Graph Covers:

Where Topology Meets Computer Science, and Simple Means Difficult

Jan Kratochvíl

Charles University, Prague, Czech Republic

Hsinchu, March 22, 2023

Outline of the talk

\square Motivation from topology
\square Formal definitions
\square Charming mathematical questions (Negami's conjecture)
\square Computer science connections
\square Computational complexity
\square Going general (multiple edges, loops, semi-edges, orientations, colors)
\square The Strong Dichotomy Conjecture
\square The Empire strikes back (covers of disconnected graphs)
\square Generalized snarks

Covering spaces in topology

Wikipedia - Wikimedia commons

Covering spaces in topology

Euclidean and projective planes - the Euclidean plane is a double cover of the projective one

The projective plane

The projective plane double covered by the Euclidean plane

The projective plane as Euclidean plane with a cross-cap

K_{5} is projective planar

Definition of graph covering (for connected simple graphs)

Definition: Mapping $f: V(G) \rightarrow V(H)$ is a graph covering projection if for every $u \in V(G), f \mid N_{G}(u)$ is a bijection of $N_{G}(u)$ onto $N_{H}(f(u))$

H
$f\left(N_{G}(u)\right)=N_{H}(f(u))$ and $\operatorname{deg}_{G} u=\operatorname{deg}_{H} f(u)$

A bit of the history

\square Topological graph theory, construction of highly symmetric graphs (Biggs 1974, Djokovic 1974, Gardiner 1974, Gross et al. 1977)
\square Local computation (Angluin STOC 1980, Litovsky et al. 1992, Courcelle et al. 1994, Chalopin et al. 2006)
\square Common covers (Angluin et al. 1981, Leighton 1982)
\square Finite planar covers (Negami's conjecture 1988, Hliněný 1998, Archdeacon 2002, Hliněný et al. 2004)

Negami's conjecture

Negami's conjecture

Conjecture (Negami 1988): A graph has a finite planar cover if and only if it is projective planar.

$K_{3,3}$

$K_{3,3}$

A planar cover of $\mathrm{K}_{3,3}$

Negami's conjecture

Attempts to prove via forbidden minors for projective planar graphs: Both PlanarCoverable and ProjectivePlanar are classes closed in the minor order. Moreover,

$$
\text { ProjectivePlanar } \subseteq \text { PlanarCoverable. }
$$

Need to show that no forbidden minor for the projective plane has a finite planar cover.

Negami's conjecture

Thm (Negami, Fellows, Archdeacon 1990): Conjecture is true for graphs not containing $K^{-}-4$ and $K_{1,2,2,2}$ as minors.

The terrible two

K^{--}

$K_{1,2,2,2}$

Negami's conjecture

Thm (Negami, Fellows, Archdeacon 1990): Conjecture is true for graphs not containing K^{--}and $K_{1,2,2,2}$ as minors.
P. Hliněný (1998): $K^{--}{ }_{4,4}$ does not have a finite planar cover.
P. Hliněný, R. Thomas (2002): Only finite number of counterexamples exist (if any).

Model of local computation

Computational complexity of graph covers

H-COVER
Input: A graph G
Question: Does G cover H?

Computational complexity of graph covers

\square Thm (Bodlaender 1989): H-COVER is NP-complete if H is also part of the input.
\square Abello, Fellows, Stilwell 1991: Initiated the study of computational complexity of the H-COVER problem for fixed H.
\square Thm (Kratochvil, Proskurowski, Telle 1994): H-COVER is polynomial time solvable for every simple graph with at most 2 vertices per equivalence class in its degree partition.
\square Thm (Fiala, Kratochvil, Proskurowski, Telle 1998): H-COVER is NPcomplete for every simple regular graph of valency at least 3.
\square Fiala, Kratochvil 2008: Relation to CSP
\square Bílka, Jirásek, Klavík, Tancer, Volec 2011: NP-hardness of covering small graphs by planar inputs.

A few facts on graph covers

\square Every covering projection to a connected graph is equitable
$\square \mathrm{A}$ (rooted) tree is covered only by an isomorphic tree
\square A path is covered only by a path of the same length

Reduction to colored graphs

Kratochvil, Proskurowski, Telle 1997: Apply the same reductions to G and H. Every covering projection must respect the colors. To fully understand the complexity of H -COVER for all simple graphs, it is necessary and suffices to understand its complexity for colored mixed multigraphs of minimum degree ≥ 3.

