Hamiltonicity of Dense Graphs

Nikola Jedličková, <u>Jan Kratochvíl</u>, Charles University, Prague, Czech Republic

Prague, August 1, 2024

MCW 2024

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

The graph is **Hamilton connected** if every pair of vertices is connected by a Hamiltonian path

Hamiltonian cycle – a cycle passing through every vertex exactly once = Hamiltonian path connecting two adjacent vertices

The graph is **Hamilton connected** if every pair of vertices is connected by a Hamiltonian path

Theorem (Chvátal, Erdös 1972): Let *G* be a vertex-*s*-connected graph. Then

- If $\alpha(G) < s+2$, then G has a Hamiltonian path
- If $\alpha(G) < s+1$, then G has a Hamiltonian cycle
- If $\alpha(G) < s$, then G is Hamilton connected.

Dense graphs = bounded $\alpha(G)$

Observation: $\alpha(G) < k$ iff G is kK_1 -free

• -free =
$$3K_1$$
-free = complement of a triangle-free graph

-free polynomial time

-free and -free polynomial time, since subclasses of co-graphs

-free polynomial time

-free and -free polynomial time, since subclasses of co-graphs

Even $4K_1$ -free was open

-free polynomial time

-free and -free polynomial time, since subclasses of co-graphs

Even $4K_1$ -free was open

Our result [arXiv:2309.09228]: For every *k*, HamPath and HamCycle are polynomial time solvable on *kK*₁-free graphs.

Path Cover and Hamiltonian Linkage

Def: The *path cover number* of a graph is the minimum number of paths that cover all vertices.

Observation: *pc*(*G*)=1 iff *G* has a Hamiltonian path

Path Cover and Hamiltonian Linkage

Def: The *path cover number* of a graph is the minimum number of paths that cover all vertices.

Observation: *pc*(*G*)=1 iff *G* has a Hamiltonian path

Def: HamLinkage = PathCover with specified end-vertices of the paths A graph is Ham-l-linkable if it has a Ham linkage for every choice of 2l end-vertices of the paths

Observation: *G* is Ham-1-linkable iff it is Hamiltonian connected

i.e., Ham- ℓ -Linkage and Ham- ℓ -Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

Theorem [arXiv:2309.09228]: For every k and ℓ , if a graph G satisfies $\alpha(G) < k$ and $c_v(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable.

Theorem [arXiv:2309.09228]: For every *k* and *l*, if a graph G satisfies $\alpha(G) < k$ and $c_v(G) \ge \max\{k\ell, 10\ell\}$, then *G* is Hamiltonian-*l*-linkable.

Proof: G

Theorem [arXiv:2309.09228]: For every k and l, if a graph G satisfies $\alpha(G) < k$ and $c_v(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian-l-linkable.

 $\alpha(G) < k$ and $c_{v}(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable.

Consider a linkage of maximum size

 $\alpha(G) < k \text{ and } c_v(G) \ge \max\{k\ell, 10\ell\}, \text{ then } G \text{ is Hamiltonian}-\ell\text{-linkable}.$

Proof: Consider a linkage of maximum size We claim it is Hamiltonian G

 $\alpha(G) < k$ and $c_{v}(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable.

Consider a linkage of maximum size We claim it is Hamiltonian If not, there is a vertex *x* that does not belong to the linkage.

 $\alpha(G) < k$ and $c_v(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable.

Consider a linkage of maximum size We claim it is Hamiltonian If not, there is a vertex x that does not belong to the linkage. Since G is highly connected, there are many disjoint paths from x to the linkage.

Theorem [arXiv:2309.09228]: For every k and l, if a graph G satisfies $\alpha(G) < k$ and $c_{\nu}(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable. 1. Each vertex of this link is end-vertex of **Proof:** some path, hence 2 consecutive vertices are end-vertices and the linkage can be extended. Contradicting its assumed maximality. G

Theorem [arXiv:2309.09228]: For every k and l, if a graph G satisfies $\alpha(G) < k$ and $c_{\nu}(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable. 1. Each vertex of this link is end-vertex of **Proof:** some path, hence 2 consecutive vertices are end-vertices and the linkage can be extended. Contradicting its assumed maximality. G

