Complexity of the List Version of Graph Covers

J. Bok, J. Fiala, N. Jedličková, <u>Jan Kratochvíl</u>, P. Rzazewski Charles University, Prague, Czech Republic

GROW 2022

Koper, September 21, 2022

Computational complexity of graph covers

Covers of multigraphs (few examples)

-COVER is polynomial time solvable

= 3-edge-colorability of bipartite graphs

= 3-edge-colorability

Complexity of covering multigraphs

- Abello, Fellows, Stilwell 1991: Initiated the study of computational complexity of the H-COVER problem for fixed H.
- Kratochvil, Proskurowski, Telle 1997: Complete characterization of the computational complexity of H-COVER for colored mixed 2-vertex multigraphs H (no semi-edges at that time).
- Kratochvil, Telle, Tesař 2016: Complete characterization of the computational complexity of *H*-COVER for 3-vertex multigraphs *H*.
- Bok, Fiala, Hliněný, Kratochvíl MFCS 2021: First results on the computational complexity of *H*-COVER for (multi)graphs with semi-edges. Full classification for 1-vertex and 2-vertex graphs *H*.
- Semi-edges have been introduced in topological graph theory and are also widely used in mathematical physics. From now on graph = multigraph with loops, multiple edges and semi-edges allowed.

List-*H*-COVER Input: A graph *G*, lists $L(u) \subseteq V(H)$ for $u \in V(G)$, $L(e) \subseteq V(H)$ for $e \in E(G)$. Question: Does *G* allow a covering projection $f:G \rightarrow H$ such that $f(u) \in L(u)$ for every $u \in V(G)$ and $f(e) \in L(e)$ for every $e \in E(G)$?

Partial cover (locally injective homomorphism) is a harder problem than graph cover, but a dichotomy has been proved for List-H-PartialCOVER [Fiala, Kratochvil WG 2006]

Theorem: If *H* is a *k*-regular graph, $k \ge 3$, with at least one *semi-simple vertex*, then List-*H*-COVER is NP-complete for simple input graphs.

Proof: Revisit the reduction for *k*-edge-colorable *k*-regular graphs from Kratochvil, Proskurowski, Telle [JCTB 1997].

JOURNAL OF COMBINATORIAL THEORY, Series B 71, 1–16 (1997) ARTICLE NO. TB961743

Covering Regular Graphs

Jan Kratochvíl*

Charles University, Prague, Czech Republic

Andrzej Proskurowski

University of Oregon, Eugene, Oregon

and

Jan Arne Telle[†]

University of Bergen, Bergen, Norway

Received January 18, 1996

A covering projection from a graph G onto a graph H is a "local isomorphism": a mapping from the vertex set of G onto the vertex set of H such that, for every $v \in V(G)$, the neighborhood of v is mapped bijectively onto the neighborhood (in H) of the image of v. We investigate two concepts that concern graph covers of regular graphs. The first one is called "multicovers": we show that for any regular graph H there exists a graph G that allows many different covering projections onto H. Secondly, we consider *partial covers*, which require only that G be a subgraph of a cover of H. As an application of our results we show that there are infinitely many rigid regular graphs H for which the H-cover problem—deciding if a given graph G covers H—is NP-complete. This resolves an open problem related to the characterization of graphs H for which H-COVER is tractable. © 1997 Academic Press

A graph G is a multicover of H if it covers H in many ways, in the sense that G has a vertex u such that for every vertex x of H and for every bijective mapping of the edges of G incident with u to the edges of H incident with x, there is a covering projection $G \rightarrow H$ that extends this mapping.

A graph G is a multicover of H if it covers H in many ways, in the sense that G has a vertex u such that for every vertex x of H and for every bijective mapping of the edges of G incident with u to the edges of H incident with x, there is a covering projection $G \rightarrow H$ that extends this mapping.

Lemma: Every *H* has a multicover.

