
The quest for optimality

in geometric intersection graphs

Pawe l Rza↪żewski

Warsaw University of Technology / University of Warsaw

Episode 1: exact algorithms

Fine-grained complexity and
the Exponential-Time Hypothesis

Classical approach to complexity theory
Assuming P 6= NP, we partition problems into two sets:

I P (solvable in polynomial time)
proven by presenting an algorithm

I NP-hard (no polynomial algorithm)
proven by polynomial reductions

P NP-h

Classical approach to complexity theory
Assuming P 6= NP, we partition problems into two sets:

I P (solvable in polynomial time)
proven by presenting an algorithm

I NP-hard (no polynomial algorithm)
proven by polynomial reductions

worth attention,
how fast can be solve them?

hopeless, unsolvable

P NP-h

How hard are hard problems?

I hard problems are quite common (even in practice)

I many new algorithmic techniques

How hard are hard problems?

I hard problems are quite common (even in practice)

I many new algorithmic techniques

I NP-hardness → no polynomial algorithm

but maybe 2O(
√

n)?
or even 2O(log2 n)?

polynomial time:
nc = 2c log n = 2O(log n)

How hard are hard problems?

I hard problems are quite common (even in practice)

I many new algorithmic techniques

I NP-hardness → no polynomial algorithm

but maybe 2O(
√

n)?
or even 2O(log2 n)?

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1999]

There is no algorithm solving 3-Sat with n variables and O(n)
clauses in time 2o(n).

polynomial time:
nc = 2c log n = 2O(log n)

How hard are hard problems?

I hard problems are quite common (even in practice)

I many new algorithmic techniques

I NP-hardness → no polynomial algorithm

but maybe 2O(
√

n)?
or even 2O(log2 n)?

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1999]

There is no algorithm solving 3-Sat with n variables and O(n)
clauses in time 2o(n).

polynomial time:
nc = 2c log n = 2O(log n)

subexponential time: 2o(n),
e.g. 2O(n0.99) or 2O(n/ log n)

A closer look
Being a stronger assumption than P 6= NP, ETH allows for a
finer analysis:

I P (solvable in polynomial time)

I NP-hard
(no polynomial
algorithm)

NP-hP

A closer look
Being a stronger assumption than P 6= NP, ETH allows for a
finer analysis:

I P (solvable in polynomial time)

SUBEXP (solvable in subexponential time)

ETH-hard (no subexponential algorithm)

I NP-hard
(no polynomial
algorithm)

SUBEXP
ETH-hP

A closer look
Being a stronger assumption than P 6= NP, ETH allows for a
finer analysis:

I P (solvable in polynomial time)

SUBEXP (solvable in subexponential time)

really difficult
ETH-hard (no subexponential algorithm)

easy

not so super-hard

I NP-hard
(no polynomial
algorithm)

SUBEXP
ETH-hP

Lower bounds
I hardness is proven via reductions
I start from 3-SAT with n variables and m = O(n) clauses
I construct an instance I with N = O(nα) vertices

Lower bounds
I hardness is proven via reductions
I start from 3-SAT with n variables and m = O(n) clauses
I construct an instance I with N = O(nα) vertices

algorithm solving I in time 2o(N1/α)

algorithm solving 3-SAT in time 2o(n)

Lower bounds
I hardness is proven via reductions
I start from 3-SAT with n variables and m = O(n) clauses
I construct an instance I with N = O(nα) vertices

α = 1 (linear reduction) → no 2o(n) algorithm

α = 2 (quadratic reduction) → no 2o(
√

n) algorithm

algorithm solving I in time 2o(N1/α)

algorithm solving 3-SAT in time 2o(n)

What can we hope for?
I bad news: assuming the ETH, there are no subexponential

algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set,
Vertex Cover, Hamiltonian Cycle, Max Cut etc.

What can we hope for?
I bad news: assuming the ETH, there are no subexponential

algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set,
Vertex Cover, Hamiltonian Cycle, Max Cut etc.

Boring!

What can we hope for?
I bad news: assuming the ETH, there are no subexponential

algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set,
Vertex Cover, Hamiltonian Cycle, Max Cut etc.

I what about restricted classes of graphs?
planar graphs?

Boring!

What can we hope for?
I bad news: assuming the ETH, there are no subexponential

algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set,
Vertex Cover, Hamiltonian Cycle, Max Cut etc.

I what about restricted classes of graphs?
planar graphs?

I Square-root phenomenon: for planar graphs, most
canonical problems can be solved in time 2O(

√
n)

assuming the ETH, this cannot be improved to 2o(
√

n)

Boring!

What can we hope for?
I bad news: assuming the ETH, there are no subexponential

algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set,
Vertex Cover, Hamiltonian Cycle, Max Cut etc.

I what about restricted classes of graphs?
planar graphs?

I Square-root phenomenon: for planar graphs, most
canonical problems can be solved in time 2O(

√
n)

assuming the ETH, this cannot be improved to 2o(
√

n)

Boring!

Still boring!

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I also specialized versions, e.g. the separator is a cycle

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I also specialized versions, e.g. the separator is a cycle

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I also specialized versions, e.g. the separator is a cycle

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I also specialized versions, e.g. the separator is a cycle

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I also specialized versions, e.g. the separator is a cycle

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I also specialized versions, e.g. the separator is a cycle

Subexponential algorithms for planar graphs
Planar separator theorem [Lipton, Tarjan, 1979].
Every planar graph has a balanced separator of size O(

√
n).

Independent Set

I divide & conquer gives a 2O(
√

n) algorithm

I also specialized versions, e.g. the separator is a cycle

Geometric intersection graphs

disks (DG)
unit disks
(UDG)

segments
(SEG)

curves
(STRING)

as an intersection graph of:

Relations between classes

STRING

DG

UDG PLANAR

SEG

all graphs

Separator-based algorithms
for disk intersection graphs

k-Coloring disk graphs
Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced
separator of size O(

√
nk).

k-Coloring disk graphs
Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced
separator of size O(

√
nk). ply = max number

of disks covering a
single point

k-Coloring disk graphs
Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced
separator of size O(

√
nk). ply = max number

of disks covering a
single pointk-Coloring of disk graphs

1. ply > k → a clique of size > k → return NO
2. ply ≤ k → a balanced separator S of size O(

√
nk)

3. guess the coloring of S (one of k |S| = kO(
√

nk) possibilities)
4. recurse using divide & conquer

k-Coloring disk graphs
Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced
separator of size O(

√
nk). ply = max number

of disks covering a
single pointk-Coloring of disk graphs

1. ply > k → a clique of size > k → return NO
2. ply ≤ k → a balanced separator S of size O(

√
nk)

3. guess the coloring of S (one of k |S| = kO(
√

nk) possibilities)
4. recurse using divide & conquer

Theorem: For any fixed k, k-Coloring can be solved in time
2O(
√

n) for disk graphs.

k-Coloring disk graphs
Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced
separator of size O(

√
nk). ply = max number

of disks covering a
single pointk-Coloring of disk graphs

1. ply > k → a clique of size > k → return NO
2. ply ≤ k → a balanced separator S of size O(

√
nk)

3. guess the coloring of S (one of k |S| = kO(
√

nk) possibilities)
4. recurse using divide & conquer

Key observation:
Yes-instances of k-Coloring do not have large cliques.

Theorem: For any fixed k, k-Coloring can be solved in time
2O(
√

n) for disk graphs.

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...
I ... but not too much can happen on a clique

Let Q be a clique in G , |Q| = τ .
I at most one vertex of Q belongs to the optimal solution
I we can branch into τ + 1 instances, each of size n − τ

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...
I ... but not too much can happen on a clique

Let Q be a clique in G , |Q| = τ .
I at most one vertex of Q belongs to the optimal solution
I we can branch into τ + 1 instances, each of size n − τ

F (n) ≤ (τ + 1) · F (n − τ)

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...
I ... but not too much can happen on a clique

Let Q be a clique in G , |Q| = τ .
I at most one vertex of Q belongs to the optimal solution
I we can branch into τ + 1 instances, each of size n − τ

F (n) ≤ (τ + 1) · F (n − τ)≤ (τ + 1)2 · F (n − 2τ)

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...
I ... but not too much can happen on a clique

Let Q be a clique in G , |Q| = τ .
I at most one vertex of Q belongs to the optimal solution
I we can branch into τ + 1 instances, each of size n − τ

F (n) ≤ (τ + 1) · F (n − τ)≤ (τ + 1)2 · F (n − 2τ)

≤ ... ≤ (τ + 1)n/τ · O(1) = 2O(n/τ log τ) = 2Õ(n/τ)

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...
I ... but not too much can happen on a clique

Let Q be a clique in G , |Q| = τ .
I at most one vertex of Q belongs to the optimal solution
I we can branch into τ + 1 instances, each of size n − τ

F (n) ≤ (τ + 1) · F (n − τ)≤ (τ + 1)2 · F (n − 2τ)

