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Advertisement: We improve the best known lower bound by 50%.



Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs

in geometric graphs
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Abellanas et al. [1999] – zig-zag path

Aichholzer et al. [2017] – n trees (types not prescribed)

Aichholzer et al. [2017] – 2 paths
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Our results:

- 2 paths with prescribed starting vertices (on the boundary of conv(S))

- 3 paths
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Definition: A point P outside of conv(S) sees a point QS if PQ  conv(S) = Q.

By S(P) we denote the set of points of S seen from P.

Observation: Every point outside of S sees at least 2 points of S (provided |S| 2).

Lemma 1: If P,Q are distinct points outside of conv(S) such that |S(P)S(Q)|  3, then for every 
aS(P) there are distinct b S(P) and c S(Q), b a such that bP and cQ are non-crossing. 
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Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of 
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Two more technical notions

Definition: Let (A,B) be a separation of S. The visibility graph Vis(A,B) of the separation is the 
graph with vertex set S and edges PQ s.t. P A(Q) and Q  B(P).
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Two more technical notions

Definition: Let (A,B) be a balanced separation of S and let Z be a zig-zag path w.r.t. (A,B). An 
edge e  E(Vis(A,B)) is called free if e does not belong to Z.

Lemma 2: Let (A,B) be a balanced separation of S of |S| 10 points and let Z be a zig-zag path 
w.r.t. (A,B). If Z leaves at least 2 free edges, then S admits 3 edge-disjoint plane spanning paths. 
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3 Paths

Lemma 3: Let (A,B) be a balanced separation of S of |S| 10 points and let Z be a zig-zag path 
w.r.t. (A,B). If Z uses 3 consecutive edges of Vis(A,B), then S admits 3 edge-disjoint plane 
spanning paths.
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Lemma 3: Let (A,B) be a balanced separation of S of |S| 10 points and let Z be a zig-zag path 
w.r.t. (A,B). If Z uses 3 consecutive edges of Vis(A,B), then S admits 3 edge-disjoint plane 
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3 Paths

Theorem 3: Let S be a set of points in the plane. Then 

- S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges, or

- S allows a balanced separation (A,B) such that Vis(A,B) contains an empty path of length 3 
and a bridged vertex distinct from the points of the path incident with two edges of Vis(A,B), 
or

- n=|S| is even and S is in the wheel configuration.
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Theorem 4: Every set of |S| 10 points admits 3 edge-disjoint plane spanning paths.

Proof:

Case A. S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges.
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Theorem 4: Every set of |S| 10 points admits 3 edge-disjoint plane spanning paths.

Proof:

Case A. S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges.

Then Vis(A,B) contains consecutive vertices a,c  A and b,d  B and all 4 edges ab, ad, bc, cd. 
Consider the Abellanas zig-zag path. It cannot contain all 4 edges (mind the crossing). If it 
contains 3 of them, apply Lemma 3. If it uses at most 2 of them, it leaves at least 2 free edges, 
and apply Lemma 2. 
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Theorem 4: Every set of |S| 10 points admits 3 edge-disjoint plane spanning paths.

Proof:

Case B. S allows a balanced separation (A,B) such that Vis(A,B) contains an empty path of 
length 3 and a bridged vertex incident with two edges of Vis(A,B).
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Theorem 4: Every set of |S| 10 points admits 3 edge-disjoint plane spanning paths.

Proof:

Case B. S allows a balanced separation (A,B) such that Vis(A,B) contains an empty path of 
length 3 and a bridged vertex incident with two edges of Vis(A,B).

Consider Abellanas zig-zag path Z starting in the bridged vertex. The visibility graph Vis(A,B) 
contains at least 2 edges incident to this vertex, and only one of them is in the path. So it 
leaves at least 1 free edge. If all 3 edges of the empty path belong to Z, use Lemma 3. 
Otherwise, one of these 3 edges is free, and apply Lemma 2. 

A

B



3 Paths

Theorem 4: Every set of |S| 10 points admits 3 edge-disjoint plane spanning paths.

Proof:

Case C. S is in the wheel position.

An ad hoc construction shows that S has (n-2)/2  3 edge-disjoint plane spanning paths.
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3 Paths

Final comment: All steps of the proof were constructive. Thus given a set S of at least 10 points, 
we can construct 3 edge-disjoint plane spanning paths for S in polynomial time.
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HAPPY BIRTHDAY, ZSOLT!