Complexity of covering multigraphs

\square Kratochvil, Proskurowski, Telle 1997: Complete characterization of the computational complexity of H-COVER for colored mixed 2-vertex multigraphs H.
\square Kratochvil, Telle, Tesař 2016: Complete characterization of the computational complexity of H -COVER for 3-vertex multigraphs H .
\square Bok, Fiala, Hliněný, Kratochvíl MFCS 2021: First results on the computational complexity of H -COVER for (multi)graphs with semiedges. Full classification for 1 -vertex and 2-vertex graphs H.

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{V}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{V}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{v}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{v}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{v}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{v}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Covers of general graphs

(with multiple edges, loops and semi-edges)
Definition: A pair of mappings $f=\left(f_{v}, f_{E}\right): G \rightarrow H$ is a graph covering projection if - $f_{V}: V(G) \rightarrow V(H)$ is a homomorphism,

- $f_{E}: E(G) \rightarrow E(H)$ is compatible with f_{V}, and it is a bijection of \{edges incident with $u\}$ onto $\left\{\right.$ edges incident with $\left.f_{V}(u)\right\}$ for every $u \in V(G)$

Some examples

Some examples

k

Some examples

A graph covers $\quad<$ iff it is cubic and 3 -edge-colorable. NP-complete

Some examples

Q

Some examples

Some examples

A graph covers Ω iff it is cubic and has a perfect matching.

Poly time

Some examples

∞

Some examples

> A graph covers \bigcirc iff it is 4-regular (Petersen/Konig-Hall thm).
> Poly time

Some examples

Some examples

Some examples

A graph covers Co iff it is cubic and its vertices can be 2colored so that every vertex has two neighbors of its own color and one neighbor of the other color.

Some examples

NP-complete 1991 Abello et al (loops on input)
2011 Bilka et al (simple graphs)
2021 Bok et al (simple bipartite graphs)

A graph covers
 iff it is cubic and its vertices can be 2colored so that every vertex has two neighbors of its own color and one neighbor of the other color.

Strong Dichotomy Conjecture

2021 Bok et al: For every fixed graph H, the H-COVER problem is either polynomial time solvable for arbitrary input graphs (loops, multiple edges, semi-edges allowed), or NPcomplete for simple input graphs.

Covers of disconnected graphs

Complexity of Graph Covering Problems

Jan Kratochvil ${ }^{1}$, Andrzej Proskurowski ${ }^{2}$ and Jan Arne Telle ${ }^{2}$

${ }^{1}$ Charles University, Prague, Czech Republic
${ }^{2}$ University of Oregon, Eugene, Oregon

Abstract

Given a fixed graph H, the H-cover problem asks whether an input graph G allows a degree preserving mapping $f: V(G) \rightarrow V(H)$ such that for every $v \in V(G), f\left(N_{G}(v)\right)=N_{H}(f(v))$. In this paper, we design efficient algorithms for certain graph covering problems according to two basic techniques. The first one is a reduction to the 2-SAT problem. The second technique exploits necessary and sufficient conditions for the existence of regular factors in graphs. For other infinite classes of graph covering problems we derive $\mathcal{N} \mathcal{P}$-completeness results by reductions from graph coloring problems. We illustrate this methodology by classifying all graph covering problems defined by simple graphs with at most 6 vertices.

Locally bijective homomorphism

Covers of disconnected graphs

Locally bijective homomorphism
Surjective cover

Covers of disconnected graphs

Equitable cover

Computational complexity of covering disconnected graphs

Thm (Bok, Fiala, Jedlickova, Kratochvil, Seifertova FCT2021): For a disconnected graph H,

- both the H-SURJECTIVE-COVER and H-EQUITABLE-COVER problems are polynomially solvable if the H_{i}-COVER problem is polynomially solvable for every connected component H_{i} of H , and - both the H-SURJECTIVE-COVER and H-EQUITABLE-COVER problems are NP-complete for simple input graphs if the H_{i}-COVER problem is NP-complete for simple input graphs for some connected component H_{i} of H .

Computational complexity of covering disconnected graphs

Proof of "the H-SURJECTIVE-COVER problem is NP-complete for simple input graphs if the H_{i}-COVER problem is NP-complete for simple input graphs for some connected component H_{i} of H ."

Computational complexity of covering disconnected graphs

Proof of "the H-SURJECTIVE-COVER problem is NP-complete for simple input graphs if the H_{i}-COVER problem is NP-complete for simple input graphs for some connected component H_{i} of H ."

