Three Paths in complete geometric graphs

Jan Kratochvíl

Charles University, Prague, Czech Republic
(joint work with Philipp Kindermann, Giuseppe Liotta, and Pavel Valtr)

Setting: n points in the plane, no three in a line (general position)

Setting: n points in the plane, no three in a line (general position) define a geometric graph (edges are straight-line segments)

Setting: n points in the plane, no three in a line (general position) define a geometric graph (edges are straight-line segments)

Objective: Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs

Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs in geometric graphs

Known:

Folklore - 1 path
Abellanas et al. [1999] - zig-zag path
Aichholzer et al. [2017] - $\sqrt{ } n$ trees (types not prescribed)
Aichholzer et al. [2017] - 2 paths

Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs in geometric graphs

Known:

Folklore - 1 path
Abellanas et al. [1999] - zig-zag path
Aichholzer et al. [2017] - $\sqrt{ } n$ trees (types not prescribed)
Aichholzer et al. [2017] - 2 paths

Our results:

- 2 paths with prescribed starting vertices (on the boundary of conv(S))
- 3 paths

1 Path

Theorem 1: If s, t are distinct points of S, then S has a plane spanning path starting in s and ending in t

1 Path

Theorem 1: If s, t are distinct points of S, then S has a plane spanning path starting in s and ending in t
Proof: Case A, s and t on the boundary of conv(S)

1 Path

Theorem 1: If s, t are distinct points of S, then S has a plane spanning path starting in s and ending in t
Proof: Case B, s inside conv(S)

1 Path

Theorem 1: If s, t are distinct points of S, then S has a plane spanning path starting in s and ending in t
Proof: Case B, s inside conv(S)

1 Path

Theorem 1: If s, t are distinct points of S, then S has a plane spanning path starting in s and ending in t
Proof: Case B, s inside conv(S)

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

A few technical lemmas

Definition: A point P outside of $\operatorname{conv}(S)$ sees a point $Q \in S$ if $P Q \cap \operatorname{conv}(S)=Q$.

A few technical lemmas

Definition: A point P outside of $\operatorname{conv}(S)$ sees a point $Q \in S$ if $P Q \cap \operatorname{conv}(S)=Q$.
By $S(P)$ we denote the set of points of S seen from P.

A few technical lemmas

Definition: A point P outside of $\operatorname{conv}(S)$ sees a point $Q \in S$ if $P Q \cap \operatorname{conv}(S)=Q$.
By $S(P)$ we denote the set of points of S seen from P.
Observation: Every point outside of S sees at least 2 points of S (provided $|S| \geq 2$).

A few technical lemmas

Definition: A point P outside of $\operatorname{conv}(S)$ sees a point $Q \in S$ if $P Q \cap \operatorname{conv}(S)=Q$.
By $S(P)$ we denote the set of points of S seen from P.
Observation: Every point outside of S sees at least 2 points of S (provided $|S| \geq 2$).
Lemma 1: If P, Q are distinct points outside of conv(S) such that $|S(P) \cup S(Q)| \geq 3$, then for every $a \in S(P)$ there are distinct $b \in S(P)$ and $c \in S(Q), b \neq a$ such that $b P$ and $c Q$ are non-crossing.

A few technical lemmas

Definition: A point P outside of $\operatorname{conv}(S)$ sees a point $Q \in S$ if $P Q \cap \operatorname{conv}(S)=Q$.
By $S(P)$ we denote the set of points of S seen from P.
Observation: Every point outside of S sees at least 2 points of S (provided $|S| \geq 2$).
Lemma 1: If P, Q are distinct points outside of conv(S) such that $|S(P) \cup S(Q)| \geq 3$, then for every $a \in S(P)$ there are distinct $b \in S(P)$ and $c \in S(Q), b \neq a$ such that $b P$ and $c Q$ are non-crossing.

A few technical lemmas

Definition: A point P outside of $\operatorname{conv}(S)$ sees a point $Q \in S$ if $P Q \cap \operatorname{conv}(S)=Q$.
By $S(P)$ we denote the set of points of S seen from P.
Observation: Every point outside of S sees at least 2 points of S (provided $|S| \geq 2$).
Lemma 1: If P, Q are distinct points outside of conv(S) such that $|S(P) \cup S(Q)| \geq 3$, then for every $a \in S(P)$ there are distinct $b \in S(P)$ and $c \in S(Q), b \neq a$ such that $b P$ and $c Q$ are non-crossing.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.
b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
c) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)|=2$ and $|B(P) \cup B(Q)|=2$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
c) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)|=2$ and $|B(P) \cup B(Q)|=2$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
c) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)|=2$ and $|B(P) \cup B(Q)|=2$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
c) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)|=2$ and $|B(P) \cup B(Q)|=2$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct).
Proof: Case 1, $P \neq Q$.
c) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)|=2$ and $|B(P) \cup B(Q)|=2$.