Lemma: Suppose a graph G covers H, and suppose the edges of H are properly colored by k colors by a coloring φ . Then for every partial covering projection $f:G_{\mu} \rightarrow H$, the following hold:

- a) f is constant on the pendant vertices of G_u , i.e. f(u1)=f(u2)=...=f(uk),
- b) if ψ is the coloring of edges of G_u obtained as $\psi(e) = \varphi(f(e))$, then the pendant edges of G_u are rainbow colored by ψ .

Eq: Coloring vertices of one part of a (k,k-1)-regular bipartite graph by k colors so that every uncolored vertex has neighbors of all colors.

Eq: Coloring vertices of one part of a (k,k-1)-regular bipartite graph by k colors so that every uncolored vertex has neighbors of all colors.

Multicover gadget:

Multicover gadget:

Multicover gadget:

 \bigcirc \bigcirc (a)A Ð \bigcirc В \bigcirc V

 \bigcirc \bigcirc (a)A Ð \bigcirc В \bigcirc V

 \bigcirc \bigcirc aA Ð \bigcirc В \bigcirc V

 \bigcirc \bigcirc (a)A Ð \bigcirc В \bigcirc V

 \bigcirc \bigcirc (a)A Ð \bigcirc В \bigcirc V

Multigraphs – what can go wrong?

-

Perfect matching

Multigraphs – what can be fixed?

Fiala trick: If H is not bipartite, then G covers H_XK_2 iff G is bipartite and covers H.

Note: HxK_2 is bipartite and hence *k*-edge-colorable. And has no loops nor semiedges, but may have multiple edges.

Observation: A semi-simple vertex in H becomes simple in HxK_2 .

Multigraphs

Lemma: Every multigraph *H* has a multicover which is a simple graph.

 $L(B_v){=}\{x\}$

Theorem (strong dichotomy for 3-regular target graphs): List-*H*-COVER is polynomial time solvable for -- and NP-complete for all other target graphs *H*, even for simple inputs.

Case A: *H* has a vertex with 3 different neighbors simple vertex and List-*H*-COVER is NP-complete for simple input graphs by the Theorem.

- Case A: *H* has a vertex with 3 different neighbors simple vertex and List-*H*-COVER is NP-complete for simple input graphs by the Theorem.
- Case B: H has a vertex whose all 3 neighbors are the same vertex
- Case B1: List-H-COVER is polynomial time solvable via perfect matching
- Case B2: H-COVER is NP-complete for simple inputs (3-edge-colorability)
- Case B3: List-*H*-COVER is NP-complete for simple inputs (via Precoloring extension for line graphs of cubic bipartite graphs, Fiala 1998)

Case C: Every vertex of *H* has exactly 2 neighbors, one adjacent via a double edge or via a loop or via 2 semi-edges, and the other one via a single edge or via a semi-edge.

Case C: Every vertex of *H* has exactly 2 neighbors, one adjacent via a double edge or via a loop or via 2 semi-edges, and the other one via a single edge or via a semi-edge.

Research questions

Problem 1: Full characterization and strong dichotomy for List-*H*-COVER for *k*-regular target graphs *H* for $k \ge 4$?

Problem 2: Can we do without lists?

Problem 3: Can we do without semi-simple vertices?

Conjecture: Let *H* be a connected k-regular graph (loops, multiple edges and semi-edges allowed), with $k \ge 3$. Then both *H*-COVER and List-*H*-COVER are polynomial time solvable if *H* is a single-vertex graph with at most one semi-edge, *H*-COVER is solvable in polynomial time if H is a two-vertex graph with *k* parallel edges between its vertices, and both problems are NP-complete for simple input graphs otherwise.

One partial result

Sometimes we can do without lists.

Theorem (BFJK 2023+): Let T be a tree of max degree $d \ge 3$, and let T' be the d-regular graph obtained from T by adding semi-edges. Then T'-COVER is NP-complete for simple input graphs.

Hvala vam