NMAG403 - Combinatorics

November 8, 2024 – Chromatic number and Chooseability II

In class problems

- 30. Let $G = (A \cup B, E)$ be a bipartitie graph with A and B being its classes of bipartition. Let Δ be a positive integer such that $\Delta(G) \leq \Delta$. Fix a proper edgecoloring $\varphi : E \to \{1, \ldots, \Delta\}$ (we know from homework 1.2 that such an edgecoloring always exists). Consider the line graph L(G) of G and define an orientation \rightarrow as follows: If edges $e, f \in E$ share a vertex u, then the edge ef of the line graph L(G) is oriented from e to f if $\varphi(e) < \varphi(f)$ and $u \in A$, or if $\varphi(e) > \varphi(f)$ and $u \in B$.
 - (a) Show that for every subgraph H of G, the line graph L(H) of H has a kernel with respect to the orientation induced on L(H) by the orientation \rightarrow .
 - (b) Observe that the outdegree of any vertex of $\overrightarrow{L(G)}$ does not exceed $\Delta 1$.
 - (c) Deduce from these that $ch(L(G)) = \Delta(G)$.
- 31. Denote by g(G) the smallest Euler genus g of a surface S_g that allows a noncrossing embedding of G in S_g .
 - (a) Show that $g(K_7) = 1$.
 - (b) Determine $g(K_8)$.
- 32. With the help of the Four Color Theorem, prove that every bridgeless planar 3-regular graph is edge-3-colorable.
- 33. Show that for every (orientable) surface, there are only finitely many mutually non-isomorphic connected 7-regular graphs which allow a non-crossing drawing on that surface.
- 34. Prove that for every g > 0, every graph of genus at most g is H(g)-choosable (here $H(g) = \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ is the Heawood number).