Three Paths in complete geometric graphs

<u>Jan Kratochvíl</u>

Charles University, Prague, Czech Republic

(joint work with Philipp Kindermann, Giuseppe Liotta, and Pavel Valtr)

A DODE STOLEN

Veszprém, June 7, 2023

OPAL 2023

Setting: *n* points in the plane, no three in a line (general position)

Setting: *n* points in the plane, no three in a line (general position) define a complete geometric graph (edges are straight-line segments)

Setting: *n* points in the plane, no three in a line (general position) define a complete geometric graph (edges are straight-line segments)

Objective: Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs Optimization question: How many edge-disjoint non-crossing Hamiltonian paths can wee pack in a given geometric graph?

Optimization question: How many edge-disjoint non-crossing Hamiltonian paths can wee pack in a given geometric graph?

NP-complete (Hamilton path is NP-complete in planar graphs)

Another question: How many edge-disjoint non-crossing Hamiltonian paths can wee pack in a given complete geometric graph?

Another question: How many edge-disjoint non-crossing Hamiltonian paths can wee pack in a given complete geometric graph?

Another question: How many edge-disjoint non-crossing Hamiltonian paths can wee pack in a given complete geometric graph?

The question: How many edge-disjoint non-crossing Hamiltonian paths can we ALWAYS find in ANY given complete geometric graph with *n* points?

The question: How many edge-disjoint non-crossing Hamiltonian paths can we ALWAYS find in ANY given complete geometric graph with *n* points?

Advertisement: We improve the best known lower bound by 50%.

Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs in geometric graphs

Known:

Folklore – 1 path Abellanas et al. [1999] – zig-zag path Aichholzer et al. [2017] – \sqrt{n} trees (types not prescribed) Aichholzer et al. [2017] – 2 paths Packing (edge-disjoint) plane (non-crossing) spanning (Hamiltonian) subgraphs in geometric graphs

Known:

```
Folklore – 1 path
Abellanas et al. [1999] – zig-zag path
Aichholzer et al. [2017] – \sqrt{n} trees (types not prescribed)
Aichholzer et al. [2017] – 2 paths
```

Our results:

- 2 paths with prescribed starting vertices (on the boundary of conv(S))
- 3 paths

Theorem 1: If *s*,*t* are distinct points of *S*, then *S* has a plane spanning path starting in *s* and ending in *t*

Theorem 1: If *s*,*t* are distinct points of *S*, then *S* has a plane spanning path starting in *s* and ending in *t*

Proof: Case A, s and t on

the boundary of conv(S)

Theorem 1: If *s*,*t* are distinct points of *S*, then *S* has a plane spanning path starting in *s* and ending in *t*

Proof: Case B, s inside conv(S)

Theorem 1: If *s*,*t* are distinct points of *S*, then *S* has a plane spanning path starting in *s* and ending in *t*

Proof: Case B, s inside conv(S)

Theorem 1: If *s*,*t* are distinct points of *S*, then *S* has a plane spanning path starting in *s* and ending in *t*

Proof: Case B, s inside conv(S)

Definition: A point *P* outside of conv(*S*) sees a point $Q \in S$ if $PQ \cap \text{conv}(S) = Q$.

Definition: A point P outside of conv(S) sees a point $Q \in S$ if $PQ \cap \text{conv}(S) = Q$. By S(P) we denote the set of points of S seen from P.

Definition: A point *P* outside of conv(*S*) sees a point $Q \in S$ if $PQ \cap \text{conv}(S) = Q$.

By *S*(*P*) we denote the set of points of *S* seen from *P*.

Observation: Every point outside of *S* sees at least 2 points of *S* (provided $|S| \ge 2$).

Definition: A point *P* outside of conv(*S*) sees a point $Q \in S$ if $PQ \cap \text{conv}(S) = Q$.

By S(P) we denote the set of points of S seen from P.

Observation: Every point outside of *S* sees at least 2 points of *S* (provided $|S| \ge 2$).

Lemma 1: If *P*,*Q* are distinct points outside of conv(*S*) such that $|S(P) \cup S(Q)| \ge 3$, then for every $a \in S(P)$ there are distinct $b \in S(P)$ and $c \in S(Q)$, $b \neq a$ such that *bP* and *cQ* are non-crossing.

Definition: A point *P* outside of conv(*S*) sees a point $Q \in S$ if $PQ \cap \text{conv}(S) = Q$.

By S(P) we denote the set of points of S seen from P.

Observation: Every point outside of *S* sees at least 2 points of *S* (provided $|S| \ge 2$).

Lemma 1: If *P*,*Q* are distinct points outside of conv(*S*) such that $|S(P) \cup S(Q)| \ge 3$, then for every $a \in S(P)$ there are distinct $b \in S(P)$ and $c \in S(Q)$, $b \neq a$ such that *bP* and *cQ* are non-crossing.

Definition: A point *P* outside of conv(*S*) sees a point $Q \in S$ if $PQ \cap \text{conv}(S) = Q$.

By S(P) we denote the set of points of S seen from P.

Observation: Every point outside of *S* sees at least 2 points of *S* (provided $|S| \ge 2$).

Lemma 1: If *P*,*Q* are distinct points outside of conv(*S*) such that $|S(P) \cup S(Q)| \ge 3$, then for every $a \in S(P)$ there are distinct $b \in S(P)$ and $c \in S(Q)$, $b \neq a$ such that *bP* and *cQ* are non-crossing.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or

PQ not a halving line.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or PQ not a halving line.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or PQ not a halving line.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or PQ not a halving line.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or PQ not a halving line.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

a) Subcase |S| odd or PQ not a halving line.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 1, $P \neq Q$.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 2, P = Q.

