Complexity of the List Version of Graph Covers

J. Bok, J. Fiala, N. Jedličková, Jan Kratochvíl, P. Rzazewski

Charles University, Prague, Czech Republic

Koper, September 21, 2022

Computational complexity of graph covers

H-COVER
Input: A graph G
Question: Does G cover H?

Covers of multigraphs

(few examples)
$\rightleftharpoons-C O V E R$ is polynomial time solvable
= 3-edge-colorability of bipartite graphs

- -COVER is NP-complete
$=3$-edge-colorability

Complexity of covering multigraphs

\square Abello, Fellows, Stilwell 1991: Initiated the study of computational complexity of the H-COVER problem for fixed H.
\square Kratochvil, Proskurowski, Telle 1997: Complete characterization of the computational complexity of H-COVER for colored mixed 2-vertex multigraphs H (no semi-edges at that time).
\square Kratochvil, Telle, Tesař 2016: Complete characterization of the computational complexity of H-COVER for 3-vertex multigraphs H.
\square Bok, Fiala, Hliněný, Kratochvíl MFCS 2021: First results on the computational complexity of H-COVER for (multi)graphs with semi-edges. Full classification for 1-vertex and 2-vertex graphs H.
\square Semi-edges have been introduced in topological graph theory and are also widely used in mathematical physics. From now on graph = multigraph with loops, multiple edges and semi-edges allowed.

List covering problems

```
List-H-COVER
Input: A graph G, lists L(u)\subseteqV(H) for }u\inV(G),L(e)\subseteqV(H
for e\inE(G).
Question: Does G allow a covering projection f:G->H such
that f(u)\inL(u) for every }u\inV(G)\mathrm{ and }f(e)\inL(e) for every
e\inE(G)?
```


List covering problems

Partial cover (locally injective homomorphism) is a harder problem than graph cover, but a dichotomy has been proved for List-H-PartialCOVER [Fiala, Kratochvil WG 2006]

List covering problems

Theorem: If H is a k-regular graph, $k \geq 3$, with at least one semi-simple vertex, then List-H-COVER is NP-complete for simple input graphs.

Proof: Revisit the reduction for k-edge-colorable k-regular graphs from Kratochvil, Proskurowski, Telle [JCTB 1997].

Covering Regular Graphs

Jan Kratochvil*
Charles University, Prague, Czech Republic
Andrzej Proskurowski
University of Oregon, Eugene, Oregon
and
Jan Arne Telle ${ }^{\dagger}$
University of Bergen, Bergen, Norway
Received January 18, 1996

[^0]
List covering problems

A graph G is a multicover of H if it covers H in many ways, in the sense that G has a vertex u such that for every vertex x of H and for every bijective mapping of the edges of G incident with u to the edges of H incident with x, there is a covering projection $G \rightarrow H$ that extends this mapping.

List covering problems

A graph G is a multicover of H if it covers H in many ways, in the sense that G has a vertex u such that for every vertex x of H and for every bijective mapping of the edges of G incident with u to the edges of H incident with x, there is a covering projection $G \rightarrow H$ that extends this mapping.

Lemma: Every H has a multicover.

List covering problems

Lemma: Suppose a graph G covers H, and suppose the edges of H are properly colored by k colors by a coloring φ. Then for every partial covering projection $f: G_{u} \rightarrow H$, the following hold:
a) f is constant on the pendant vertices of G_{u}, i.e. $f(u 1)=f(u 2)=\ldots=f(u k)$,
b) if ψ is the coloring of edges of G_{u} obtained as $\psi(e)=\varphi(f(e))$, then the pendant edges of G_{u} are rainbow colored by ψ.

Reduction from k-edge colorability of k-regular (k-1)-uniform hypergraphs.

Reduction from k-edge colorability of k-regular (k-1)-uniform hypergraphs.

Reduction from k-edge colorability of k-regular ($k-1$)-uniform hypergraphs.

Eq : Coloring vertices of one part of a ($k, k-1$)-regular bipartite graph by k colors so that every uncolored vertex has neighbors of all colors.

