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Motivation from topology



Definition of graph covering 
(for connected simple graphs)

Definition: Mapping f: V(G)  V(H) is a graph covering projection if for 
every u V(G), f|NG(u) is a bijection of NG(u) onto NH(f(u))

u
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f(NG(u)) = NH(f(u))







A bit of the history

 Topological graph theory, construction of highly symmetric graphs (Biggs 
1974, Djokovic 1974, Gardiner 1974, Gross et al. 1977)

 Local computation (Angluin STOC 1980, Litovsky et al. 1992, Courcelle et 
al. 1994, Chalopin et al. 2006)

 Common covers (Angluin et al. 1981, Leighton 1982)

 Finite planar covers (Negami’s conjecture 1988, Hliněný 1998, 
Archdeacon 2002, Hliněný et al. 2004) 

 Regular covers and maps (Nedela et al. 1996, Malnic et al. 2000, …)



Computational complexity of graph covers 

H-COVER
Input: A graph G
Question: Does G cover H?



Computational complexity of graph covers 

 Thm (Bodlaender 1989): H-COVER is NP-complete if H is also part of the 
input.
 Abello, Fellows, Stilwell 1991: Initiated the study of computational 

complexity of the H-COVER problem for fixed H.
 Thm (Kratochvil, Proskurowski, Telle 1994): H-COVER is polynomial time 

solvable for every simple graph with at most 2 vertices per equivalence 
class in its degree partition.
 Thm (Fiala, Kratochvil, Proskurowski, Telle 1998): H-COVER is NP-

complete for every simple regular graph of degree at least 3.
 Fiala, Kratochvil 2008: Relation to CSP
 Bílka, Jirásek, Klavík, Tancer, Volec 2011: NP-hardness of covering small 

graphs by planar inputs.
 Bok, Fiala, Hlineny, Jedlickova, Kratochvil 2021: Covering multigraphs with 

semi-edges



Outline of the presentation

Multigraphs with semi-edges and the Strong Dichotomy Conjecture

 The Role of Cycles

 The Role Colours

 List Covering multigraphs with semi-simple vertices

 Complete characterization of List-H-Cover for cubic multigraphs H



1.1 Covers of multigraphs 
(with multiple edges, loops and semi-edges)

Definition: A pair of mappings f = (fV,fE): G H is a graph covering projection if 
- fV:V(G)  V(H) is a homomorphism, 
- fE:E(G) E(H) is compatible with fV, and it is a bijection of {edges incident 

with u} onto {edges incident with fV(u)} for every u V(G)



Covers of multigraphs 
(with multiple edges, loops and semi-edges)

Definition: A pair of mappings f = (fV,fE): G H is a graph covering projection if 
- fV:V(G)  V(H) is a homomorphism, 
- fE:E(G) E(H) is compatible with fV, and it is a bijection of {edges incident 

with u} onto {edges incident with fV(u)} for every u V(G)



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 

Konig-Hall



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 



Covers of multigraphs 
(few examples)

-COVER is polynomial time solvable                      -COVER is NP-complete 

= 3-edge-colorability of bipartite graphs                   = 3-edge-colorability



Complexity of covering multigraphs
 Kratochvil, Proskurowski, Telle 1997: Complete characterization of the 

computational complexity of H-COVER for colored mixed 2-vertex 
multigraphs H (no semi-edges at that time).

 Kratochvil, Telle, Tesař 2016: Complete characterization of the 
computational complexity of H-COVER for 3-vertex multigraphs H.

 Bok, Fiala, Hliněný, Jedličková, Kratochvíl MFCS 2021: First results on 
the computational complexity of H-COVER for (multi)graphs with semi-
edges. Full classification for 1-vertex and 2-vertex graphs H (report at 
CSGT 2020).

 Bok, Fiala, Jedličková, Kratochvíl, Seifrtová FCT 2021: Covers of 
disconnected multigraphs (also at CSGT 2021)  

 Bok, Fiala, Jedličková, Kratochvíl, Rzazewski IWOCA 2022: List 
Covering version 



1.2 Hoping for a stronger dichotomy

Strong dichotomy conjecture: For all connected graphs H, the H-COVER 
problem is either polynomial time solvable for general input graphs, or 
NP-complete for simple input graphs (i.e., no loops, no multiple edges, 
no semi-edges are allowed).

Or does there exist a connected graph H (loops, multiple edges and semi-
edges allowed) such that the H -COVER problem is NP-complete for general 
inputs, but polynomial time solvable for simple graphs on the input?



2. The Role of Cycles (and Semi-edges)
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Observation: If G and H are connected acyclic simple graphs (i.e., trees), 
then G covers H iff G is isomorphic to H.

Proof: Every covering projection from G to H is 1-fold. If not, consider two
vertices of G that map on the same vertex (say u)
of H and whose distance is shortest possible.

u u



2. The Role of Cycles (and Semi-edges)
Observation: If G and H are connected acyclic simple graphs (i.e., trees), 
then G covers H iff G is isomorphic to H.

Proof: Every covering projection from G to H is 1-fold. If not, consider two
vertices of G that map on the same vertex (say u)
of H and whose distance is shortest possible.

If the distance is 1, then H has a loop or a semi-edge.

If the distance is 2, then H has a double edge.

If the distance is k>2, then H has a cycle of length k.
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2. The Role of Cycles (and Semi-edges)

Observation: The preimage of two semi-edges pending on the same 
vertex is an even 2-factor. 



2. The Role of Cycles (and Semi-edges)

Theorem (Bok, Fiala, Hlineny, Jedlickova, Kratochvil MFCS 2021): For every 
k>2, it is NP-complete to decide if a k-regular simple graph contains an 
even 2-factor.