≤ ... ≤ (τ + 1)n/τ · O(1) = 2O(n/τ log τ) = 2Õ(n/τ)

Õ(f (n)) = f (n) · polylog(n)

Independent Set for disk graphs
I existence of a large clique does not trivialize the instance...
I ... but not too much can happen on a clique

Let Q be a clique in G , |Q| = τ .
I at most one vertex of Q belongs to the optimal solution
I we can branch into τ + 1 instances, each of size n − τ

F (n) ≤ (τ + 1) · F (n − τ)≤ (τ + 1)2 · F (n − 2τ)

≤ ... ≤ (τ + 1)n/τ · O(1) = 2O(n/τ log τ) = 2Õ(n/τ)

Õ(f (n)) = f (n) · polylog(n)

1. ply > τ → there is a clique of size > τ , branch (2Õ(n/τ))
2. ply ≤ τ → a balanced separator S of size O(

√
nτ)

3. guess the solution on S (one of 2|S| = 2O(
√

nτ) possibilities)
4. recurse using divide & conquer (2O(

√
nτ))

Independent Set for disk graphs, ctd.
I we have two basic steps:

I branching with complexity 2Õ(n/τ)

I divide & conquer with complexity 2O(
√

nτ)

Independent Set for disk graphs, ctd.
I we have two basic steps:

I branching with complexity 2Õ(n/τ)

I divide & conquer with complexity 2O(
√

nτ)

I how to choose the threshold τ?

n/τ =
√

nτ
τ = n1/3

Theorem. Independent Set can be solved in time 2O(n2/3)

for disk graphs.

Independent Set for disk graphs, ctd.
I we have two basic steps:

I branching with complexity 2Õ(n/τ)

I divide & conquer with complexity 2O(
√

nτ)

I how to choose the threshold τ?

n/τ =
√

nτ
τ = n1/3

Theorem. Independent Set can be solved in time 2O(n2/3)

for disk graphs. we can do much better,
more on this later

Independent Set for disk graphs, ctd.
I we have two basic steps:

I branching with complexity 2Õ(n/τ)

I divide & conquer with complexity 2O(
√

nτ)

I how to choose the threshold τ?

n/τ =
√

nτ
τ = n1/3

Theorem. Independent Set can be solved in time 2O(n2/3)

for disk graphs. we can do much better,
more on this later

Also, still quite boring!

Optimality for
segment and string graphs

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

1. there is a vertex v of degree at least τ = n1/3 → branching

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

I we either discard v , or choose it to the solution

F (n) ≤ F (n − 1) + F (n − n1/3)

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

1. there is a vertex v of degree at least τ = n1/3 → branching

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

I we either discard v , or choose it to the solution

F (n) ≤ F (n − 1) + F (n − n1/3) ≤ F (n − 2) + 2 · F (n − n1/3)

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

1. there is a vertex v of degree at least τ = n1/3 → branching

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

I we either discard v , or choose it to the solution

F (n) ≤ F (n − 1) + F (n − n1/3) ≤ F (n − 2) + 2 · F (n − n1/3)

≤ ... ≤ (n1/3 + 1) · F (n − n1/3)

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

1. there is a vertex v of degree at least τ = n1/3 → branching

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

I we either discard v , or choose it to the solution

F (n) ≤ F (n − 1) + F (n − n1/3) ≤ F (n − 2) + 2 · F (n − n1/3)

≤ ... ≤ (n1/3 + 1) · F (n − n1/3)≤ (n1/3 + 1)n2/3

= 2Õ(n2/3)

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

1. there is a vertex v of degree at least τ = n1/3 → branching

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

I we either discard v , or choose it to the solution

complexity 2Õ(n2/3)

Independent Set for string graphs
String separator theorem [Matoušek, 2014, Lee, 2016].
String graphs have balanced separators of size O(

√
m).

1. there is a vertex v of degree at least τ = n1/3 → branching

Theorem [Fox, Pach, 2011]. Independent Set for string

graphs can be solved in time 2Õ(n2/3).

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I we either discard v , or choose it to the solution

complexity 2Õ(n2/3)

I guess the solution on S and recurse

complexity 2Õ(n2/3)

3-Coloring

1. there is a vertex v of degree at least τ = n1/3

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I guess the solution on S and recurse: complexity 2Õ(n2/3).

I guessing a color for v does not mean we can discard N(v)!
→ ???

3-Coloring

1. there is a vertex v of degree at least τ = n1/3

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I guess the solution on S and recurse: complexity 2Õ(n2/3).

I consider List 3-Coloring: lists are subsets of {1, 2, 3}

3-Coloring

1. there is a vertex v of degree at least τ = n1/3

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I guess the solution on S and recurse: complexity 2Õ(n2/3).

I consider List 3-Coloring: lists are subsets of {1, 2, 3}

I we can get rid of vertices with one-element lists
I possible lists are {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

3-Coloring

1. there is a vertex v of degree at least τ = n1/3

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I guess the solution on S and recurse: complexity 2Õ(n2/3).

I consider List 3-Coloring: lists are subsets of {1, 2, 3}

I we can get rid of vertices with one-element lists
I possible lists are {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

I at least n1/3/4 neighbors of v have the same list L
I there is a color c shared by L and L(v)
I we branch: either v gets color c or not

3-Coloring

1. there is a vertex v of degree at least τ = n1/3

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I guess the solution on S and recurse: complexity 2Õ(n2/3).

I consider List 3-Coloring: lists are subsets of {1, 2, 3}

I we can get rid of vertices with one-element lists
I possible lists are {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

I N = total size of all lists, N ≤ 3n

F (N) ≤ F (N − 1) + F (N − n1/3/4) ≤ 2Õ(N2/3) = 2Õ(n2/3)

I at least n1/3/4 neighbors of v have the same list L
I there is a color c shared by L and L(v)
I we branch: either v gets color c or not

3-Coloring

1. there is a vertex v of degree at least τ = n1/3

2. m ≤ n4/3 → a balanced separator of size O(n2/3)

I guess the solution on S and recurse: complexity 2Õ(n2/3).

I consider List 3-Coloring: lists are subsets of {1, 2, 3}

I we can get rid of vertices with one-element lists
I possible lists are {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

I N = total size of all lists, N ≤ 3n

F (N) ≤ F (N − 1) + F (N − n1/3/4) ≤ 2Õ(N2/3) = 2Õ(n2/3)

I at least n1/3/4 neighbors of v have the same list L
I there is a color c shared by L and L(v)
I we branch: either v gets color c or not

What about 4-Coloring?

I in List 4-Coloring lists are subsets of {1, 2, 3, 4}

I the second step (divide & conquer) works

I we can get rid of of vertices with one-element lists
I possible lists are
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, . . . ,{1,2,3,4}

What about 4-Coloring?

I in List 4-Coloring lists are subsets of {1, 2, 3, 4}

I the second step (divide & conquer) works

I if a large-degree vertex v has list {1, 2} and almost all of
its neighbors have lists {3, 4}, we don’t know what to do!

I we can get rid of of vertices with one-element lists
I possible lists are
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, . . . ,{1,2,3,4}

What about 4-Coloring?

I in List 4-Coloring lists are subsets of {1, 2, 3, 4}

I the second step (divide & conquer) works

I if a large-degree vertex v has list {1, 2} and almost all of
its neighbors have lists {3, 4}, we don’t know what to do!

I we can get rid of of vertices with one-element lists
I possible lists are
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, . . . ,{1,2,3,4}

I these edges are meaningless for coloring, why not just
remove them?

What about 4-Coloring?

I in List 4-Coloring lists are subsets of {1, 2, 3, 4}

I the second step (divide & conquer) works

I if a large-degree vertex v has list {1, 2} and almost all of
its neighbors have lists {3, 4}, we don’t know what to do!

I we can get rid of of vertices with one-element lists
I possible lists are
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, . . . ,{1,2,3,4}

I these edges are meaningless for coloring, why not just
remove them?

The resulting graph might not be a string graph
→ we cannot use the separator theorem!

k-Coloring of string graphs
Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for k = 3, can be solved in time 2Õ(n2/3),
2. for k ≥ 4, cannot be solved in time 2o(n) (under the ETH).

k-Coloring of string graphs
Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for k = 3, can be solved in time 2Õ(n2/3),
2. for k ≥ 4, cannot be solved in time 2o(n) (under the ETH).

What do we know about the constructed instance G ?

I Let’s try to show hardness for List 4-Coloring.

k-Coloring of string graphs
Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for k = 3, can be solved in time 2Õ(n2/3),
2. for k ≥ 4, cannot be solved in time 2o(n) (under the ETH).

What do we know about the constructed instance G ?

I Let’s try to show hardness for List 4-Coloring.

I it has Θ(n2) edges
(otherwise we get a sublinear separator)

k-Coloring of string graphs
Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for k = 3, can be solved in time 2Õ(n2/3),
2. for k ≥ 4, cannot be solved in time 2o(n) (under the ETH).