Theorem [arXiv:2309.09228]: For every k and l, if a graph G satisfies $\alpha(G) < k$ and $c_{\nu}(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable. 2. At least k paths end on this link. Consider **Proof:** successors of their end-points. Two of them must be adjacent (otherwise we have at least k independent vertices, contradicting $\alpha(G) < k$). Extend the link using this edge, contradicting the assumed maximality of the linkage. G

Theorem [arXiv:2309.09228]: For every k and l, if a graph G satisfies $\alpha(G) < k$ and $c_{\nu}(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable. 2. At least k paths end on this link. Consider **Proof:** successors of their end-points. Two of them must be adjacent (otherwise we have at least k independent vertices, contradicting $\alpha(G) < k$). Extend the link using this edge, contradicting the assumed maximality of the linkage. G

 $\alpha(G) < k$ and $c_v(G) \ge \max\{k\ell, 10\ell\}$, then G is Hamiltonian- ℓ -linkable.

Is there any linkage to start with?

Proof:

Algorithm:

- 1. Determine the vertex connectivity of *G*.
- **2.** If $c_v(G) \ge g(k, \ell) = \max\{k\ell, 10\ell\}$, then answer yes

else determine a small cut and iterate

Algorithm:

- 1. Determine the vertex connectivity of *G*.
- 2. If $c_v(G) \ge g(k, \ell) = \max\{k\ell, 10\ell\}$, then answer yes else determine a small cut and iterate

The running time can be bounded by $O(n2^{\ell k^{k+1}})$. For small values of k, HamPath can be solved in time $O(n^{22})$ for $3K_1$ -free graphs $O(n^{242})$ for $4K_1$ -free graphs $O(n^{2662})$ for $5K_1$ -free graphs

Theorem 3 [IWOCA 2024]: A connected $3K_1$ -free graph always has a Hamiltonian path. It has a Hamiltonian path starting in a vertex u if and only if u is not an articulation point of the graph.

Theorem 3 [IWOCA 2024]: A connected $3K_1$ -free graph always has a Hamiltonian path. It has a Hamiltonian path starting in a vertex u if and only if u is not an articulation point of the graph.

Proof: If *G* is 2-connected, then it has a Hamiltonian cycle [Chvátal, Erdös], and hence a Hamiltonian path starting in any vertex.

If it is not 2-connected and v is an articulation point, then G-v has 2 connected components and both are cliques.

Theorem 4 [IWOCA 2024]: A connected $4K_1$ -free graph has a Hamiltonian path if and only if

(a) For every articulation point *u*, the graph *G*-*u* has 2 connected components, and

(b) There are no 3 articulation points inducing a triangle.

Theorem 5 [IWOCA 2024]: A connected $5K_1$ -free graph *G* has a Hamiltonian path if and only if

(a) For every articulation point *u*, the graph *G*-*u* has 2 connected components, and

(b) There are no 3 articulation points inducing a triangle.

(c) If G is not 2-connected, and x is an articulation point such that one of the components of G-x, denoted by Q_1 , is a clique and the other one, denoted by Q_2 , induces a $4K_1$ -free graph, then there exists a vertex u in Q_2 adjacent to x such that $G[Q_2]$ has a Hamiltonian path starting in u.

(d) If G is 2-connected, but not 3-connected, then for every minimum vertex cut $\{x,y\}$ in G, G- $\{x,y\}$ has at most 3 connected components.

i.e., Ham- ℓ -Linkage and Ham- ℓ -Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

i.e., Ham- ℓ -Linkage and Ham- ℓ -Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

Theorem [Fomin, Golovach, Sagunov, Simonov arXiv:2403.05943]: Ham- ℓ -Linkage and Ham- ℓ -Linkability are FPT when parameterized by ℓ and $\alpha(G)$.

i.e., Ham- ℓ -Linkage and Ham- ℓ -Linkability are in XP when parameterized by ℓ and $\alpha(G)$.

Theorem [Fomin, Golovach, Sagunov, Simonov arXiv:2403.05943]: Ham- ℓ -Linkage and Ham- ℓ -Linkability are FPT when parameterized by ℓ and $\alpha(G)$.

Our obstacles-for-small-independence-graphs paper won the **Best Paper Award at IWOCA 2024**.

