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Computational complexity of graph covers 

H-COVER
Input: A graph G
Question: Does G cover H?



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 

= 3-edge-colorability of bipartite graphs                   = 3-edge-colorability



Complexity of covering multigraphs

 Abello, Fellows, Stilwell 1991: Initiated the study of computational 
complexity of the H-COVER problem for fixed H.

 Kratochvil, Proskurowski, Telle 1997: Complete characterization of the 
computational complexity of H-COVER for colored mixed 2-vertex 
multigraphs H (no semi-edges at that time).

 Kratochvil, Telle, Tesař 2016: Complete characterization of the 
computational complexity of H-COVER for 3-vertex multigraphs H.

 Bok, Fiala, Hliněný, Kratochvíl MFCS 2021: First results on the 
computational complexity of H-COVER for (multi)graphs with semi-edges. 
Full classification for 1-vertex and 2-vertex graphs H.

 Semi-edges have been introduced in topological graph theory and are also 
widely used in mathematical physics. From now on graph = multigraph with 
loops, multiple edges and semi-edges allowed.



List covering problems

List-H-COVER
Input: A graph G, lists L(u)  V(H) for uV(G), L(e)  V(H) 
for eE(G). 
Question: Does G allow a covering projection f:GH such 
that f(u)L(u) for every uV(G) and f(e)  L(e) for every 
eE(G)?



List covering problems

Partial cover (locally injective homomorphism) is a harder 
problem than graph cover, but a dichotomy has been 
proved for List-H-PartialCOVER [Fiala, Kratochvil WG 2006]



List covering problems

Theorem: If H is a k-regular graph, k3, with at least one semi-simple vertex, 
then List-H-COVER is NP-complete for simple input graphs.

semi-simple



Proof: Revisit the reduction for k-edge-colorable k-regular graphs from 
Kratochvil, Proskurowski, Telle [JCTB 1997].



List covering problems

A graph G is a multicover of H if it covers H in many ways, in the sense that G
has a vertex u such that for every vertex x of H and for every bijective mapping 
of the edges of G incident with u to the edges of H incident with x, there is a 
covering projection G  H that extends this mapping.

xu H



List covering problems

A graph G is a multicover of H if it covers H in many ways, in the sense that G
has a vertex u such that for every vertex x of H and for every bijective mapping 
of the edges of G incident with u to the edges of H incident with x, there is a 
covering projection G  H that extends this mapping.

Lemma: Every H has a multicover.
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List covering problems

Lemma: Suppose a graph G covers H, and suppose the edges of H are properly 
colored by k colors by a coloring . Then for every partial covering projection 
f:GuH, the following hold:
a) f is constant on the pendant vertices of Gu, i.e. f(u1)=f(u2)=…=f(uk),
b) if  is the coloring of edges of Gu obtained as (e)= (f(e)), then the 

pendant edges of Gu are rainbow colored by .

xu1
H

Gu

u2

u3



Reduction from k-edge colorability of k-regular (k-1)-uniform hypergraphs.



Reduction from k-edge colorability of k-regular (k-1)-uniform hypergraphs.



v

A = edges

B = vertices

Reduction from k-edge colorability of k-regular (k-1)-uniform hypergraphs.
Eq: Coloring vertices of one part of a 
(k,k-1)-regular bipartite graph by k colors

so that every uncolored vertex has neighbors
of all colors.



v

A = edges

B = vertices

Reduction from k-edge colorability of k-regular (k-1)-uniform hypergraphs.
Eq: Coloring vertices of one part of a 
(k,k-1)-regular bipartite graph by k colors

so that every uncolored vertex has neighbors
of all colors.
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colorability of k-regular 
(k-1)-uniform 
hypergraphs.
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Multigraphs – what can go wrong?
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Multigraphs – what can be fixed?

Fiala trick: If H is not bipartite, then G covers HxK2 iff G is bipartite and covers H.

Note: HxK2 is bipartite and hence k-edge-colorable. And has no loops nor semi-
edges, but may have multiple edges. 



Observation: A semi-simple vertex in H becomes simple in HxK2 .



Multigraphs

Lemma: Every multigraph H has a multicover which is a simple graph.
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2. Strong Dichotomy for cubic graphs

Theorem (strong dichotomy for 3-regular target graphs): List-H-COVER is 
polynomial time solvable for              and NP-complete for all other target graphs 
H, even for simple inputs.



Strong Dichotomy for cubic graphs
Case A: H has a vertex with 3 different neighbors this is a semi-
simple vertex and List-H-COVER is NP-complete for simple input graphs by the 
Theorem.



Strong Dichotomy for cubic graphs
Case A: H has a vertex with 3 different neighbors this is a semi-
simple vertex and List-H-COVER is NP-complete for simple input graphs by the 
Theorem.

Case B: H has a vertex whose all 3 neighbors are the same vertex

Case B1:              List-H-COVER is polynomial time solvable via perfect matching

Case B2:              H-COVER is NP-complete for simple inputs (3-edge-colorability)

Case B3:                           List-H-COVER is NP-complete for simple inputs (via 
Precoloring extension for line graphs of cubic bipartite graphs, Fiala 1998)



Strong Dichotomy for cubic graphs

Case C: Every vertex of H has exactly 2 neighbors, one adjacent via a double 
edge or via a loop or via 2 semi-edges, and the other one via a single edge or 
via a semi-edge.



Strong Dichotomy for cubic graphs

Case C: Every vertex of H has exactly 2 neighbors, one adjacent via a double 
edge or via a loop or via 2 semi-edges, and the other one via a single edge or 
via a semi-edge.

Case C1: H is a ring 

Case C2: H is a sausage graph



Research questions
Problem 1: Full characterization and strong dichotomy for List-H-COVER for k-
regular target graphs H for k  4?

Problem 2: Can we do without lists?

Problem 3: Can we do without semi-simple vertices?

Conjecture: Let H be a connected k-regular graph (loops, multiple edges and 
semi-edges allowed), with k  3. Then both H-COVER and List-H-COVER are 
polynomial time solvable if H is a single-vertex graph with at most one semi-
edge, H-COVER is solvable in polynomial time if H is a two-vertex graph with k
parallel edges between its vertices, and both problems are NP-complete for 
simple input graphs otherwise.



One partial result
Sometimes we can do without lists.

Theorem (BFJK 2023+): Let T be a tree of max degree d  3, and let T’ be the 
d-regular graph obtained from T by adding semi-edges. Then T’-COVER is NP-
complete for simple input graphs. 

T T’
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