On the Segment Number of a Planar Graph

Jan Kratochvíl
Charles University, Prague, Czech Republic
(joint work with Sabine Cornelsen, Giordano Da Lozzo, Luca Grilli, Siddharth Gupta, and Alexander Wolff)

9 lines
12 segments

Can we do better?

Can we still do better?

line $(G)=$ minimum number of lines covering all edges in a planar drawing of G $\operatorname{seg}(G)=$ minimum number of segments containing all edges in a planar drawing of G

Dujmovic, Eppstein, Suderman, Wood 2007: $\operatorname{seg}(G)$ can be computed efficiently for trees and for 3-connected cubic planar graphs

Okamoto, Ravsky, Wolff GD 2019 Determining $\operatorname{seg}(G)$ is \exists R-complete (and hence NP-hard)

Our concern - FPT

FPT - Fixed Parameter Tractability

Input is structured - An instance of size n and a parameter k (positive integer)
FPT algorithm - running time $f(k) n^{c}$ for a constant c independent of k and n, also written as $f(k) O^{*}(n)$

FPT - Fixed Parameter Tractability

Input is structured - An instance of size n and a parameter k (positive integer)
FPT algorithm - running time $f(k) n^{c}$ for a constant c independent of k and n, also written as $f(k) O^{*}(n)$

Classical example - vertex cover = complement of independent set

Is there a vertex cover of size $\leq k$?

Vertex Cover is FPT

1. Find a maximum matching M. If $|M|>k$, then output NO and stop.

Vertex Cover is FPT

1. Find a maximum matching M. If $|M|>k$, then output NO and stop.
2. If a vertex u of M has $>k$ neighbors outside of M, put u in the vertex cover and delete it. Set $k \leftarrow k-1$. Repeat.

Vertex Cover is FPT

1. Find a maximum matching M. If $|M|>k$, then output " NO^{\prime} and stop.
2. If a vertex u of M has $\geq k$ neighbors outside of M, put u in the vertex cover and delete it. Set $k \leftarrow k-1$. Repeat.
3. We are left with a graph which has at most $2 k^{2}$ vertices of degree >0. Solve by brute force.
4. Total running time is $\binom{2 k^{2}}{k} O\left(n^{2}\right) O(n m)$

Vertex Cover is FPT

Classical example - vertex cover = complement of independent set
A graph has a vertex cover of size $\leq k$ iff it has an independent set of size $\geq n-k$.
"Is there an independent set of size $\geq k$?" is not FTP, it is W[1]-hard.

Our results

Thm: $\operatorname{Seg}(\boldsymbol{G}) \leq k$ is FPT when parameterized by

- k (natural parameter)
- line(G)
- vertex cover number of G

Thm: List incidence line cover number and list incidence segment number are FPT when parameterized by the natural parameter.

Determining $\operatorname{seg}(\boldsymbol{G})$ is FPT when parameterized by line (G)

Determining $\operatorname{seg}(\mathbf{G})$ is FPT when parameterized by line (G)
line $(G) \leq \operatorname{seg}(G)$,
hence this implies that $\operatorname{seg}(G)$ is FPT also when parameterized by $\operatorname{seg}(G)$

Determining $\operatorname{seg}(G)$ is FPT when parameterized by line (G)
line $(G)=k$
Consider a line arrangement of k lines that realizes a drawing of G. Vertices of degree greater than 2 must be placed in crossing points of the lines, hence G can only have $\leq\binom{ k}{2}$ such vertices.

Determining $\operatorname{seg}(\boldsymbol{G})$ is FPT when parameterized by line (G)
line $(G)=k$
Consider a line arrangement of k lines that realizes a drawing of G. Vertices of degree greater than 2 must be placed in crossing points of the lines, hence G can only have $\leq\binom{ k}{2}$ such vertices. Paths consisting of vertices of degree 2 can only bend in crossing points, and so have at most $\binom{k}{2}$ bends. Replace long paths by paths of length $\binom{k}{2}$.

Determining $\operatorname{seg}(\boldsymbol{G})$ is FPT when parameterized by line (G)
line $(G)=k$
Max degree is $\leq 2 k$. Thus the input is reduced to a graph with at most $\binom{k}{2}+k\binom{k}{2}$ vertices.

