#### Computational Complexity of Graph Covers – The Role of Cycles, Colours, and Lists

#### Jan Kratochvíl, Charles University, Prague (based on joint work with J. Bok, J. Fiala, P. Hliněný, N. Jedličková, P. Rzazewski, and M. Seifrtová)

Cycles & Colourings 2022



Novy Smokovec, September 05, 2022

#### Motivation from topology



#### Definition of graph covering (for connected simple graphs)

Definition: Mapping  $f: V(G) \rightarrow V(H)$  is a graph covering projection if for every  $u \in V(G)$ ,  $f | N_G(u)$  is a bijection of  $N_G(u)$  onto  $N_H(f(u))$ 







## A bit of the history

- Topological graph theory, construction of highly symmetric graphs (Biggs 1974, Djokovic 1974, Gardiner 1974, Gross et al. 1977)
- Local computation (Angluin STOC 1980, Litovsky et al. 1992, Courcelle et al. 1994, Chalopin et al. 2006)
- Common covers (Angluin et al. 1981, Leighton 1982)
- Finite planar covers (Negami's conjecture 1988, Hliněný 1998, Archdeacon 2002, Hliněný et al. 2004)
- Regular covers and maps (Nedela et al. 1996, Malnic et al. 2000, ...)

#### Computational complexity of graph covers

*H*-COVERInput: A graph *G*Question: Does *G* cover *H*?

## Computational complexity of graph covers

- Thm (Bodlaender 1989): H-COVER is NP-complete if H is also part of the input.
- Abello, Fellows, Stilwell 1991: Initiated the study of computational complexity of the H-COVER problem for fixed H.
- Thm (Kratochvil, Proskurowski, Telle 1994): H-COVER is polynomial time solvable for every simple graph with at most 2 vertices per equivalence class in its degree partition.
- Thm (Fiala, Kratochvil, Proskurowski, Telle 1998): H-COVER is NPcomplete for every simple regular graph of degree at least 3.
- Fiala, Kratochvil 2008: Relation to CSP
- Bílka, Jirásek, Klavík, Tancer, Volec 2011: NP-hardness of covering small graphs by planar inputs.
- Bok, Fiala, Hlineny, Jedlickova, Kratochvil 2021: Covering multigraphs with semi-edges

## Outline of the presentation

- Multigraphs with semi-edges and the Strong Dichotomy Conjecture
- The Role of Cycles
- The Role Colours
- List Covering multigraphs with semi-simple vertices
- Complete characterization of List-H-Cover for cubic multigraphs H

## 1.1 Covers of multigraphs

(with multiple edges, loops and semi-edges)

Definition: A pair of mappings  $f = (f_V, f_E)$ :  $G \rightarrow H$  is a graph covering projection if

- $f_V: V(G) \rightarrow V(H)$  is a homomorphism,
- $f_E:E(G) \to E(H)$  is compatible with  $f_V$ , and it is a bijection of {edges incident with u} onto {edges incident with  $f_V(u)$ } for every  $u \in V(G)$



#### Covers of multigraphs

(with multiple edges, loops and semi-edges)

Definition: A pair of mappings  $f = (f_V, f_E)$ :  $G \rightarrow H$  is a graph covering projection if

- $f_V: V(G) \rightarrow V(H)$  is a homomorphism,
- $f_E:E(G) \to E(H)$  is compatible with  $f_V$ , and it is a bijection of {edges incident with u} onto {edges incident with  $f_V(u)$ } for every  $u \in V(G)$













