that p is always maximum. Time complexity: $\Theta(N^2)$.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- Assume that *p* is always maximum. Time complexity: ⊖(*N*²).
 Assume that *p* is median.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that *p* is median.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	0•	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p).

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*).

Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	0.	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \ge \frac{1}{2}$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $\Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

Proof. Method 1: $\mathbb{E}[\# \text{ of trials}] = \sum_{i \ge 1} i \cdot \Pr[\text{we do precisely } i \text{ trials}]$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

Proof.

Method 1: $\mathbb{E}[\# \text{ of trials}] = \sum_{i \ge 1} i \cdot \Pr[\text{we do precisely } i \text{ trials}]$ $\Pr[\text{we do precisely } i \text{ trials}] = (1 - p)^i p$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

Proof.

Method 1: $\mathbb{E}[\# \text{ of trials}] = \sum_{i \ge 1} i \cdot \Pr[\text{we do precisely } i \text{ trials}]$ $\Pr[\text{we do precisely } i \text{ trials}] = (1 - p)^i p$ Method 2: $\mathbb{E}[\# \text{ of trials}] = D = 1 + p0 + (1 - p)D$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that *p* is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

Proof.

Method 1: $\mathbb{E}[\# \text{ of trials}] = \sum_{i \ge 1} i \cdot \Pr[\text{we do precisely } i \text{ trials}]$ $\Pr[\text{we do precisely } i \text{ trials}] = (1 - p)^i p$ Method 2: $\mathbb{E}[\# \text{ of trials}] = D = 1 + p0 + (1 - p)D$ D(1 + 1 + q) = 1

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that *p* is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

Proof.

Method 1: $\mathbb{E}[\# \text{ of trials}] = \sum_{i \ge 1} i \cdot \Pr[\text{we do precisely } i \text{ trials}]$ $\Pr[\text{we do precisely } i \text{ trials}] = (1 - p)^i p$ Method 2: $\mathbb{E}[\# \text{ of trials}] = D = 1 + p0 + (1 - p)D$ D(1 + 1 + q) = 1 $D = \frac{1}{q}$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that *p* is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $\Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

5. Random choice of pivot.

Stage of algorithm ends by finding almost median.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that *p* is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $\Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

5. Random choice of pivot.

Stage of algorithm ends by finding almost median.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	0	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $\Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

5. Random choice of pivot.

Stage of algorithm ends by finding almost median. $\mathbb{E}[\# \text{ steps in stage}] = 2$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that *p* is median.

- 3. Assume that p is "almost median" (at least $\frac{1}{4}$ of elements is smaller than p and $\frac{1}{4}$ is bigger than p). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $\Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

5. Random choice of pivot.

Stage of algorithm ends by finding almost median. $\mathbb{E}[\# \text{ steps in stage}] = 2$ $\mathbb{E}[\text{time for stage}] = \Theta(N)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

- 1. Assume that *p* is always maximum. Time complexity: $\Theta(N^2)$.
- 2. Assume that p is median.

- 3. Assume that *p* is "almost median" (at least $\frac{1}{4}$ of elements is smaller than *p* and $\frac{1}{4}$ is bigger than *p*). Time complexity: $T(N) = T\left(\frac{3N}{2}\right) + \Theta(N) = \Theta(N)$.
- 4. Randomized choice of almost median: $Pr[random element is almost median] \geq \frac{1}{2}$

Lemma

Let V be an event that occurs in trial with probability p. The expected number of trials to first occurrence of V is $\frac{1}{p}$.

Expected number of attempts; time complexity $\Theta(N)$.

5. Random choice of pivot.

Stage of algorithm ends by finding almost median. $\mathbb{E}[\# \text{ steps in stage}] = 2$ $\mathbb{E}[\text{time for stage}] = \Theta(N)$ Every stage reduces problem to $\frac{3}{4}$. Time complexity: $\Theta(N)$.

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	•0
Median of	medians algorithm			

Select($(x_1, \ldots, x_n), k$), Blum, Floyd, Pratt, Rivest, Tarjan 1973

- 1. If $n \leq 10$ use brute-force.
- 2. Divide $x_1, \ldots x_n$ to 5-tuples $P_1, \ldots P_t$, $t = \lfloor \frac{n}{b} \rfloor$.
- 3. For $i = 1, 2, \ldots t$: $m_i \leftarrow \text{Median}(P_i)$.
- 4. $p \leftarrow \text{Select}((m_1, \ldots, m_t), \lfloor \frac{t}{2} \rfloor)$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians	
00	000	0	00	•0	
Median of medians algorithm					

Select($(x_1, \ldots, x_n), k$), Blum, Floyd, Pratt, Rivest, Tarjan 1973

- 1. If $n \leq 10$ use brute-force.
- 2. Divide $x_1, \ldots x_n$ to 5-tuples $P_1, \ldots P_t$, $t = \lfloor \frac{n}{b} \rfloor$.
- 3. For $i = 1, 2, \ldots t$: $m_i \leftarrow \text{Median}(P_i)$.
- 4. $p \leftarrow \text{Select}((m_1, \ldots, m_t), \left| \frac{t}{2} \right|)$
- 5. Split (x_1, \ldots, x_n) to $L = \{x_i : x_i < p\}, E = \{x_i : x_i = p\}, R = \{x_i : x_i > p\}$.
- 6. If $k \leq |L|$: return Select(*L*,*k*).
- 7. If $k \leq |L| + |E|$: return k.
- 8. return Select(L, k |L| |E|).

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00
Median of m	nedians algorithm			

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

Recall 00	Master theorem	Matrix multiplication	QuickSelect	Median of Medians ○●
	Constant Provide a Constant States			

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

$$cn = \frac{1}{5}cn + \frac{7}{10}cn + \alpha n$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

$$cn = \frac{1}{5}cn + \frac{7}{10}cn + \alpha n$$
$$\left(1 - \frac{1}{5} - \frac{7}{10}\right)cn = \alpha n$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

$$cn = \frac{1}{5}cn + \frac{7}{10}cn + \alpha n$$

$$\left(1 - \frac{1}{5} - \frac{7}{10}\right)cn = \alpha n$$

$$\frac{1}{10}cn = \alpha n$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

$$cn = \frac{1}{5}cn + \frac{7}{10}cn + \alpha n$$

$$\left(1 - \frac{1}{5} - \frac{7}{10}\right)cn = \alpha n$$

$$\frac{1}{10}cn = \alpha n$$

$$c = 10\alpha$$

Recall	Master theorem	Matrix multiplication	QuickSelect	Median of Medians
00	000	0	00	00

$$T(n) = T(\frac{n}{5}) + T(\frac{7}{10}n) + \Theta(n)$$

Assume T(n) = cn

$$cn = \frac{1}{5}cn + \frac{7}{10}cn + \alpha n$$

$$\left(1 - \frac{1}{5} - \frac{7}{10}\right)cn = \alpha n$$

$$\frac{1}{10}cn = \alpha n$$

$$c = 10\alpha$$

Deterministic runtime: $\Theta(n)$!