Reduction from k-edge colorability of k-regular ($k-1$)-uniform hypergraphs.

Eq : Coloring vertices of one part of a ($k, k-1$)-regular bipartite graph by k colors so that every uncolored vertex has neighbors of all colors.

Reduction from k-edge colorability of k-regular ($k-1$)-uniform hypergraphs.

Multigraphs - what can go wrong?

Reduction from 3-edge colorability of 3-regular 2-uniform hypergraphs.

Perfect matching

Reduction from 3-edge colorability of 3-regular 2-uniform hypergraphs.

Multigraphs - what can be fixed?

Fiala trick: If H is not bipartite, then G covers $H x K_{2}$ iff G is bipartite and covers H.
Note: HxK_{2} is bipartite and hence k-edge-colorable. And has no loops nor semiedges, but may have multiple edges.

Observation: A semi-simple vertex in H becomes simple in HxK_{2}.

Multigraphs

Lemma: Every multigraph H has a multicover which is a simple graph.

2. Strong Dichotomy for cubic graphs

Theorem (strong dichotomy for 3-regular target graphs): List-H-COVER is polynomial time solvable for \longrightarrow and NP-complete for all other target graphs H, even for simple inputs.

Strong Dichotomy for cubic graphs

Case A: H has a vertex with 3 different neighbors \quad this is a semisimple vertex and List-H-COVER is NP-complete for simple input graphs by the Theorem.

Strong Dichotomy for cubic graphs

Case A: H has a vertex with 3 different neighbors this is a semisimple vertex and List-H-COVER is NP-complete for simple input graphs by the Theorem.

Case B: H has a vertex whose all 3 neighbors are the same vertex
Case B1: List-H-COVER is polynomial time solvable via perfect matching
Case B2: $\oslash H$-COVER is NP-complete for simple inputs (3-edge-colorability)
Case B3:
 List-H-COVER is NP-complete for simple inputs (via Precoloring extension for line graphs of cubic bipartite graphs, Fiala 1998)

Strong Dichotomy for cubic graphs

Case C: Every vertex of H has exactly 2 neighbors, one adjacent via a double edge or via a loop or via 2 semi-edges, and the other one via a single edge or via a semi-edge.

Strong Dichotomy for cubic graphs

Case C: Every vertex of H has exactly 2 neighbors, one adjacent via a double edge or via a loop or via 2 semi-edges, and the other one via a single edge or via a semi-edge.

Case C1: H is a ring

Case C2: H is a sausage graph

Research questions

Problem 1: Full characterization and strong dichotomy for List-H-COVER for k regular target graphs H for $k \geq 4$?

Problem 2: Can we do without lists?
Problem 3: Can we do without semi-simple vertices?
Conjecture: Let H be a connected k-regular graph (loops, multiple edges and semi-edges allowed), with $k \geq 3$. Then both H-COVER and List-H-COVER are polynomial time solvable if H is a single-vertex graph with at most one semiedge, H-COVER is solvable in polynomial time if H is a two-vertex graph with k parallel edges between its vertices, and both problems are NP-complete for simple input graphs otherwise.

One partial result

Sometimes we can do without lists.

Theorem (BFJK 2023+): Let T be a tree of max degree $d \geq 3$, and let T^{\prime} be the d-regular graph obtained from T by adding semi-edges. Then T^{\prime}-COVER is NPcomplete for simple input graphs.

Hvala vam

[^0]: A covering projection from a graph G onto a graph H is a "local isomorphism" a mapping from the vertex set of G onto the vertex set of H such that, for every $v \in V(G)$, the neighborhood of v is mapped bijectively onto the neighborhood (in H) of the image of v. We investigate two concepts that concern graph covers of regular graphs. The first one is called "multicovers": we show that for any regular graph $I I$ there exists a graph G that allows many different covering projections onto I. Secondly, we consider partial covers, which require only that G be a subgraph of a cover of H. As an application of our results we show that there are infinitely many rigid regular graphs H for which the H-cover problem deciding if a given graph G covers H is NP-complete. This resolves an open problem related to the characterization of graphs H for which H-COVER is tractable. © 1997 Academic Press