Determining $\operatorname{seg}(\mathbf{G})$ is FPT when parameterized by line (G)
line $(G)=k$
Algorithm:

1. Try all combinatorial arrangements of k pseudolines. There are at most $\left(k!\binom{2 k}{k}\right)^{k}$ of them.
2. For each of them, check if it is stretchable (use Renegar [1992]).
3. If stretchable, try all possible assignments of high degree vertices to crossing points, and bending of paths with vertices of degree 2 . In $F(k)$ ways.
4. Count the number of segments, and then output the minimum one.

Determining $\operatorname{seg}(G)$ is FPT when parameterized by the vertex cover number of G $A \subseteq V(G)$ a vertex cover, $|A|=k$.

Determining $\operatorname{seg}(G)$ is FPT when parameterized by the vertex cover number of G $A \subseteq V(G)$ a vertex cover, $|A|=k$.

1. Bounding the number of high degree vertices. Call two vertices from $V-A$ equivalent if they have the same set of neighbors in A. A-vertex has exactly j neighbors in A. Observation: For every $j>2$, there are at most 2 equivalent j-vertices. Otherwise, G contains $K_{3,3}$ and is non-planar. Hence G has at most 2^{k+1} vertices of degree >2.

Determining $\operatorname{seg}(G)$ is FPT when parameterized by the vertex cover number of G $A \subseteq V(G)$ a vertex cover, $|A|=k$.

1. Bounding the number of high degree vertices. Call two vertices from $V-A$ equivalent if they have
 the same set of neighbors in A. $\mathrm{A} j$-vertex has exactly j neighbors in A. Observation: For every $j>2$, there are at most 2 equivalent j-vertices. Otherwise, G contains $K_{3,3}$ and is non-planar. Hence G has at most 2^{k+1} vertices of degree >2.
2. Try to pair degree 2 vertices to maximize "alignments". Details omitted.

List incidence segment number and list incidence line cover number of G

Input: A planar graph G and for every edge $e \in E(G)$, a set $S(e) \subseteq\{1,2, \ldots, k\}$.
Question: Is there a planar drawing of G with k segments/lines and a numbering of these segments/lines by $1,2, \ldots, k$ such that for every edge e, the following holds true: If e is drawn on segment/line j, then $j \in S(e)$?

List incidence segment number and list incidence line cover number of G

Input: A planar graph G and for every edge $e \in E(G)$, a set $S(e) \subseteq\{1,2, \ldots, k\}$.
Question: Is there a planar drawing of G with k segments/lines and a numbering of these segments/lines by $1,2, \ldots, k$ such that for every edge e, the following holds true: If e is drawn on segment/line j, then $j \in S(e)$?

List incidence segment number and list incidence line cover number of G

Input: A planar graph G and for every edge $e \in E(G)$, a set $S(e) \subseteq\{1,2, \ldots, k\}$.
Question: Is there a planar drawing of G with k segments/lines and a numbering of these segments/lines by $1,2, \ldots, k$ such that for every edge e, the following holds true: If e is drawn on segment/line j, then $j \in S(e)$?

List incidence segment number and list incidence line cover number of \boldsymbol{G} are FPT when parameterized by k.

List incidence segment number and list incidence line cover number of \boldsymbol{G} are FPT when parameterized by k.

Algorithm:

1. Bound the number of vertices of degree >2
2. Try all possible line arrangements and assignments of high degree vertices to crossing points.
3. Try all possible routings of the paths with internal vertices of degree 2.

Comment: So far the number of possibilities is only a function of k.
4. For each path, check by dynamic programming if the prescribed routing is compatible with the lists at its edges.

List incidence segment number and list incidence line cover number of \boldsymbol{G} are FPT when parameterized by k.

Algorithm:

1. Bound the number of vertices of degree >2
2. Try all possible line arrangements and assignments of high degree vertices to crossing points.
3. Try all possible routings of the paths with internal vertices of degree 2.

Comment: So far the number of possibilities is only a function of k.
4. For each path, check by dynamic programming if the prescribed routing is compatible with the lists at its edges.
Running time: Extra $O(n)$ factor for the dynamic programming.

Final Comments and Open Problem

Final Comments and Open Problem

Comment: I was cheating. There is no w.l.o.g we may assume that G is connected. Components that are paths or cycles need extra care. But they are doable.

Final Comments and Open Problem

Comment: I was cheating. There is no w.l.o.g we may assume that G is connected. Components that are paths or cycles need extra care. But they are doable.

Open problem: Parameterization by cluster deletion number of G. (Minimum number of vertices whose deletion yields a disjoint union of cliques. Obviously, $\operatorname{cdn}(G) \leq \operatorname{vcn}(G)$.)

Thank you