3. The Role of Colours

Theorem (Kratochvil, Proskurowski, Telle WG 1997): To fully understand
the complexity of H-COVER for simple undirected graphs, it is necessary 
and sufficient to have a complete characterization for coloured mixed 
multigraphs of minimum degree greater than 2.



Reduction to coloured graphs

Apply the same reductions to G and H. Every covering projection must 
respect the colors.



3. The Role of Colours

Example: -COVER is polynomial time solvable,  while                   

-COVER is NP-complete. 



3. The Role of Colours

Example: -COVER is polynomial time solvable,  while                   

-COVER is NP-complete. 

Theorem (Bok, Fiala, Jedlickova, Kratochvil, Seifrtova FCT 2021): For a colorured
mixed multigraph (with semi-edges) H, the H-COVER problem is solvable 
in polynomial time if and only if it is P-time solvable for any of its 
monochromatic spanning subgraphs, and it is NP-complete even for simple 
input graphs otherwise (cf. the Strong Dichotomy Conjecture).



4. List covering problems

List-H-COVER
Input: A graph G, lists L(u)  V(H) for uV(G), L(e)  V(H) 
for eE(G). 
Question: Does G allow a covering projection f:GH such 
that f(u)L(u) for every uV(G) and f(e)  L(e) for every 
eE(G)?



List covering problems

Theorem (Fiala, Kratochvil WG 2006): List-H-PartialCOVER is solvable
in polynomial time if H has at most 1 cycle, and it is NP-complete otherwise
(for simple undirected graphs H).

Theorem (Bok, Fiala, Jedlickova, Kratochvil, Rzazewski): If H is a k-regular graph, 
k3, with at least one semi-simple vertex, then List-H-COVER is NP-complete for 
simple input graphs.



List covering problems

Sketch of proof: Revisit the reduction for k-edge-colorable k-regular graphs 
from Kratochvil, Proskurowski, Telle [JCTB 1997].

A graph G is a multicover of H if it covers H in many ways, in that sense that G
has a vertex u such that for every vertex x of H and for every bijective mapping 
of the edges of G incident with u to the edges of H incident with x, there is a 
covering projection G  H that extends this mapping.

xu
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Sketch of proof: Revisit the reduction for k-edge-colorable k-regular graphs 
from Kratochvil, Proskurowski, Telle [JCTB 1997].

A graph G is a multicover of H if it covers H in many ways, in that sense that G
has a vertex u such that for every vertex x of H and for every bijective mapping 
of the edges of G incident with u to the edges of H incident with x, there is a 
covering projection G  H that extends this mapping.
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(k-1)-uniform 
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Multicover gadget:
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4. Strong Dichotomy for cubic graphs

Theorem (strong dichotomy for 3-regular target graphs): List-H-COVER is 
polynomial time solvable for              and NP-complete for all other target graphs 
H, even for simple inputs.



Strong Dichotomy for cubic graphs

If H has at most 2 vertices, the following is known from Bok, Fiala, Hlineny, 
Jedlickova, Kratochvil 2021 for the H-COVER problem:

Fact: For every graph H, H-COVER α List-H-COVER

Polynomial NP-complete without lists



Strong Dichotomy for cubic graphs
Case A: H has a vertex with 3 different neighbors this is a semi-
simple vertex and List-H-COVER is NP-complete for simple input graphs by the 
Theorem.



Strong Dichotomy for cubic graphs
Case A: H has a vertex with 3 different neighbors this is a semi-
simple vertex and List-H-COVER is NP-complete for simple input graphs by the 
Theorem.

Case B: H has a vertex whose all 3 neighbors are the same vertex

Case B1:              List-H-COVER is polynomial time solvable via perfect matching

Case B2:              H-COVER is NP-complete for simple inputs (3-edge-colorability)

Case B3:                           List-H-COVER is NP-complete for simple inputs (via 
Precoloring extension for line graphs of cubic bipartite graphs, Fiala 1998)



Strong Dichotomy for cubic graphs

Case C: Every vertex of H has exactly 2 neighbors, one adjacent via a double 
edge or via a loop or via 2 semi-edges, and the other one via a single edge or 
via a semi-edge.



Strong Dichotomy for cubic graphs

Case C: Every vertex of H has exactly 2 neighbors, one adjacent via a double 
edge or via a loop or via 2 semi-edges, and the other one via a single edge or 
via a semi-edge.

Case C1: H is a ring 

Case C2: H is a sausage graph



Strong Dichotomy for cubic graphs

Cases C1 and C2: 

Lemma 1: If H is a sausage graph with k vertices, then k-Ring-COVER α H-COVER

Lemma 2: For every k  2, the k-Ring-COVER problem is NP-complete for simple 
input graphs



Strong Dichotomy for cubic graphs

Proof of Lemma 1: For every non-bipartite graph H and for every graph G, G
covers H x K2 if and only if G is bipartite and covers H (Fiala 1998). And if H is a 
sausage with k vertices, then H x K2 is a k-Ring.



Research questions
Problem 1: Full characterization and strong dichotomy for List-H-COVER for k-
regular target graphs H for k  4?

Problem 2: Can we do without lists?

Problem 3: Can we do without semi-simple vertices?

Conjecture: Let H be a connected k-regular graph (loops, multiple edges and 
semi-edges allowed), with k  3. Then both H-COVER and List-H-COVER are 
polynomial time solvable if H is a single-vertex graph with at most one semi-
edge, H-COVER is solvable in polynomial time if H is a two-vertex graph with k
parallel edges between its vertices, and both problems are NP-complete for 
simple input graphs otherwise.



Research questions

Partial result (unpublished): Let T’ be a regular graph obtained from a tree T by 
adding semi-edges to its vertices. Then T’-COVER is NP-complete (even for 
simple input graphs).

T T‘



Thank you!