What do we know about the constructed instance G ?

I Let’s try to show hardness for List 4-Coloring.

I it has Θ(n2) edges

I for (almost) every large-degree vertex v , its (almost) every
neighbor has a totally disjoint list of colors

(otherwise we get a sublinear separator)

(otherwise can branch effectively)

k-Coloring of string graphs
Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for k = 3, can be solved in time 2Õ(n2/3),
2. for k ≥ 4, cannot be solved in time 2o(n) (under the ETH).

What do we know about the constructed instance G ?

I Let’s try to show hardness for List 4-Coloring.

I it has Θ(n2) edges

I for (almost) every large-degree vertex v , its (almost) every
neighbor has a totally disjoint list of colors

(otherwise we get a sublinear separator)

(otherwise can branch effectively)

Even though G is dense, almost all its edges are meaningless!

Hardness of List 4-Coloring
I reduce from 3-Sat with n variables and m = O(n) clauses
I variables: v1, v2 . . . , vn, clauses C1, . . . , Cm

I we show hardness even for segment graphs

Hardness of List 4-Coloring
I reduce from 3-Sat with n variables and m = O(n) clauses
I variables: v1, v2 . . . , vn, clauses C1, . . . , Cm

I we show hardness even for segment graphs

I introduce a grid-like structure of
variable segments (xi) and literal segments (yj)

variable segments:
xi represents vi

literal segments yj , grouped by clauses

Hardness of List 4-Coloring
I reduce from 3-Sat with n variables and m = O(n) clauses
I variables: v1, v2 . . . , vn, clauses C1, . . . , Cm

I we show hardness even for segment graphs

I introduce a grid-like structure of
variable segments (xi) and literal segments (yj)

variable segments:
xi represents vi

literal segments yj , grouped by clauses

I xi ’s have lists {1, 2},
yi ’s have lists {3, 4}

Intended meaning:
1 and 3 correspond to true
2 and 4 correspond to false

Hardness of List 4-Coloring, ctd.

variable segments:
xi represents vi

I consistency of colorings segments xi and segments yj ,
that correspond to the same variable

literal segments yj , grouped by clauses

Intended meaning:
1 and 3 correspond to true
2 and 4 correspond to false

Hardness of List 4-Coloring, ctd.

variable segments:
xi represents vi

I consistency of colorings segments xi and segments yj ,
that correspond to the same variable

xi gets color 1 iff yj gets color 3

xi gets color 1 iff yj gets color 4

positive occurrence

negative occurrence

literal segments yj , grouped by clauses

Intended meaning:
1 and 3 correspond to true
2 and 4 correspond to false

Hardness of List 4-Coloring, ctd.

variable segments:
xi represents vi

I consistency of colorings segments xi and segments yj ,
that correspond to the same variable

xi gets color 1 iff yj gets color 3

xi gets color 1 iff yj gets color 4

positive occurrence

negative occurrence

literal segments yj , grouped by clauses

Intended meaning:
1 and 3 correspond to true
2 and 4 correspond to false

I satisfiability

at least one of y ’s
must be colored 3

Consistency gadgets

xi gets color 1 iff yj gets color 3

xi gets color 1 iff yj gets color 4

xi

yj

{1, 2}

{3, 4}

Consistency gadgets

xi gets color 1 iff yj gets color 3

xi gets color 1 iff yj gets color 4

xi

yj

{1, 2}

{3, 4}

xi

yj

{1, 2}

{3, 4}

a b

c

a

b

c

1, 3

2, 4

3, 4 3, 4

1, 4

2, 3

Satisfiability gadget

yi yj yk

at least one of ui , yj , yk must get color 3

{3, 4}

Satisfiability gadget

yi yj yk

at least one of ui , yj , yk must get color 3

{3, 4}

yi yj yk
{1, 2, 3}

{3, 4} {3, 4} {3, 4}

{3, 4}
{2, 4}
{1, 4}

I note segments with three-element lists (if all lists have at
most two elements, then the problem is in P)

Wrap-up

xi ’s

yj ’s

I how many segments
do we have?

xi ’s

yj ’s

I we reduced from
3-Sat with n
variables and
m = O(n) clauses

total

Wrap-up

xi ’s

yj ’s

I how many segments
do we have?

xi ’s

yj ’s

I we reduced from
3-Sat with n
variables and
m = O(n) clauses

n

total

3m

3m× 3

m × 4

n + 16m = O(n)

Wrap-up

xi ’s

yj ’s

I how many segments
do we have?

xi ’s

yj ’s

I we reduced from
3-Sat with n
variables and
m = O(n) clauses

n

total

3m

3m× 3

m × 4

n + 16m = O(n)

I solving List 4-Coloring in
segment graphs with N vertices
in time 2o(N)

→ solving 3-Sat in time 2o(n)

→ ETH fails

Feedback Vertex Set in string graphs
I remove the minimum number vertices to destroy all cycles
I if we have a small separator, the divide & conquer works

I what if we have a vertex of large degree?

Feedback Vertex Set in string graphs
I remove the minimum number vertices to destroy all cycles
I if we have a small separator, the divide & conquer works

I what if we have a vertex of large degree?

Theorem [Lee, 2016].
String graphs with no subgraph Kt,t have O(n · t log t) edges.

Feedback Vertex Set in string graphs
I remove the minimum number vertices to destroy all cycles
I if we have a small separator, the divide & conquer works

I what if we have a vertex of large degree?

Theorem [Lee, 2016].
String graphs with no subgraph Kt,t have O(n · t log t) edges.

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

I combining with the separator of size O(
√

m), we get

Feedback Vertex Set in string graphs

I set t = n1/3

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

I there is a biclique Kn1/3,n1/3 for t = n1/3, classes A and B

Feedback Vertex Set in string graphs

I set t = n1/3

1. if there are at least Ω̃(n4/3) edges

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

I there is a biclique Kn1/3,n1/3 for t = n1/3, classes A and B

I we must remove all but one vertex from A or B

Feedback Vertex Set in string graphs

I set t = n1/3

1. if there are at least Ω̃(n4/3) edges

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

cycle!

I there is a biclique Kn1/3,n1/3 for t = n1/3, classes A and B

I we must remove all but one vertex from A or B

Feedback Vertex Set in string graphs

I set t = n1/3

1. if there are at least Ω̃(n4/3) edges

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

cycle!I branch: we select a class (2 ways) and a
vertex (n1/3 ways) that might survive

F (n) ≤ 2n1/3 · F (n − n1/3) ≤ 2Õ(n2/3)

I there is a biclique Kn1/3,n1/3 for t = n1/3, classes A and B

I we must remove all but one vertex from A or B

Feedback Vertex Set in string graphs

I set t = n1/3

1. if there are at least Ω̃(n4/3) edges

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

cycle!I branch: we select a class (2 ways) and a
vertex (n1/3 ways) that might survive

F (n) ≤ 2n1/3 · F (n − n1/3) ≤ 2Õ(n2/3)

2. otherwise there is a balanced separator of size Õ(n2/3) →
divide & conquer works in time 2Õ(n2/3)

total running time is 2Õ(n2/3)

I there is a biclique Kn1/3,n1/3 for t = n1/3, classes A and B

I we must remove all but one vertex from A or B

Feedback Vertex Set in string graphs

I set t = n1/3

1. if there are at least Ω̃(n4/3) edges

Corollary. Every string graph either has a biclique Kt,t or a

balanced separator of size Õ(
√

n · t).

cycle!I branch: we select a class (2 ways) and a
vertex (n1/3 ways) that might survive

F (n) ≤ 2n1/3 · F (n − n1/3) ≤ 2Õ(n2/3)

2. otherwise there is a balanced separator of size Õ(n2/3) →
divide & conquer works in time 2Õ(n2/3)

total running time is 2Õ(n2/3)

I But no 2o(n) algorithm for Odd Cycle Transversal

A detour: the need of representation
and robust algorithms

Finding geometric representations
I How fast can we find representations?

Finding geometric representations
I How fast can we find representations?
I Bad news: it is NP-hard to recognize string graphs,

segment graphs [Kratochv́ıl, Matoušek, early 90s],
(U) DGs [Breu, Kirkpatrick, ’98, Kratochv́ıl, Hliněný, ’01]

Finding geometric representations
I How fast can we find representations?
I Bad news: it is NP-hard to recognize string graphs,

segment graphs [Kratochv́ıl, Matoušek, early 90s],
(U) DGs [Breu, Kirkpatrick, ’98, Kratochv́ıl, Hliněný, ’01]

I NP-complete? Given a representation, you can verify it.

Finding geometric representations
I How fast can we find representations?