-COVER is polynomial time solvable





Konig-Hall









-COVER is polynomial time solvable



= 3-edge-colorability of bipartite graphs

= 3-edge-colorability

## Complexity of covering multigraphs

- Kratochvil, Proskurowski, Telle 1997: Complete characterization of the computational complexity of H-COVER for colored mixed 2-vertex multigraphs H (no semi-edges at that time).
- Kratochvil, Telle, Tesař 2016: Complete characterization of the computational complexity of *H*-COVER for 3-vertex multigraphs *H*.
- Bok, Fiala, Hliněný, Jedličková, Kratochvíl MFCS 2021: First results on the computational complexity of *H*-COVER for (multi)graphs with semiedges. Full classification for 1-vertex and 2-vertex graphs *H* (report at CSGT 2020).
- Bok, Fiala, Jedličková, Kratochvíl, Seifrtová FCT 2021: Covers of disconnected multigraphs (also at CSGT 2021)
- Bok, Fiala, Jedličková, Kratochvíl, Rzazewski IWOCA 2022: List Covering version

#### 1.2 Hoping for a stronger dichotomy

**Strong dichotomy conjecture**: For all connected graphs *H*, the *H*-COVER problem is either polynomial time solvable for general input graphs, or NP-complete for simple input graphs (i.e., no loops, no multiple edges, no semi-edges are allowed).

Or does there exist a connected graph *H* (loops, multiple edges and semiedges allowed) such that the *H* -COVER problem is NP-complete for general inputs, but polynomial time solvable for simple graphs on the input?

**Observation:** If G and H are connected acyclic simple graphs (i.e., trees), then G covers H iff G is isomorphic to H.

**Observation:** If G and H are connected acyclic simple graphs (i.e., trees), then G covers H iff G is isomorphic to H.

**Proof:** Every covering projection from *G* to *H* is 1-fold. If not, consider two vertices of *G* that map on the same vertex (say u) of *H* and whose distance is shortest possible.

**Observation:** If G and H are connected acyclic simple graphs (i.e., trees), then G covers H iff G is isomorphic to H.

**Proof:** Every covering projection from G to H is 1-fold. If not, consider two



vertices of *G* that map on the same vertex (say u) of *H* and whose distance is shortest possible.

If the distance is 1, then H has a loop or a semi-edge.

If the distance is 2, then H has a double edge.

If the distance is k>2, then H has a cycle of length k.







**Observation:** The preimage of two semi-edges pending on the same vertex is an even 2-factor.

**Theorem** (Bok, Fiala, Hlineny, Jedlickova, Kratochvil MFCS 2021): For every *k*>2, it is NP-complete to decide if a *k*-regular simple graph contains an even 2-factor.

## 3. The Role of Colours

**Theorem** (Kratochvil, Proskurowski, Telle WG 1997): To fully understand the complexity of *H*-COVER for simple undirected graphs, it is necessary and sufficient to have a complete characterization for coloured mixed multigraphs of minimum degree greater than 2.

#### Reduction to coloured graphs



Apply the same reductions to *G* and *H*. Every covering projection must respect the colors.

#### 3. The Role of Colours





#### 3. The Role of Colours



**Theorem** (Bok, Fiala, Jedlickova, Kratochvil, Seifrtova FCT 2021): For a colorured mixed multigraph (with semi-edges) *H*, the *H*-COVER problem is solvable in polynomial time if and only if it is P-time solvable for any of its monochromatic spanning subgraphs, and it is NP-complete even for simple input graphs otherwise (cf. the Strong Dichotomy Conjecture).

#### 4. List covering problems

List-*H*-COVER Input: A graph *G*, lists  $L(u) \subseteq V(H)$  for  $u \in V(G)$ ,  $L(e) \subseteq V(H)$ for  $e \in E(G)$ . Question: Does *G* allow a covering projection  $f:G \rightarrow H$  such that  $f(u) \in L(u)$  for every  $u \in V(G)$  and  $f(e) \in L(e)$  for every  $e \in E(G)$ ?

## List covering problems

**Theorem** (Fiala, Kratochvil WG 2006): List-*H*-PartialCOVER is solvable in polynomial time if *H* has at most 1 cycle, and it is NP-complete otherwise (for simple undirected graphs *H*).