Let $\mathrm{H}=\mathrm{H} 1+\mathrm{H} 2+\ldots+\mathrm{Hk}$. Suppose that $\mathrm{H} 1-C O V E R$ is NP-complete for simple input graphs, and let G1 be a simple graph whose covering of H 1 is to be tested. For each $\mathrm{j}=2,3, \ldots, \mathrm{k}$, fix a simple graph Gj such that Gj covers Hj , and moreover Gj does not cover H 1 , unless Hj is such that every simple graph that covers Hj also covers H 1 .

Then $\mathrm{G}=\mathrm{G} 1+\mathrm{G} 2+\ldots+\mathrm{Gk}$ surjectively covers H if and only if G 1 covers H 1 .

Computational complexity of covering disconnected graphs

Computational complexity of covering disconnected graphs
$\mathrm{Gi} \rightarrow \mathrm{Hi}$ and
$\mathrm{Gi} \rightarrow \mathrm{H} 1$ iff every simple connected graph that covers Hi also covers H1

Computational complexity of covering disconnected graphs

Computational complexity of covering disconnected graphs

$\mathrm{Gi} \rightarrow \mathrm{Hi}$ and
$\mathrm{Gi} \rightarrow \mathrm{H} 1$ iff every simple connected graph that covers Hi also covers H1

Claim: $\mathrm{G} \rightarrow \mathrm{H}$ iff $\mathrm{G} 1 \rightarrow \mathrm{H} 1$
"if" direction is clear
Now suppose : $\mathrm{G} \rightarrow \mathrm{H}$ and e.g. $\mathrm{G} 1 \rightarrow \mathrm{H} 2, \mathrm{G} 2 \rightarrow \mathrm{H} 3, \mathrm{G} 3 \rightarrow \mathrm{H} 1$

Computational complexity of covering disconnected graphs

$\mathrm{Gi} \rightarrow \mathrm{Hi}$ and
$\mathrm{Gi} \rightarrow \mathrm{H} 1$ iff every simple connected graph that covers Hi also covers H1

Claim: $\mathrm{G} \rightarrow \mathrm{H}$ iff G1 $\rightarrow \mathrm{H} 1$
"if" direction is clear
Now suppose : $\mathrm{G} \rightarrow \mathrm{H}$ and e.g. $\mathrm{G} 1 \rightarrow \mathrm{H} 2, \mathrm{G} 2 \rightarrow \mathrm{H} 3, \mathrm{G} 3 \rightarrow \mathrm{H} 1$

Computational complexity of covering disconnected graphs

$\mathrm{Gi} \rightarrow \mathrm{Hi}$ and
$\mathrm{Gi} \rightarrow \mathrm{H} 1$ iff every simple connected graph that covers Hi also covers H1

Claim: $\mathrm{G} \rightarrow \mathrm{H}$ iff $\mathrm{G} 1 \rightarrow \mathrm{H} 1$
"if" direction is clear
Now suppose : $\mathrm{G} \rightarrow \mathrm{H}$ and e.g. $\mathrm{G} 1 \rightarrow \mathrm{H} 2, \mathrm{G} 2 \rightarrow \mathrm{H} 3, \mathrm{G} 3 \rightarrow \mathrm{H} 1$

Hunting for Snarks

> relation on connected graphs

Definition: Given connected graphs A and B, we say that $A>B$ if for every simple graph G, it is true that G covers B whenever G covers A.

> relation on connected graphs

Definition: Given connected graphs A and B, we say that A > B if for every simple graph G, it is true that G covers B whenever G covers A.

Example 1: If $\mathrm{A} \rightarrow \mathrm{B}$, then $\mathrm{A}>\mathrm{B}$.

> relation on connected graphs

Definition: Given connected graphs A and B, we say that $A>B$ if for every simple graph G, it is true that G covers B whenever G covers A.

Example 1: If $\mathrm{A} \rightarrow \mathrm{B}$, then $\mathrm{A}>\mathrm{B}$.

Example 2: $\quad \ll \Omega$

> relation on connected graphs

Open problem: Describe all pairs of connected graphs A and B such that $A>B$ and A does not cover B.

Conjecture (Bok et al. 2022): If A has no semi-edges, then $A>B$ if and only if A covers B.

JK, Nedela (2023+): True for B $=\downarrow<$ and B $=\Omega$ and arbitrary A.

Final comment: If $\neg(A>B)$, then there is a witness G (a simple graph) such that G covers A but G does not cover B. How big would such a witness be? Can such a witness be constructed easily?

We know that $\neg(\downarrow<>)$. 2-connected witneses are snarks.