I Bad news: there are n-vertex segment graphs, whose every
representation requires coordinates with 2Ω(n) digits [KM]

I Bad news: there are n-vertex string graphs, whose every
representation requires 2Ω(n) crossing points [KM]

I Bad news: it is NP-hard to recognize string graphs,
segment graphs [Kratochv́ıl, Matoušek, early 90s],
(U) DGs [Breu, Kirkpatrick, ’98, Kratochv́ıl, Hliněný, ’01]

I NP-complete? Given a representation, you can verify it.

Finding geometric representations
I How fast can we find representations?

I Bad news: there are n-vertex segment graphs, whose every
representation requires coordinates with 2Ω(n) digits [KM]

I Bad news: there are n-vertex string graphs, whose every
representation requires 2Ω(n) crossing points [KM]

I Bad news: it is NP-hard to recognize string graphs,
segment graphs [Kratochv́ıl, Matoušek, early 90s],
(U) DGs [Breu, Kirkpatrick, ’98, Kratochv́ıl, Hliněný, ’01]

I NP-complete? Given a representation, you can verify it.

I is it even decidable? (yes, a non-trivial argument by Tarski)

Finding geometric representations
I How fast can we find representations?

I Bad news: there are n-vertex segment graphs, whose every
representation requires coordinates with 2Ω(n) digits [KM]

I Bad news: there are n-vertex string graphs, whose every
representation requires 2Ω(n) crossing points [KM]

I Bad news: it is NP-hard to recognize string graphs,
segment graphs [Kratochv́ıl, Matoušek, early 90s],
(U) DGs [Breu, Kirkpatrick, ’98, Kratochv́ıl, Hliněný, ’01]

I NP-complete? Given a representation, you can verify it.

Theorem [Schaefer, Sedgewick, Štefankovič, ’03].
Recognizing string graphs is in NP.

I is it even decidable? (yes, a non-trivial argument by Tarski)

Recognizing segment graphs

I What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, ’17].
Recognizing segment graphs is in ∃R-complete.

Recognizing segment graphs

I What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, ’17].
Recognizing segment graphs is in ∃R-complete.

NP = class of problems
polynomially equivalent to SAT.

SAT: decide if a formula is true

∃x1∃x2 . . . ∃xn Φ(x1, . . . , xn)

xi ’s are boolean,
Φ is quantifier-free and uses
∧,∨,¬, =,→

Recognizing segment graphs

I What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, ’17].
Recognizing segment graphs is in ∃R-complete.

∃R – class of problems
polynomially equivalent to ETR.

NP = class of problems
polynomially equivalent to SAT.

SAT: decide if a formula is true

∃x1∃x2 . . . ∃xn Φ(x1, . . . , xn)

xi ’s are boolean,
Φ is quantifier-free and uses
∧,∨,¬, =,→

ETR: decide is a formula is true

∃x1∃x2 . . . ∃xn Φ(x1, . . . , xn)

xi ’s are reals,
Φ is quantifier-free and uses
∧,∨,¬, =,→,>, +,−,× (in R)

Recognizing segment graphs

I What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, ’17].
Recognizing segment graphs is in ∃R-complete.

∃R – class of problems
polynomially equivalent to ETR.

NP = class of problems
polynomially equivalent to SAT.

SAT: decide if a formula is true

∃x1∃x2 . . . ∃xn Φ(x1, . . . , xn)

xi ’s are boolean,
Φ is quantifier-free and uses
∧,∨,¬, =,→

ETR: decide is a formula is true

∃x1∃x2 . . . ∃xn Φ(x1, . . . , xn)

xi ’s are reals,
Φ is quantifier-free and uses
∧,∨,¬, =,→,>, +,−,× (in R)

I a strong indication that the problem is not in NP!
I similar for unit disk graphs [Kang, Müller, ’12]

What about our algorithms?

I where do we need a representation?

Independent Set in disk graphs

1. ply > n1/3 → a clique of size > n1/3, branch
2. ply ≤ n1/3 → a balanced separator S of size O(n2/3)
3. guess the solution on S
4. recurse using divide & conquer

Total running time: 2Õ(n2/3).

What about our algorithms?

I where do we need a representation?

Independent Set in disk graphs

1. ply > n1/3 → a clique of size > n1/3, branch
2. ply ≤ n1/3 → a balanced separator S of size O(n2/3)
3. guess the solution on S
4. recurse using divide & conquer

Total running time: 2Õ(n2/3).

What about our algorithms?

I where do we need a representation?

Independent Set in disk graphs

I enumerating all possibilities takes time nn2/3

= 2Õ(n2/3)

1. ply > n1/3 → a clique of size > n1/3, branch
2. ply ≤ n1/3 → a balanced separator S of size O(n2/3)
3. guess the solution on S
4. recurse using divide & conquer

Total running time: 2Õ(n2/3).

What about our algorithms?

I where do we need a representation?

Independent Set in disk graphs

I enumerating all possibilities takes time nn2/3

= 2Õ(n2/3)

1. if we find a clique of size > n1/3, branch
2. otherwise, find a balanced separator S of size O(n2/3)
3. guess the solution on S
4. recurse using divide & conquer

Total running time: 2Õ(n2/3) + 2Õ(n2/3) = 2Õ(n2/3).

I we do not really need a representation!

Robust algorithms
I An algorithm is robust, if it either

I computes the correct solution, or
I correctly concludes that the input does not belong

to the right class (here: disk graphs)

I notion introduced by Spinrad

Robust algorithms
I An algorithm is robust, if it either

I computes the correct solution, or
I correctly concludes that the input does not belong

to the right class (here: disk graphs)

I it’s not really an algorithm for disk graphs, but for the class
X =graphs with balanced separators of size O(

√
n · ω(G))

I disk graphs ⊆ X

I notion introduced by Spinrad

Robust algorithms
I An algorithm is robust, if it either

I computes the correct solution, or
I correctly concludes that the input does not belong

to the right class (here: disk graphs)

I it’s not really an algorithm for disk graphs, but for the class
X =graphs with balanced separators of size O(

√
n · ω(G))

I disk graphs ⊆ X

I on the other hand, our hardness results hold
even if a geometric representation is given

I notion introduced by Spinrad

When large cliques do not help

Clique in disk graphs
I Clique is polynomially solvable in UDG [Clark et al., 1990]
I the complexity for DG is open

I the existence of a large clique does not make the problem
any easier!

Clique in disk graphs
I Clique is polynomially solvable in UDG [Clark et al., 1990]
I the complexity for DG is open

I the existence of a large clique does not make the problem
any easier!

I we need to make our hands dirty and look at the properties
of geometric representations

Notation: vertex vi is
represented by a disk
with the center ci

I by some
epsilon-perturbation we can
assume that no three
centers are aligned

C4’s in disk graphs
Simple observation.
In any disk representation of of C4 with vertices v1, v2, v3, v4:
the line `(c2c4) crosses the segment c1c3, or
the line `(c1c3) crosses the segment c2c4.

C4’s in disk graphs
Simple observation.
In any disk representation of of C4 with vertices v1, v2, v3, v4:
the line `(c2c4) crosses the segment c1c3, or
the line `(c1c3) crosses the segment c2c4.

Proof by picture
(follows from the ∆ inequality) c2

c3

c4
c1

C4’s in disk graphs
Simple observation.
In any disk representation of of C4 with vertices v1, v2, v3, v4:
the line `(c2c4) crosses the segment c1c3, or
the line `(c1c3) crosses the segment c2c4.

Proof by picture
(follows from the ∆ inequality) c2

c3

c4

c1

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles

C6

v1 v2

v3

v4v5

v6

C6

v1 v2

v3

v4v5

v6

c1
c3

c5

c4

c2

c6

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles
I every Si and every S ′j correspond to 2K2 in G
→ their endpoints induce a C4 in G
→ `(Si) crosses Sj or `(Sj) crosses Sj

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles
I (?): for every i , j either `(Si) crosses Sj or `(Sj) crosses Sj

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles

I define:
I (?): for every i , j either `(Si) crosses Sj or `(Sj) crosses Sj

ai = number of S ′j ’s intersected by `(Si)
bi = number of `(S ′j)’s intersected by Si

ci = number of S ′j ’s intersected by Si∑p
i=1(ai + bi − ci)= number of pairs i , j satisfying (?) =pq

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles

I define:
I (?): for every i , j either `(Si) crosses Sj or `(Sj) crosses Sj

ai = number of S ′j ’s intersected by `(Si)
bi = number of `(S ′j)’s intersected by Si

ci = number of S ′j ’s intersected by Si∑p
i=1(ai + bi − ci)= number of pairs i , j satisfying (?) =pq

I ai = # of points where a line crosses a closed curve: even

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles

I define:
I (?): for every i , j either `(Si) crosses Sj or `(Sj) crosses Sj

ai = number of S ′j ’s intersected by `(Si)
bi = number of `(S ′j)’s intersected by Si

ci = number of S ′j ’s intersected by Si∑p
i=1(ai + bi − ci)= number of pairs i , j satisfying (?) =pq

I ai = # of points where a line crosses a closed curve: even
I
∑p

i=1 bi =
∑q

i=j a′j : also even

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles

I define:
I (?): for every i , j either `(Si) crosses Sj or `(Sj) crosses Sj

ai = number of S ′j ’s intersected by `(Si)
bi = number of `(S ′j)’s intersected by Si

ci = number of S ′j ’s intersected by Si∑p
i=1(ai + bi − ci)= number of pairs i , j satisfying (?) =pq

I ai = # of points where a line crosses a closed curve: even
I
∑p

i=1 bi =
∑q

i=j a′j : also even
I ci = # of intersection points of two closed curves: even

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Non-disk graphs

I suppose there is a representation
Proof by contradiction.