Theorem 2: Let *P* and *Q* be two (not necessarily distinct) points of *S*, lying on the boundary of conv(*S*), and let $|S| \ge 5$. Then *S* admits 2 edge-disjoint plane spanning paths, one starting in *P*, the other one starting in *Q*, and none of them using the edge *PQ* (in case *P* and *Q* are distinct).

Proof: Case 2, P = Q.

Two more technical notions

Definition: Let (A,B) be a separation of S. The visibility graph Vis(A,B) of the separation is the graph with vertex set S and edges PQ s.t. $P \in A(Q)$ and $Q \in B(P)$.

Two more technical notions

Definition: Let (A,B) be a balanced separation of S and let Z be a zig-zag path w.r.t. (A,B). An edge $e \in E(Vis(A,B))$ is called free if e does not belong to Z.

Lemma 2: Let (A,B) be a balanced separation of S of $|S| \ge 10$ points and let Z be a zig-zag path w.r.t. (A,B). If Z leaves at least 2 free edges, then S admits 3 edge-disjoint plane spanning paths.

Two more technical notions

Definition: Let (A,B) be a balanced separation of S and let Z be a zig-zag path w.r.t. (A,B). An edge $e \in E(Vis(A,B))$ is called free if e does not belong to Z.

Lemma 2: Let (A,B) be a balanced separation of S of $|S| \ge 10$ points and let Z be a zig-zag path w.r.t. (A,B). If Z leaves at least 2 free edges, then S admits 3 edge-disjoint plane spanning paths.

Lemma 3: Let (A,B) be a balanced separation of S of $|S| \ge 10$ points and let Z be a zig-zag path w.r.t. (A,B). If Z uses 3 consecutive edges of Vis(A,B), then S admits 3 edge-disjoint plane spanning paths.

Lemma 3: Let (A,B) be a balanced separation of S of $|S| \ge 10$ points and let Z be a zig-zag path w.r.t. (A,B). If Z uses 3 consecutive edges of Vis(A,B), then S admits 3 edge-disjoint plane spanning paths.

Proof:

Theorem 3: Let S be a set of points in the plane. Then

- S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges, or

Theorem 3: Let *S* be a set of points in the plane. Then

- S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges, or
- S allows a balanced separation (A,B) such that Vis(A,B) contains an empty path of length 3 and a bridged vertex distinct from the points of the path incident with two edges of Vis(A,B), or

Theorem 3: Let *S* be a set of points in the plane. Then

- S allows a balanced separation (A,B) such that Vis(A,B) contains 2 crossing edges, or
- S allows a balanced separation (A,B) such that Vis(A,B) contains an empty path of length 3 and a bridged vertex distinct from the points of the path incident with two edges of Vis(A,B), or
- n=|S| is even and S is in the wheel configuration.

Theorem 4: Every set of $|S| \ge 10$ points admits 3 edge-disjoint plane spanning paths. Proof:

Case A. S allows a balanced separation (*A*,*B*) such that Vis(*A*,*B*) contains 2 crossing edges.

Theorem 4: Every set of $|S| \ge 10$ points admits 3 edge-disjoint plane spanning paths. Proof:

Case A. S allows a balanced separation (*A*,*B*) such that Vis(*A*,*B*) contains 2 crossing edges.

Then Vis(A,B) contains consecutive vertices a, $c \in A$ and b, $d \in B$ and all 4 edges ab, ad, bc, cd. Consider the Abellanas zig-zag path. It cannot contain all 4 edges (mind the crossing). If it contains 3 of them, apply Lemma 3. If it uses at most 2 of them, it leaves at least 2 free edges, and apply Lemma 2.

Theorem 4: Every set of $|S| \ge 10$ points admits 3 edge-disjoint plane spanning paths. Proof:

Case B. S allows a balanced separation (*A*,*B*) such that Vis(*A*,*B*) contains an empty path of length 3 and a bridged vertex incident with two edges of Vis(*A*,*B*).

Theorem 4: Every set of $|S| \ge 10$ points admits 3 edge-disjoint plane spanning paths. Proof:

Case B. S allows a balanced separation (*A*,*B*) such that Vis(*A*,*B*) contains an empty path of length 3 and a bridged vertex incident with two edges of Vis(*A*,*B*).

Consider Abellanas zig-zag path Z starting in the bridged vertex. The visibility graph Vis(A,B) contains at least 2 edges incident to this vertex, and only one of them is in the path. So it leaves at least 1 free edge. If all 3 edges of the empty path belong to Z, use Lemma 3. Otherwise, one of these 3 edges is free, and apply Lemma 2.

3 Paths

Theorem 4: Every set of $|S| \ge 10$ points admits 3 edge-disjoint plane spanning paths. Proof:

Case C. S is in the wheel position.

An ad hoc construction shows that S has $(n-2)/2 \ge 3$ edge-disjoint plane spanning paths.

3 Paths

Theorem 4: Every set of $|S| \ge 10$ points admits 3 edge-disjoint plane spanning paths. Proof:

Case C. S is in the wheel position.

An ad hoc construction shows that S has $(n-2)/2 \ge 3$ edge-disjoint plane spanning paths.

Final comment: All steps of the proof were constructive. Thus given a set *S* of at least 10 points, we can construct 3 edge-disjoint plane spanning paths for *S* in polynomial time.

HAPPY BIRTHDAY, ZSOLT!