2 paths

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 2, $P=Q$.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 2, $P=Q$.

Definition: Let (A, B) be a separation of S. The visibility graph $\operatorname{Vis}(A, B)$ of the separation is the graph with vertex set S and edges $P Q$ s.t. $P \in A(Q)$ and $Q \in B(P)$.

Two more technical notions

Definition: Let (A, B) be a balanced separation of S and let Z be a zig-zag path w.r.t. (A, B). An edge $e \in E(\operatorname{Vis}(A, B))$ is called free if e does not belong to Z.
Lemma 2: Let (A, B) be a balanced separation of S of $|S| \geq 10$ points and let Z be a zig-zag path w.r.t. (A, B). If Z leaves at least 2 free edges, then S admits 3 edge-disjoint plane spanning paths.

Two more technical notions

Definition: Let (A, B) be a balanced separation of S and let Z be a zig-zag path w.r.t. (A, B). An edge $e \in E(\operatorname{Vis}(A, B))$ is called free if e does not belong to Z.
Lemma 2: Let (A, B) be a balanced separation of S of $|S| \geq 10$ points and let Z be a zig-zag path w.r.t. (A, B). If Z leaves at least 2 free edges, then S admits 3 edge-disjoint plane spanning paths.

Proof:

Lemma 3: Let (A, B) be a balanced separation of S of $|S| \geq 10$ points and let Z be a zig-zag path w.r.t. (A, B). If Z uses 3 consecutive edges of $\operatorname{Vis}(A, B)$, then S admits 3 edge-disjoint plane spanning paths.

Lemma 3: Let (A, B) be a balanced separation of S of $|S| \geq 10$ points and let Z be a zig-zag path w.r.t. (A, B). If Z uses 3 consecutive edges of $\operatorname{Vis}(A, B)$, then S admits 3 edge-disjoint plane spanning paths.
Proof:

Theorem 3: Let S be a set of points in the plane. Then

- $\quad S$ allows a balanced separation (A, B) such that $\operatorname{Vis}(A, B)$ contains 2 crossing edges, or
- $\quad S$ allows a balanced separation (A, B) such that $\operatorname{Vis}(A, B)$ contains an empty path of length 3 and a bridged vertex distinct from the points of the path incident with two edges of $\operatorname{Vis}(A, B)$, or
- $n=|S|$ is even and S is in the wheel configuration.

Theorem 4: Every set of $|S| \geq 10$ points admits 3 edge-disjoint plane spanning paths.

Proof:

Case A. S allows a balanced separation (A, B) such that $\operatorname{Vis}(A, B)$ contains 2 crossing edges.
Then $\operatorname{Vis}(A, B)$ contains consecutive vertices $a, c \in A$ and $b, d \in B$ and all 4 edges $a b, a d, b c, c d$. Consider the Abellanas zig-zag path. It cannot contain all 4 edges (mind the crossing). If it contains 3 of them, apply Lemma 3. If it uses at most 2 of them, it leaves at least 2 free edges, and apply Lemma 2.

Theorem 4: Every set of $|S| \geq 10$ points admits 3 edge-disjoint plane spanning paths.

Proof:

Case B. S allows a balanced separation (A, B) such that $\operatorname{Vis}(A, B)$ contains an empty path of length 3 and a bridged vertex incident with two edges of $\operatorname{Vis}(A, B)$.
Consider Abellanas zig-zag path Z starting in the bridged vertex. The visibility graph Vis (A, B) contains at least 2 edges incident to this vertex, and only one of them is in the path. So it leaves at least 1 free edge. If all 3 edges of the empty path belong to Z, use Lemma 3. Otherwise, one of these 3 edges is free, and apply Lemma 2.

3 Paths

Theorem 4: Every set of $|S| \geq 10$ points admits 3 edge-disjoint plane spanning paths.

Proof:

Case C. S is in the wheel position.
An ad hoc construction shows that S has at least ($n-2$)/ $2 \geq 3$ edge-disjoint plane spanning paths.