I let S1, . . . , Sp and S ′1, . . . , S ′q be segments of the co-cycles

I define:
I (?): for every i , j either `(Si) crosses Sj or `(Sj) crosses Sj

ai = number of S ′j ’s intersected by `(Si)
bi = number of `(S ′j)’s intersected by Si

ci = number of S ′j ’s intersected by Si∑p
i=1(ai + bi − ci)= number of pairs i , j satisfying (?) =pq

I ai = # of points where a line crosses a closed curve: even
I
∑p

i=1 bi =
∑q

i=j a′j : also even
I ci = # of intersection points of two closed curves: even
I
∑p

i=1(ai + bi − ci) = pq is even → contradiction �

Theorem [Györi, Kostochka, Luczak, ’97].
If odd girth is at least δn, then there is X , such that
|X | = Õ(1/δ) and G − X is bipartite.

Clique for disk graphs
Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Theorem [Györi, Kostochka, Luczak, ’97].
If odd girth is at least δn, then there is X , such that
|X | = Õ(1/δ) and G − X is bipartite.

Clique for disk graphs
Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Clique in G ≡ Independent Set in G

Theorem [Györi, Kostochka, Luczak, ’97].
If odd girth is at least δn, then there is X , such that
|X | = Õ(1/δ) and G − X is bipartite.

Clique for disk graphs
Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Clique in G ≡ Independent Set in G

Independent Set in a co-disk graph:
1. vertex of degree at least n1/3 → branching
2. no odd cycle of length < n1/3 →

there is |X | = O(n2/3) and G − X bipartite
3. odd C of length ≤ n1/3 and ∆ ≤ n1/3 →
|N[C]| ≤ n2/3 and G − N[C] is bipartite

Theorem [Györi, Kostochka, Luczak, ’97].
If odd girth is at least δn, then there is X , such that
|X | = Õ(1/δ) and G − X is bipartite.

Clique for disk graphs
Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Clique in G ≡ Independent Set in G

Independent Set in a co-disk graph:
1. vertex of degree at least n1/3 → branching
2. no odd cycle of length < n1/3 →

there is |X | = O(n2/3) and G − X bipartite
3. odd C of length ≤ n1/3 and ∆ ≤ n1/3 →
|N[C]| ≤ n2/3 and G − N[C] is bipartite

2Õ(n2/3)

guess the
solution on X
or N[C] and
finish in poly
time

Theorem [Györi, Kostochka, Luczak, ’97].
If odd girth is at least δn, then there is X , such that
|X | = Õ(1/δ) and G − X is bipartite.

Clique for disk graphs
Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018].
For odd p, q, the graph G = Cp + Cq is not a disk graph.

Clique in G ≡ Independent Set in G

Independent Set in a co-disk graph:
1. vertex of degree at least n1/3 → branching
2. no odd cycle of length < n1/3 →

there is |X | = O(n2/3) and G − X bipartite
3. odd C of length ≤ n1/3 and ∆ ≤ n1/3 →
|N[C]| ≤ n2/3 and G − N[C] is bipartite

2Õ(n2/3)

guess the
solution on X
or N[C] and
finish in poly
time

Theorem [BGKRzS ’18].

Clique in disk graphs can be solved in time 2Õ(n2/3).

Open problem: Max Cut in disk graphs
I partition vertices into two sets, to maximize the number of

crossing edges

I NP-hard on unit disk graphs, reduction is quadratic → no
2o(
√

n)algorithm

I is there a subexponential algorithm?

Open problem: Max Cut in disk graphs
I partition vertices into two sets, to maximize the number of

crossing edges

I NP-hard on unit disk graphs, reduction is quadratic → no
2o(
√

n)algorithm

I is there a subexponential algorithm?

I Warning: edge-weighted version has no subexponential
algorithm on complete graphs!

Open problem: Max Cut in disk graphs
I partition vertices into two sets, to maximize the number of

crossing edges

I NP-hard on unit disk graphs, reduction is quadratic → no
2o(
√

n)algorithm

I is there a subexponential algorithm?

I Warning: edge-weighted version has no subexponential
algorithm on complete graphs!

I complexity even unclear for (unit) interval graphs

Episode 2: parameterized algorithms

Geometric separators

k-Independent Set in unit disk graphs
I is there an independent set of size at least k?
I are there k disjoint disks?

k-Independent Set in unit disk graphs
I is there an independent set of size at least k?
I are there k disjoint disks?

I a solution should take some space:
if total area is < k · π, then NO

k-Independent Set in unit disk graphs
I is there an independent set of size at least k?
I are there k disjoint disks?

I a solution should take some space:
if total area is < k · π, then NO

I large area implies that a greedy algorithm works:
if total area is ≥ k · 9 · π, then YES

1

3

all disks
intersecting the
given one are
contained in a disk
of radius 3

k-Independent Set in unit disk graphs
I is there an independent set of size at least k?
I are there k disjoint disks?

I a solution should take some space:
if total area is < k · π, then NO

I large area implies that a greedy algorithm works:
if total area is ≥ k · 9 · π, then YES

1

3

I assume that π · k ≤ total area ≤ 9π · k

all disks
intersecting the
given one are
contained in a disk
of radius 3

Geometric separator theorem for unit disks
Geometric separator theorem [Alber, Fiala, ’04].
Given a collection of unit disks with total area A, there exists a
set S of disks, such that:
I total area of disks in S is O(

√
A),

I removing S gives connected parts of roughly equal area.

Geometric separator theorem for unit disks
Geometric separator theorem [Alber, Fiala, ’04].
Given a collection of unit disks with total area A, there exists a
set S of disks, such that:
I total area of disks in S is O(

√
A),

I removing S gives connected parts of roughly equal area.

Geometric separator theorem for unit disks
Geometric separator theorem [Alber, Fiala, ’04].
Given a collection of unit disks with total area A, there exists a
set S of disks, such that:
I total area of disks in S is O(

√
A),

I removing S gives connected parts of roughly equal area.

Divide & conquer using geometric separators
Algorithm [Alber, Fiala, ’04].
1. A = total area
2. if A < π · k, return NO
3. if A > 9π · k, return YES
4. find the geometric separator S of area O(

√
A)

5. guess the solution on S
6. remove S and recurse

Divide & conquer using geometric separators
Algorithm [Alber, Fiala, ’04].
1. A = total area
2. if A < π · k, return NO
3. if A > 9π · k, return YES
4. find the geometric separator S of area O(

√
A)

5. guess the solution on S
6. remove S and recurse

Divide & conquer using geometric separators
Algorithm [Alber, Fiala, ’04].
1. A = total area
2. if A < π · k, return NO
3. if A > 9π · k, return YES
4. find the geometric separator S of area O(

√
A)

5. guess the solution on S
6. remove S and recurse

I what is the largest possible independent set in S?

area(S)/π = O(
√

k)

Divide & conquer using geometric separators
Algorithm [Alber, Fiala, ’04].
1. A = total area
2. if A < π · k, return NO
3. if A > 9π · k, return YES
4. find the geometric separator S of area O(

√
A)

5. guess the solution on S
6. remove S and recurse

I what is the largest possible independent set in S?

∑O(
√

k)
i=0

(
n
i

)
= nO(

√
k)

area(S)/π = O(
√

k)

I what is the maximum number of independent sets in S?

Divide & conquer using geometric separators
Algorithm [Alber, Fiala, ’04].
1. A = total area
2. if A < π · k, return NO
3. if A > 9π · k, return YES
4. find the geometric separator S of area O(

√
A)

5. guess the solution on S
6. remove S and recurse

I what is the largest possible independent set in S?

∑O(
√

k)
i=0

(
n
i

)
= nO(

√
k)

area(S)/π = O(
√

k)

I what is the maximum number of independent sets in S?

