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Our results:
- 2 paths with prescribed starting vertices (on the boundary of conv(S))
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Theorem 3: Let S be a set of points in the plane. Then
- S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges, or

- S allows a balanced separation (A,B) such that Vis(A,B) contains an empty path of length 3

and a bridged vertex distinct from the points of the path incident with two edges of Vis(A,B),
or

- n=|S| is even and Sis in the wheel configuration.
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Theorem 4: Every set of |S|> 10 points admits 3 edge-disjoint plane spanning paths.
Proof:

Case A. S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges.

Then Vis(A,B) contains consecutive vertices a,c € Aand b,d € B and all 4 edges ab, ad, bc, cd.
Consider the Abellanas zig-zag path. It cannot contain all 4 edges (mind the crossing). If it

contains 3 of them, apply Lemma 3. If it uses at most 2 of them, it leaves at least 2 free edges,
and apply Lemma 2.
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Theorem 4: Every set of |S|> 10 points admits 3 edge-disjoint plane spanning paths.

Proof:

Case B. S allows a balanced separation (A, B) such that Vis(A,B) contains an empty path of
length 3 and a bridged vertex incident with two edges of Vis(A,B).

Consider Abellanas zig-zag path Z starting in the bridged vertex. The visibility graph Vis(A, B)
contains at least 2 edges incident to this vertex, and only one of them is in the path. So it
leaves at least 1 free edge. If all 3 edges of the empty path belong to Z, use Lemma 3.
Otherwise, one of these 3 edges is free, and apply Lemma 2.
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Theorem 4: Every set of |S|> 10 points admits 3 edge-disjoint plane spanning paths.
Proof:

Case C. S is in the wheel position.

An ad hoc construction shows that S has at least (n-2)/2 > 3 edge-disjoint plane spanning
paths.
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