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Theorem (Chvatal, Erdos 1972): Let G be a vertex-s-connected graph.
Then

- If a(G)<s+2, then G has a Hamiltonian path
- If a(G)<s+1, then G has a Hamiltonian cycle
- If a(G)<s, then G is Hamilton connected.



Dense graphs = bounded o.(G)

Observation: a(G) < k iff G is kK,-free

. .-free = 3K;-free = complement of a triangle-free graph
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Our goal — complexity of HamPath and HamCycle for H-free graphs

A-free NP-complete

o .—free polynomial time

°
l.-free and 4 o-free polynomial time, since subclasses of co-graphs

Even 4K,-free was open

Our result [arXiv:2309.09228]: For every k, HamPath and HamCycle are
polynomial time solvable on kK;-free graphs.
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Path Cover and Hamiltonian Linkage

Def: The path cover number of a graph is the minimum number of paths
that cover all vertices.

Observation: pc(G)=1 iff G has a Hamiltonian path

Def: HamLinkage = PathCover with specified end-vertices of the paths

A graph is Ham-¢-linkable if it has a Ham linkage for every choice of
2¢ end-vertices of the paths

Observation: G is Ham-1-linkable iff it is Hamiltonian connected
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We claim it is Hamiltonian
If not, there is a vertex x that does not
belong to the linkage.
Since G is highly connected, there are
many disjoint paths from x to the

linkage. At least one link is saturated
(at least k paths end on this link, or
each vertex of this link is end-vertex of
some path).
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Proof:

must be adjacent (otherwise we have

at least k independent vertices,
contradicting a(G) < k). Extend the link
using this edge, contradicting the

assumed maximality of the linkage.
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Proof: Is there any linkage to start with?

YES Thomas, Wollan [EJC 2005]



Theorem [arXiv:2309.09228]: For every k and ¢, Ham-¢-Linkage and Ham-
¢-Linkability are polynomial time solvable on kK;-free graphs.

Algorithm:

1. Determine the vertex connectivity of G.

2. If c,(G) = glk, ¢) = max{k10¢}, then answer yes
else determine a small cut and iterate
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|Al < g(k,)
Each G[Vi] is (k-1)K,-free

Consider all possible
scenarios for the links
And check their feasibility

The number of scenarios
is O(n/tk9)

Recursive calls are for
(k-1)K,-free components

Induction on k



Theorem [arXiv:2309.09228]: For every k and ¢, Ham-¢-Linkage and Ham-
¢-Linkability are polynomial time solvable on kK;-free graphs.

Algorithm:

1. Determine the vertex connectivity of G.

2. If c,(G) = glk, ¢) = max{k10¢}, then answer yes
else determine a small cut and iterate

The running time can be bounded by O(n24“).

For small values of k, HamPath can be solved in time
O(n??) for 3K,-free graphs
O(n?*?) for 4K,-free graphs
O(n?%%2) for 5K,-free graphs



Forbidden configurations for Hamilton Path

Theorem 3 [IWOCA 2024]: A connected 3K,-free graph always has a
Hamiltonian path. It has a Hamiltonian path starting in a vertex u if and
only if u is not an articulation point of the graph.
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Proof: If G is 2-connected, then it has a Hamiltonian cycle [Chvatal,
Erdos], and hence a Hamiltonian path starting in any vertex.

If it is not 2-connected and v is an articulation point, then G-v has 2
connected components and both are cliques.



Forbidden configurations for Hamilton Path

Theorem 4 [IWOCA 2024]: A connected 4K,-free graph has a
Hamiltonian path if and only if

(a) For every articulation point u, the graph G-u has 2 connected
components, and

(b) There are no 3 articulation points inducing a triangle.




Forbidden configurations for Hamilton Path

Theorem 5 [IWOCA 2024]: A connected 5K;-free graph G has a
Hamiltonian path if and only if

(a) For every articulation point u, the graph G-u has 2 connected
components, and

(b) There are no 3 articulation points inducing a triangle.

(c) If Gis not 2-connected, and x is an articulation point such that one of
the components of G-x, denoted by Q,, is a clique and the other one,
denoted by Q,, induces a 4K,-free graph, then there exists a vertex u in
Q, adjacent to x such that G[Q,] has a Hamiltonian path starting in u.

(d) If G is 2-connected, but not 3-connected, then for every minimum
vertex cut {x,y} in G, G-{x,y} has at most 3 connected components.
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Our obstacles-for-small-independence-graphs paper won the Best Paper
Award at IWOCA 2024.
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