I overall complexity is nO(
√

k)

Evaluation

I parameterized

Strengths Weaknesses

I faster than what we had
in the classical setting:∑n

k=1 nO(
√

k) = 2Õ(
√

n),

compared to 2Õ(n2/3)

I works also for disks and
other shapes with
bounded area

I doesn’t work for general
disk graphs, not to say
about segment/string
graphs

I necessarily requires a
representation given

I simple

I optimal (under ETH)

Evaluation

I parameterized

Strengths Weaknesses

I faster than what we had
in the classical setting:∑n

k=1 nO(
√

k) = 2Õ(
√

n),

compared to 2Õ(n2/3)

I works also for disks and
other shapes with
bounded area

I necessarily requires a
representation given

I in the remainder of this part we will learn how to address
the first weakness, using a different approach

I doesn’t work for general
disk graphs, not to say
about segment/string
graphs

I simple

I optimal (under ETH)

Voronoi-diagram approach

Voronoi diagrams
I we are given n points in the plane (objects)
I each point of the plane is assigned to the closest object

Voronoi diagrams
I we are given n points in the plane (objects)
I each point of the plane is assigned to the closest object

cells

Voronoi diagrams
I we are given n points in the plane (objects)
I each point of the plane is assigned to the closest object

I it is (almost) a 3-regular 2-connected planar graph

Voronoi diagrams
I we are given n points in the plane (objects)
I each point of the plane is assigned to the closest object

I it is (almost) a 3-regular 2-connected planar graph

Theorem [Marx, Pilipczuk ’15]. Each graph like this has a
balanced noose separator of size O(

√
n).

Solution Voronoi diagram
I consider a solution to the problem – k disjoint disks

Solution Voronoi diagram
I consider a solution to the problem – k disjoint disks
I build the solution Voronoi diagram, where objects are

centers of the disks in the solution

Solution Voronoi diagram
I consider a solution to the problem – k disjoint disks

I there is a balanced noose separator, alternatingly visiting
O(
√

k) vertices and faces of the diagram

I build the solution Voronoi diagram, where objects are
centers of the disks in the solution

Solution Voronoi diagram
I consider a solution to the problem – k disjoint disks

I there is a balanced noose separator, alternatingly visiting
O(
√

k) vertices and faces of the diagram
I turn the noose separator to a polygon Γ

I build the solution Voronoi diagram, where objects are
centers of the disks in the solution

Solution Voronoi diagram
I consider a solution to the problem – k disjoint disks

I there is a balanced noose separator, alternatingly visiting
O(
√

k) vertices and faces of the diagram
I turn the noose separator to a polygon Γ

I build the solution Voronoi diagram, where objects are
centers of the disks in the solution

Separators in a solution Voronoi diagram
I every disk touching the outline of the polygon or any of the

disks on its vertices can be discarded

Separators in a solution Voronoi diagram
I every disk touching the outline of the polygon or any of the

disks on its vertices can be discarded

this is in the solution,
so its neighbors cannot be

Separators in a solution Voronoi diagram
I every disk touching the outline of the polygon or any of the

disks on its vertices can be discarded

this is in the solution,
so its neighbors cannot be

this cannot be in the
solution, because it in the
Voronoi cell of another disk

Separators in a solution Voronoi diagram
I every disk touching the outline of the polygon or any of the

disks on its vertices can be discarded

Separators in a solution Voronoi diagram
I every disk touching the outline of the polygon or any of the

disks on its vertices can be discarded
I apply recursion to disks inside and outside the polygon,

we look for a solutions of size k1, k2, where
k1 + k2 = k and k1, k2 ≤ 2

3k

How to get a solution Voronoi diagram?
I but how can we know the solution Voronoi diagram?

How to get a solution Voronoi diagram?
I but how can we know the solution Voronoi diagram?
I we can’t, but we can still guess the polygon separator Γ

How to get a solution Voronoi diagram?
I but how can we know the solution Voronoi diagram?
I we can’t, but we can still guess the polygon separator Γ

I O(
√

k) centers of disks

I O(
√

k) vertices the Voronoi diagram
→ each of them is uniquely defined by 3 centers

I vertices of Γ are:

How to get a solution Voronoi diagram?
I but how can we know the solution Voronoi diagram?
I we can’t, but we can still guess the polygon separator Γ

I O(
√

k) centers of disks

I O(
√

k) vertices the Voronoi diagram
→ each of them is uniquely defined by 3 centers

I vertices of Γ are:

I so in order to guess Γ we need to guess O(
√

k) disks

this requires time nO(
√

k)

How to get a solution Voronoi diagram?
I but how can we know the solution Voronoi diagram?
I we can’t, but we can still guess the polygon separator Γ

I O(
√

k) centers of disks

I O(
√

k) vertices the Voronoi diagram
→ each of them is uniquely defined by 3 centers

I vertices of Γ are:

I so in order to guess Γ we need to guess O(
√

k) disks

this requires time nO(
√

k)

T (n, k) ≤ nO(
√

k) · k2 · 2T (n, 2
3k) = nO(

√
k)

From disks to other geometric objects
I disks can be seen as connected subgraphs of a fine grid

From disks to other geometric objects
I disks can be seen as connected subgraphs of a fine grid

I string graphs = intersection graphs of connected subgraphs
of planar graphs

General statement
I the whole approach can be re-interpreted in terms of

packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk ’15].
Given a planar graph G with r vertices and n connected

subgraphs of G , in time nO(
√

k) · poly(r) we can decide if there
is a collection of k disjoint subgraphs.

General statement
I the whole approach can be re-interpreted in terms of

packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk ’15].
Given a planar graph G with r vertices and n connected

subgraphs of G , in time nO(
√

k) · poly(r) we can decide if there
is a collection of k disjoint subgraphs.
I no assumptions on area
I works for weighted variants
I to some extent works also

for covering variant
(domination)

I necessarily requires geometric
represention

I r is the number of geometric
vertices: for string graphs it
might be exponential in n

I for disks and segments r = poly(n)

General statement
I the whole approach can be re-interpreted in terms of

packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk ’15].
Given a planar graph G with r vertices and n connected

subgraphs of G , in time nO(
√

k) · poly(r) we can decide if there
is a collection of k disjoint subgraphs.
I no assumptions on area
I works for weighted variants
I to some extent works also

for covering variant
(domination)

I necessarily requires geometric
represention

I r is the number of geometric
vertices: for string graphs it
might be exponential in n

I Open question: For disk graphs, is there a robust algorithm

for Independent Set with complexity 2o(k) or 2Õ(
√

n)?

I for disks and segments r = poly(n)

Lower bounds
for parameterized algorithms

Parameterized lower bounds
I we know that k-Independent Set can be solved in time

nO(
√

k) in disk graphs
I we aim to show that this is asymptotically optimal

Parameterized lower bounds
I we know that k-Independent Set can be solved in time

nO(
√

k) in disk graphs
I we aim to show that this is asymptotically optimal

Theorem.
Assuming the ETH, k-Clique cannot be solved in time no(k).

I we will need the following

I proof by a textbook reduction from 3-Sat

Grid Tiling
I we are given a square t × t grid

t

Grid Tiling
I we are given a square t × t grid

t

I in each cell (i , j) we have Si ,j ⊆ [n]× [n]

(1,1)(1,2)
(2,2)(2,3)

(1,1)(1,3)
(1,4)(2,4)
(3,1)

(1,4)(2,3)
(2,4)(4,1)

(1,1)(1,4)
(2,2)(2,3)

(1,1)(1,2)
(2,2)(2,3)

(1,2)(1,3)
(3,2)(4,1)

(2,1)(2,2)
(3,3)(3,5)

(2,1)(2,3)
(3,4)(3,5)

(2,5)(3,4)
(4,1)(4,2)

(1,1)(1,2)
(3,2)

(1,1)(1,2)
(1,3)(1,4)

(1,1)(1,3)
(2,4)(3,4)

(1,4)(2,1)
(2,2)(2,3)

(1,2)(1,4)
(3,1)(3,3)

(1,1)(1,2)
(1,3)(2,2)

(1,2)(1,3)
(2,2)(2,3)

(1,3)(2,1)
(2,3)(2,4)

(2,1)(2,4)
(3,1)(3,2)

(1,3)(2,3)
(2,4)(4,1)

(1,4)(2,1)
(2,2)(3,1)

(2,1)(3,1)
(3,3)(4,2)

(2,2)(2,4)
(4,3)(4,4)

(2,3)(3,2)
(4,4)(4,5)

(1,3)(3,2)
(3,4)(4,4)

(1,3)(3,3)
(4,2)(4,3)

Grid Tiling
I we are given a square t × t grid

t

I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

I the first coordinates in each row are equal
I the second coordinates in each column are equal

(1,1)(1,2)
(2,2)(2,3)

(1,1)(1,3)
(1,4)(2,4)
(3,1)

(1,4)(2,3)
(2,4)(4,1)

(1,1)(1,4)
(2,2)(2,3)

(1,1)(1,2)
(2,2)(2,3)

(1,2)(1,3)
(3,2)(4,1)

(2,1)(2,2)
(3,3)(3,5)

(2,1)(2,3)
(3,4)(3,5)

(2,5)(3,4)
(4,1)(4,2)

(1,1)(1,2)
(3,2)

(1,1)(1,2)
(1,3)(1,4)

(1,1)(1,3)
(2,4)(3,4)

(1,4)(2,1)
(2,2)(2,3)

