Graph Covers and Generalised Snarks

Jan Kratochvíl, Charles University, Prague, Czech Republic

joint work with
J. Bok, J. Fiala, P. Hliněný, N. Jedličková, P. Rzazewski, M. Seifrtová;
R. Nedela;
J. Fiala, S. Gardelle, A. Proskurowski

MCW 2023

Covering spaces in topology

Euclidean and projective planes - the Euclidean plane is a double cover of the projective one

Definition of graph covering (for connected simple graphs)

Definition: Mapping $f: V(G) \rightarrow V(H)$ is a graph covering projection if for every $u \in V(G), f \mid N_{G}(u)$ is a bijection of $N_{G}(u)$ onto $N_{H}(f(u))$

H
$f\left(N_{G}(u)\right)=N_{H}(f(u))$ and $\operatorname{deg}_{G} u=\operatorname{deg}_{H} f(u)$

General graphs

(with multiple edges, loops and semi-edges allowed)

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{V}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Computational complexity of graph covers

H-COVER
Input: A graph G
Question: Does G cover H?

Complexity of covering multigraphs

\square Kratochvil, Proskurowski, Telle 1997: Complete characterization of the computational complexity of H-COVER for colored mixed 2-vertex multigraphs (without semi-edges) H.
\square Kratochvil, Telle, Tesař 2016: Complete characterization of the computational complexity of H-COVER for 3 -vertex multigraphs H (monochromatic, undirected, without semi-edges).
\square Bok, Fiala, Hliněný, Jdličková, Kratochvíl MFCS 2021: First results on the computational complexity of H-COVER for (multi)graphs with semi-edges. Full classification for 1-vertex and 2-vertex graphs H.
\square Bok, Fiala, Jedličková, Kratochvíl, Rzazewski IWOCA 2022: If H is a k-regular (multi)graph, $k \geq 3$, with at least one semi-simple vertex, then List-H-COVER is NP-complete for simple input graphs.

Some examples

A graph covers $\quad<$ iff it is cubic and 3 -edge-colorable. NP-complete

Some examples

A graph covers Ω iff it is cubic and has a perfect matching.

Poly time

Some examples

> A graph covers \bigcirc iff it is 4-regular (Petersen/Konig-Hall thm).
> Poly time

Strong Dichotomy Conjecture

2021 Bok et al: For every fixed graph H, the H-COVER problem is either polynomial time solvable for arbitrary input graphs (loops, multiple edges, semi-edges allowed), or NP-complete for simple input graphs.

> relation on connected graphs

Definition: Given connected graphs A and B, we say that $A>B$ if for every simple graph G, it is true that G covers B whenever G covers A.

> relation on connected graphs

Definition: Given connected graphs A and B, we say that $A>B$ if for every simple graph G, it is true that G covers B whenever G covers A.

Example 1: If $\mathrm{A} \rightarrow \mathrm{B}$, then $\mathrm{A}>\mathrm{B}$.

> relation on connected graphs

Definition: Given connected graphs A and B, we say that $A>B$ if for every simple graph G, it is true that G covers B whenever G covers A.

Example 1: If $\mathrm{A} \rightarrow \mathrm{B}$, then $\mathrm{A}>\mathrm{B}$.

Example 2: $\ll>$

> relation on connected graphs

Definition: Given connected graphs A and B, we say that $A>B$ if for every simple graph G, it is true that G covers B whenever G covers A.

Example 1: If $\mathrm{A} \rightarrow \mathrm{B}$, then $\mathrm{A}>\mathrm{B}$.

Example 2: $\quad \lll$

Example 3: $\downarrow \quad \downarrow>0 \quad$ and $\bullet \bullet>b \quad \downarrow$

Hunting for Snarks

> relation on connected graphs

Question: If $\neg(A>B)$, then there is a witness G (a simple graph) such that G covers A but G does not cover B. How big would such a witness be? Can such a witness be constructed easily?

We know that $\neg(\Omega>\downarrow<)$. 2-connected witnesses are snarks.

> relation on connected graphs

Open problem: Describe all pairs of connected graphs A and B such that $A>B$ and A does not cover B.

Conjecture (Bok et al. 2022): If A has no semi-edges, then $A>B$ if and only if A covers B.

> relation on connected graphs

Open problem: Describe all pairs of connected graphs A and B such that $A>B$ and A does not cover B.

Conjecture (Bok et al. 2022): If A has no semi-edges, then $A>B$ if and only if A covers B.

JK, Nedela (EUROCOMB 2023): True for $B=d<\quad$ and $B=\Omega$ with arbitrary A.

> relation on connected graphs

Thm 1 (JK,RN): For any graph $A, A>\downarrow<$ iff $A \rightarrow \downarrow<$.
Thm 2 (JK,RN): For any graph $A, A>$ iff A semi-covers Ω.
Definition: Preimages of edges in a semi-covering

Covering directed graphs

Thm (JK, Proskurowski, Telle + Fiala 1997): If H is simple undirected k -regular graph, $\mathrm{k}>2$, then H -COVER is NP-complete.

Thm (Bok, Fiala, Hlineny, Jedlickova, JK 2021): If H is semi-simple undirected k-regular graph, $\mathrm{k}>2$, then H-COVER is NP-complete.

Conjecture: If H is simple connected directed k -in-k-out-regular graph with $\mathrm{k}>2$, then H -COVER is NP-complete.

Covering directed graphs

Observation: If H is connected undirected 2-regular graph, then H-COVER is polynomial time solvable.

Question: What about connected directed 2-in-2-out-regular graphs?

Covering directed graphs

Observation: If H is connected undirected 2-regular graph, then H -COVER is polynomial time solvable.

Question: What about connected directed 2-in-2-out-regular graphs?
Answer: A complete jungle.

Covering directed 2-in-2-out regular graphs

2-vertex graphs

Covering directed $\mathbf{2 - i n - 2 - o u t ~ r e g u l a r ~ g r a p h s ~}$

2-vertex graphs

Polynomial time

Covering directed 2-in-2-out regular graphs

2-vertex graphs

Polynomial time

Polynomial time via 2-SAT

Covering directed 2-in-2-out regular graphs

 3 -vertex graphs

Polynomial time

Covering directed 2-in-2-out regular graphs

 3 -vertex graphs

Polynomial time

Covering directed 2-in-2-out regular graphs

 4-vertex graphs

Covering directed 2-in-2-out regular graphs

4-vertex graphs

Covering directed 2-in-2-out regular graphs

4-vertex graphs

$$
\begin{aligned}
& u(2)+v(2)=0 \\
& u(1)+v(1)=1
\end{aligned}
$$

X : $(x(1), x(2)) \in G F(2)^{2}$

Covering directed 2-in-2-out regular graphs

4-vertex graphs

Thank you