**Theorem** (Bok, Fiala, Jedlickova, Kratochvil, Rzazewski): If *H* is a *k*-regular graph,  $k \ge 3$ , with at least one *semi-simple vertex*, then List-*H*-COVER is NP-complete for simple input graphs.



## List covering problems

Sketch of proof: Revisit the reduction for *k*-edge-colorable *k*-regular graphs from Kratochvil, Proskurowski, Telle [JCTB 1997].

A graph G is a multicover of H if it covers H in many ways, in that sense that G has a vertex u such that for every vertex x of H and for every bijective mapping of the edges of G incident with u to the edges of H incident with x, there is a covering projection  $G \rightarrow H$  that extends this mapping.



## List covering problems

Sketch of proof: Revisit the reduction for *k*-edge-colorable *k*-regular graphs from Kratochvil, Proskurowski, Telle [JCTB 1997].

A graph G is a *multicover* of H if it covers H in many ways, in that sense that G has a vertex u such that for every vertex x of H and for every bijective mapping of the edges of G incident with u to the edges of H incident with x, there is a covering projection  $G \rightarrow H$  that extends this mapping.

































**Theorem** (strong dichotomy for 3-regular target graphs): List-*H*-COVER is polynomial time solvable for -- and NP-complete for all other target graphs *H*, even for simple inputs.

If *H* has at most 2 vertices, the following is known from Bok, Fiala, Hlineny, Jedlickova, Kratochvil 2021 for the *H*-COVER problem:



Fact: For every graph H, H-COVER  $\alpha$  List-H-COVER

Case A: *H* has a vertex with 3 different neighbors simple vertex and List-*H*-COVER is NP-complete for simple input graphs by the Theorem.

- Case A: *H* has a vertex with 3 different neighbors simple vertex and List-*H*-COVER is NP-complete for simple input graphs by the Theorem.
- Case B: H has a vertex whose all 3 neighbors are the same vertex
- Case B1: List-H-COVER is polynomial time solvable via perfect matching
- Case B2: H-COVER is NP-complete for simple inputs (3-edge-colorability)
- Case B3: List-*H*-COVER is NP-complete for simple inputs (via Precoloring extension for line graphs of cubic bipartite graphs, Fiala 1998)

Case C: Every vertex of *H* has exactly 2 neighbors, one adjacent via a double edge or via a loop or via 2 semi-edges, and the other one via a single edge or via a semi-edge.



Case C: Every vertex of *H* has exactly 2 neighbors, one adjacent via a double edge or via a loop or via 2 semi-edges, and the other one via a single edge or via a semi-edge.



- Cases C1 and C2:
- Lemma 1: If H is a sausage graph with k vertices, then k-Ring-COVER  $\alpha$  H-COVER
- Lemma 2: For every  $k \ge 2$ , the *k*-Ring-COVER problem is NP-complete for simple input graphs

Proof of Lemma 1: For every non-bipartite graph H and for every graph G, G covers  $H \ge K_2$  if and only if G is bipartite and covers H (Fiala 1998). And if H is a sausage with k vertices, then  $H \ge K_2$  is a k-Ring.



#### Research questions

Problem 1: Full characterization and strong dichotomy for List-*H*-COVER for *k*-regular target graphs *H* for  $k \ge 4$ ?

Problem 2: Can we do without lists?

Problem 3: Can we do without semi-simple vertices?

Conjecture: Let *H* be a connected k-regular graph (loops, multiple edges and semi-edges allowed), with  $k \ge 3$ . Then both *H*-COVER and List-*H*-COVER are polynomial time solvable if *H* is a single-vertex graph with at most one semi-edge, *H*-COVER is solvable in polynomial time if H is a two-vertex graph with *k* parallel edges between its vertices, and both problems are NP-complete for simple input graphs otherwise.

#### Research questions

Partial result (unpublished): Let T' be a regular graph obtained from a tree T by adding semi-edges to its vertices. Then T'-COVER is NP-complete (even for simple input graphs).



# Thank you!