(1,2)(1,4)
(3,1)(3,3)

(1,1)(1,2)
(1,3)(2,2)

(1,2)(1,3)
(2,2)(2,3)

(1,3)(2,1)
(2,3)(2,4)

(2,1)(2,4)
(3,1)(3,2)

(1,3)(2,3)
(2,4)(4,1)

(1,4)(2,1)
(2,2)(3,1)

(2,1)(3,1)
(3,3)(4,2)

(2,2)(2,4)
(4,3)(4,4)

(2,3)(3,2)
(4,4)(4,5)

(1,3)(3,2)
(3,4)(4,4)

(1,3)(3,3)
(4,2)(4,3)

Grid Tiling
I we are given a square t × t grid

t

I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

I the first coordinates in each row are equal
I the second coordinates in each column are equal

(1,1)(1,2)
(2,2)(2,3)

(1,1)(1,3)
(1,4)(2,4)
(3,1)

(1,4)(2,3)
(2,4)(4,1)

(1,1)(1,4)
(2,2)(2,3)

(1,1)(1,2)
(2,2)(2,3)

(1,2)(1,3)
(3,2)(4,1)

(2,1)(2,2)
(3,3)(3,5)

(2,1)(2,3)
(3,4)(3,5)

(2,5)(3,4)
(4,1)(4,2)

(1,1)(1,2)
(3,2)

(1,1)(1,2)
(1,3)(1,4)

(1,1)(1,3)
(2,4)(3,4)

(1,4)(2,1)
(2,2)(2,3)

(1,2)(1,4)
(3,1)(3,3)

(1,1)(1,2)
(1,3)(2,2)

(1,2)(1,3)
(2,2)(2,3)

(1,3)(2,1)
(2,3)(2,4)

(2,1)(2,4)
(3,1)(3,2)

(1,3)(2,3)
(2,4)(4,1)

(1,4)(2,1)
(2,2)(3,1)

(2,1)(3,1)
(3,3)(4,2)

(2,2)(2,4)
(4,3)(4,4)

(2,3)(3,2)
(4,4)(4,5)

(1,3)(3,2)
(3,4)(4,4)

(1,3)(3,3)
(4,2)(4,3)

I how fast can we
solve it?

Grid Tiling
I we are given a square t × t grid

t

I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

I the first coordinates in each row are equal
I the second coordinates in each column are equal

(1,1)(1,2)
(2,2)(2,3)

(1,1)(1,3)
(1,4)(2,4)
(3,1)

(1,4)(2,3)
(2,4)(4,1)

(1,1)(1,4)
(2,2)(2,3)

(1,1)(1,2)
(2,2)(2,3)

(1,2)(1,3)
(3,2)(4,1)

(2,1)(2,2)
(3,3)(3,5)

(2,1)(2,3)
(3,4)(3,5)

(2,5)(3,4)
(4,1)(4,2)

(1,1)(1,2)
(3,2)

(1,1)(1,2)
(1,3)(1,4)

(1,1)(1,3)
(2,4)(3,4)

(1,4)(2,1)
(2,2)(2,3)

(1,2)(1,4)
(3,1)(3,3)

(1,1)(1,2)
(1,3)(2,2)

(1,2)(1,3)
(2,2)(2,3)

(1,3)(2,1)
(2,3)(2,4)

(2,1)(2,4)
(3,1)(3,2)

(1,3)(2,3)
(2,4)(4,1)

(1,4)(2,1)
(2,2)(3,1)

(2,1)(3,1)
(3,3)(4,2)

(2,2)(2,4)
(4,3)(4,4)

(2,3)(3,2)
(4,4)(4,5)

(1,3)(3,2)
(3,4)(4,4)

(1,3)(3,3)
(4,2)(4,3)

I how fast can we
solve it?

I guess everything:
(n2)t2 = nO(t2)

Grid Tiling
I we are given a square t × t grid

t

I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

I the first coordinates in each row are equal
I the second coordinates in each column are equal

(1,1)(1,2)
(2,2)(2,3)

(1,1)(1,3)
(1,4)(2,4)
(3,1)

(1,4)(2,3)
(2,4)(4,1)

(1,1)(1,4)
(2,2)(2,3)

(1,1)(1,2)
(2,2)(2,3)

(1,2)(1,3)
(3,2)(4,1)

(2,1)(2,2)
(3,3)(3,5)

(2,1)(2,3)
(3,4)(3,5)

(2,5)(3,4)
(4,1)(4,2)

(1,1)(1,2)
(3,2)

(1,1)(1,2)
(1,3)(1,4)

(1,1)(1,3)
(2,4)(3,4)

(1,4)(2,1)
(2,2)(2,3)

(1,2)(1,4)
(3,1)(3,3)

(1,1)(1,2)
(1,3)(2,2)

(1,2)(1,3)
(2,2)(2,3)

(1,3)(2,1)
(2,3)(2,4)

(2,1)(2,4)
(3,1)(3,2)

(1,3)(2,3)
(2,4)(4,1)

(1,4)(2,1)
(2,2)(3,1)

(2,1)(3,1)
(3,3)(4,2)

(2,2)(2,4)
(4,3)(4,4)

(2,3)(3,2)
(4,4)(4,5)

(1,3)(3,2)
(3,4)(4,4)

(1,3)(3,3)
(4,2)(4,3)

I how fast can we
solve it?

I guess everything:
(n2)t2 = nO(t2)

I guess the diagonal:
(n2)t = nO(t)

Grid Tiling
I we are given a square t × t grid

t

I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

I the first coordinates in each row are equal
I the second coordinates in each column are equal

(1,1)(1,2)
(2,2)(2,3)

(1,1)(1,3)
(1,4)(2,4)
(3,1)

(1,4)(2,3)
(2,4)(4,1)

(1,1)(1,4)
(2,2)(2,3)

(1,1)(1,2)
(2,2)(2,3)

(1,2)(1,3)
(3,2)(4,1)

(2,1)(2,2)
(3,3)(3,5)

(2,1)(2,3)
(3,4)(3,5)

(2,5)(3,4)
(4,1)(4,2)

(1,1)(1,2)
(3,2)

(1,1)(1,2)
(1,3)(1,4)

(1,1)(1,3)
(2,4)(3,4)

(1,4)(2,1)
(2,2)(2,3)

(1,2)(1,4)
(3,1)(3,3)

(1,1)(1,2)
(1,3)(2,2)

(1,2)(1,3)
(2,2)(2,3)

(1,3)(2,1)
(2,3)(2,4)

(2,1)(2,4)
(3,1)(3,2)

(1,3)(2,3)
(2,4)(4,1)

(1,4)(2,1)
(2,2)(3,1)

(2,1)(3,1)
(3,3)(4,2)

(2,2)(2,4)
(4,3)(4,4)

(2,3)(3,2)
(4,4)(4,5)

(1,3)(3,2)
(3,4)(4,4)

(1,3)(3,3)
(4,2)(4,3)

I how fast can we
solve it?

I guess everything:
(n2)t2 = nO(t2)

I guess the diagonal:
(n2)t = nO(t)

I we will show that
this is optimal

Hardness of Grid Tiling
I t × t grid, each cell with some pairs from [n]× [n]

Theorem. Grid Tiling cannot be solved in time no(t), unless
the ETH fails.

Hardness of Grid Tiling
I t × t grid, each cell with some pairs from [n]× [n]

Theorem. Grid Tiling cannot be solved in time no(t), unless
the ETH fails.

I reduction from k-Clique with vertices 1, 2, . . . , n, t = k

Hardness of Grid Tiling
I t × t grid, each cell with some pairs from [n]× [n]

Theorem. Grid Tiling cannot be solved in time no(t), unless
the ETH fails.

I reduction from k-Clique with vertices 1, 2, . . . , n, t = k

I Sets for the cell (i , j):
I (x , y) ∈ Si ,i if x = y
I (x , y) ∈ Si ,j if xy ∈ E

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , j)
i j ∈ [n]

(i , i)
i ∈ [n]

(i , i)
i ∈ [n]

(i , i)
i ∈ [n]

(i , i)
i ∈ [n]

(i , i)
i ∈ [n]

Hardness of Grid Tiling
I t × t grid, each cell with some pairs from [n]× [n]

Theorem. Grid Tiling cannot be solved in time no(t), unless
the ETH fails.

I reduction from k-Clique with vertices 1, 2, . . . , n, t = k

I Sets for the cell (i , j):
I (x , y) ∈ Si ,i if x = y
I (x , y) ∈ Si ,j if xy ∈ E

I Selected pairs on the
diagonal correspond to
a clique

(i , i)
i ∈ [n]

(j , j)
j ∈ [n]

(i , j)
∈ E

Hardness of Grid Tiling
I t × t grid, each cell with some pairs from [n]× [n]

Theorem. Grid Tiling cannot be solved in time no(t), unless
the ETH fails.

