Hamiltonicity of Dense Graphs

Nikola Jedličková, Jan Kratochvíl, Charles University, Prague, Czech Republic

MCW 2024 **Prague, August 1, 2024**

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

The graph is **Hamilton connected** if every pair of vertices is connected by a Hamiltonian path

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

The graph is **Hamilton connected** if every pair of vertices is connected by a Hamiltonian path

Theorem (Chvátal, Erdös 1972): Let *G* be a vertex-*s*-connected graph. Then

- If $\alpha(G)$ <s+2, then *G* has a Hamiltonian path
- If $\alpha(G)$ <s+1, then *G* has a Hamiltonian cycle
- If $\alpha(G)$ <s, then *G* is Hamilton connected.

Dense graphs = bounded $\alpha(G)$

Observation: $\alpha(G) < k$ iff *G* is kK_1 -free

$$
\bullet \quad \bullet
$$
 -free = 3K₁-free = complement of a triangle-free graph

-free NP-complete

 \bullet \bullet free polynomial time

\sum -free and \bullet -free polynomial time, since subclasses of co-graphs

-free NP-complete

 \bullet -free polynomial time

\sum -free and \bullet -free polynomial time, since subclasses of co-graphs

Even 4K₁-free was open

-free NP-complete

-free polynomial time

\sum -free and \sum -free polynomial time, since subclasses of co-graphs

Even 4K₁-free was open

Our result [arXiv:2309.09228]: For every *k*, HamPath and HamCycle are polynomial time solvable on kK_1 -free graphs.

Path Cover and Hamiltonian Linkage

Def: The *path cover number* of a graph is the minimum number of paths that cover all vertices.

Observation: $pc(G)=1$ iff *G* has a Hamiltonian path

Path Cover and Hamiltonian Linkage

Def: The *path cover number* of a graph is the minimum number of paths that cover all vertices.

Observation: $pc(G)=1$ iff *G* has a Hamiltonian path

Def: HamLinkage = PathCover with specified end-vertices of the paths A graph is *Ham-l-linkable* if it has a Ham linkage for every choice of 2*l* end-vertices of the paths

Observation: *G* is Ham-1-linkable iff it is Hamiltonian connected

i.e., Ham-*l*-Linkage and Ham-*l*-Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Proof: *G*

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies

 $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Proof: Consider a linkage of maximum size

 $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

 $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Proof: Consider a linkage of maximum size We claim it is Hamiltonian If not, there is a vertex *x* that does not belong to the linkage.

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies

 $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Proof: Consider a linkage of maximum size We claim it is Hamiltonian If not, there is a vertex *x* that does not belong to the linkage. Since G is highly connected, there are many disjoint paths from *x* to the linkage.

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable. **Proof:** 2. Each vertex of this link is end-vertex of some path, hence 2 consecutive vertices are end-vertices and the linkage can be extended. Contradicting its assumed maximality. *G* $\hat{\mathbf{x}}$

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable. **Proof:** 2. Each vertex of this link is end-vertex of some path, hence 2 consecutive vertices are end-vertices and the linkage can be extended. Contradicting its assumed maximality. *G* \mathbf{x}

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable. **Proof:** 2. At least *k* paths end on this link. Consider successors of their end-points. Two of them must be adjacent (otherwise we have at least *k* independent vertices, contradicting $\alpha(G) < k$). Extend the link using this edge, contradicting the assumed maximality of the linkage. *G* $\hat{\mathbf{x}}$

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable. **Proof:** 2. At least *k* paths end on this link. Consider successors of their end-points. Two of them must be adjacent (otherwise we have at least *k* independent vertices, contradicting $\alpha(G) < k$). Extend the link using this edge, contradicting the assumed maximality of the linkage. *G* $\tilde{\mathbf{x}}$

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies

 $\alpha(G)$ < *k* and $c_v(G)$ ≥ max{*kℓ*,10*ℓ*}, then *G* is Hamiltonian-*ℓ*-linkable.

Proof: Is there any linkage to start with?

Algorithm:

- 1. Determine the vertex connectivity of *G*.
- **2.** If $c_v(G) \ge g(k, \ell) = \max\{k\ell, 10\ell\}$, then answer yes

else determine a small cut and iterate

Algorithm:

- 1. Determine the vertex connectivity of *G*.
- **2.** If $c_v(G) \ge g(k, \ell) = \max\{k\ell, 10\ell\}$, then answer yes **else** determine a small cut and iterate

The running time can be bounded by $O(n2^{\ell k^{k+1}})$. For small values of *k*, HamPath can be solved in time O(n^{22}) for $3K_1$ -free graphs

 $O(n^{242})$ for $4K_1$ -free graphs

O(n^{2662}) for 5K₁-free graphs

Theorem 3 [IWOCA 2024]: A connected $3K_1$ -free graph always has a Hamiltonian path. It has a Hamiltonian path starting in a vertex *u* if and only if *u* is not an articulation point of the graph.

Theorem 3 [IWOCA 2024]: A connected $3K_1$ -free graph always has a Hamiltonian path. It has a Hamiltonian path starting in a vertex *u* if and only if *u* is not an articulation point of the graph.

Proof: If *G* is 2-connected, then it has a Hamiltonian cycle [Chvátal, Erdös], and hence a Hamiltonian path starting in any vertex.

If it is not 2-connected and *v* is an articulation point, then *G-v* has 2 connected components and both are cliques.

Theorem 4 [IWOCA 2024]: A connected $4K_1$ -free graph has a Hamiltonian path if and only if

(a) For every articulation point *u,* the graph *G-u* has 2 connected components, and

(b) There are no 3 articulation points inducing a triangle.

Theorem 5 [IWOCA 2024]: A connected 5K₁-free graph *G* has a Hamiltonian path if and only if

(a) For every articulation point *u,* the graph *G-u* has 2 connected components, and

(b) There are no 3 articulation points inducing a triangle.

(c) If *G* is not 2-connected, and *x* is an articulation point such that one of the components of *G-x*, denoted by Q_1 , is a clique and the other one, denoted by Q_2 , induces a 4K₁-free graph, then there exists a vertex *u* in *Q*2 adjacent to *x* such that *G*[*Q*²] has a Hamiltonian path starting in *u*.

(d) If *G* is 2-connected, but not 3-connected, then for every minimum vertex cut {*x,y*} in *G*, *G*-{*x,y*} has at most 3 connected components.

i.e., Ham-*l*-Linkage and Ham-*l*-Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

i.e., Ham-*l*-Linkage and Ham-*l*-Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

Theorem [Fomin, Golovach, Sagunov, Simonov arXiv:2403.05943]: Ham-*l*-Linkage and Ham-*l*-Linkability are FPT when parameterized by ℓ and $\alpha(G)$.

i.e., Ham-*l*-Linkage and Ham-*l*-Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

Theorem [Fomin, Golovach, Sagunov, Simonov arXiv:2403.05943]: Ham-*l*-Linkage and Ham-*l*-Linkability are FPT when parameterized by ℓ and $\alpha(G)$.

Our obstacles-for-small-independence-graphs paper won the **Best Paper Award at IWOCA 2024**.