I reduction from k-Clique with vertices 1, 2, . . . , n, t = k

I Sets for the cell (i , j):
I (x , y) ∈ Si ,i if x = y
I (x , y) ∈ Si ,j if xy ∈ E

I Selected pairs on the
diagonal correspond to
a clique

I solving Grid Tiling
in time no(t) → solving
k-Clique in time no(k)

(i , i)
i ∈ [n]

(j , j)
j ∈ [n]

(i , j)
∈ E

Grid Tiling
I we are given a square t × t grid
I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

I the first coordinates in each row are equal
I the second coodrinates in each column are equal

Theorem. Assuming the ETH, there is no algorithm solving
Grid Tiling in time no(t).

I we are given a square t × t grid
I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

Grid Tiling with ≤

I the first coordinates in each row are non-decreasing
I the second coodrinates in each column are non-decreasing

Theorem. Assuming the ETH, there is no algorithm solving
Grid Tiling with ≤ in time no(t).

I we are given a square t × t grid
I in each cell (i , j) we have Si ,j ⊆ [n]× [n]
I for each cell choose one pair, such that:

Grid Tiling with ≤

I the first coordinates in each row are non-decreasing
I the second coodrinates in each column are non-decreasing

Theorem. Assuming the ETH, there is no algorithm solving
Grid Tiling with ≤ in time no(t).

I each set Si ,j can be seen as points of n × n grid

(1,1)(1,2)(1,3)
(2,2)(2,3)
(3,1)(3,4)
(4,2)(4,4)

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

a single cell:

I t × t outer grid, n × n inner grids

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

a single cell:

I t × t outer grid, n × n inner grids

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

a single cell:

introduce
unit disks
centered at
these points

I t × t outer grid, n × n inner grids

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

I t × t outer grid, n × n inner grids

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

I t × t outer grid, n × n inner grids

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

I t × t outer grid, n × n inner grids

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

I t × t outer grid, n × n inner grids

I disks from one cell form a clique:
we have t2 cliques → size of max independent set is ≤ t2

I disks from consecutive cells can be chosen if coordinates
are non-decreasing

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

I t × t outer grid, n × n inner grids

I disks from one cell form a clique:
we have t2 cliques → size of max independent set is ≤ t2

I disks from consecutive cells can be chosen if coordinates
are non-decreasing

I so the solution of size k = t2 exists if and only if there is a
solution for Grid Tiling

Hardness of Independent Set in UDGs
Theorem. Grid Tiling with ≤ cannot be solved in time
no(t), unless the ETH fails.

I t × t outer grid, n × n inner grids

I disks from one cell form a clique:
we have t2 cliques → size of max independent set is ≤ t2

I disks from consecutive cells can be chosen if coordinates
are non-decreasing

I so the solution of size k = t2 exists if and only if there is a
solution for Grid Tiling

I number of disks N ≤ t2 · n2

I solving Independent Set in time No(
√

k)

→ solving Grid Tiling in time no(t) → the ETH fails �

Other faces of Grid Tiling
I similar approach can be used to show lower bounds for

(Connected) Dominating Set [Marx + Kisfaludi-Bak]

I reductions are not specific to disks: in general they can be
adjusted for any convex fat shapes

Other faces of Grid Tiling
I similar approach can be used to show lower bounds for

(Connected) Dominating Set [Marx + Kisfaludi-Bak]

I reductions are not specific to disks: in general they can be
adjusted for any convex fat shapes

I there is a variant for k-Coloring
Theorem [Biró, Bonnet, Marx, Miltzow, Rz., ’16].
k-Coloring of intersection graphs of translates of any convex

fat shape cannot be solved in time 2o(
√

nk). here k is a
function of n

Other faces of Grid Tiling
I similar approach can be used to show lower bounds for

(Connected) Dominating Set [Marx + Kisfaludi-Bak]

I reductions are not specific to disks: in general they can be
adjusted for any convex fat shapes

I there is a variant for k-Coloring
Theorem [Biró, Bonnet, Marx, Miltzow, Rz., ’16].
k-Coloring of intersection graphs of translates of any convex

fat shape cannot be solved in time 2o(
√

nk). here k is a
function of n

I there are also versions for any dimension d :

for Independent Set:

for k-Coloring: [BBMMRz ’16]2Õ(n1/d ·k1−1/d)

2O(k1−1/d) [Marx, Sidiropoulos ’15]

Other faces of Grid Tiling
I similar approach can be used to show lower bounds for

(Connected) Dominating Set [Marx + Kisfaludi-Bak]

I reductions are not specific to disks: in general they can be
adjusted for any convex fat shapes

I there is a variant for k-Coloring
Theorem [Biró, Bonnet, Marx, Miltzow, Rz., ’16].
k-Coloring of intersection graphs of translates of any convex

fat shape cannot be solved in time 2o(
√

nk). here k is a
function of n

I there are also versions for any dimension d :

for Independent Set:

for k-Coloring: [BBMMRz ’16]2Õ(n1/d ·k1−1/d)

2O(k1−1/d) [Marx, Sidiropoulos ’15]

... but it’s a different story

Bidimensionality in geometric graphs

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

I find some disjoint connected subgraphs and contract them
to single vertices

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

I find some disjoint connected subgraphs and contract them
to single vertices

Minors
I minor = a graph obtained by deleting vertices/edges and

contracting edges

I find some disjoint connected subgraphs and contract them
to single vertices

Grid minor theorem
I the presence of t × t grid minor forces treewidth ≥ t

Grid minor theorem
I the presence of t × t grid minor forces treewidth ≥ t

Grid minor theorem [Robertson, Seymour ’86].
Every graph with treewidth ≥ f (t) contains a t × t grid minor.

Grid minor theorem
I the presence of t × t grid minor forces treewidth ≥ t

Grid minor theorem [Chuzhoy, Tan ’19].

Every graph with treewidth Ω̃(t9) contains a t × t grid minor.

Grid minor theorem
I the presence of t × t grid minor forces treewidth ≥ t

Grid minor theorem [Chuzhoy, Tan ’19].

Every graph with treewidth Ω̃(t9) contains a t × t grid minor.

Planar grid minor theorem [Robertson, Seymour, Thomas ’94,
Gu, Tamaki ’12].
Every planar graph with treewidth ≥ 9/2 · t contains a t × t
grid minor. There is a poly-time algorithm for finding a grid or
a tree decomposition.

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

I if not, we have a 100
√

k × 100
√

k grid minor

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

I if not, we have a 100
√

k × 100
√

k grid minor

I k-Feedback Vertex Set:
is there a feedback vertex set of size ≤ k?

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

I if not, we have a 100
√

k × 100
√

k grid minor

I k-Feedback Vertex Set:
is there a feedback vertex set of size ≤ k?

NO!

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

I if not, we have a 100
√

k × 100
√

k grid minor

I k-Path:
is there a path of length ≥ k?

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

I if not, we have a 100
√

k × 100
√

k grid minor

I k-Path:
is there a path of length ≥ k?

YES!

Bidimensionality for planar graphs
I if treewidth is O(

√
k), then many problem can be solved in

time 2Õ(
√

k) · poly(n)

I if not, we have a 100
√

k × 100
√

k grid minor

I 2Õ(
√

k) · poly(n)-algorithms for many parameterized
problems

Grid minors in unit disk graphs
I we aim to prove a grid minor theorem for unit disk graphs

Grid minors in unit disk graphs
I we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

Grid minors in unit disk graphs
I we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

Grid minors in unit disk graphs
I we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

Grid minors in unit disk graphs
I we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

I R(G) – region graph, R(G) is planar

Grid minors in unit disk graphs, continued

I R(G) – region graph,
R(G) is planar

Grid minors in unit disk graphs, continued

Lemma. tw(G) = O(tw(R(G))

I R(G) – region graph,
R(G) is planar

I construct a tree decomposition of G based on a tree
decomposition of R(G)

Grid minors in unit disk graphs, continued

Lemma. tw(G) = O(tw(R(G))

I R(G) – region graph,
R(G) is planar

I R(G) contains t × t grid minor, where t = O(tw(R(G))).

I construct a tree decomposition of G based on a tree
decomposition of R(G)

How to use it?

Grid minors in unit disk graphs, continued

Lemma. tw(G) = O(tw(R(G))

I R(G) – region graph,
R(G) is planar

I R(G) contains t × t grid minor, where t = O(tw(R(G))).

I construct a tree decomposition of G based on a tree
decomposition of R(G)

I using this, we construct a t ′ × t ′ grid minor in G , where
t ′ = O(t) = O(tw(G))

How to use it?

Grid minor theorem for unit disk graphs
Lemma[Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

Grid minor theorem for unit disk graphs
Lemma[Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

I if G has no clique of size p, then ∆ ≤ 6p

Grid minor theorem for unit disk graphs
Lemma[Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

I if G has no clique of size p, then ∆ ≤ 6p

2

I centers or all neighbors
are in the radius-2 disk

I take a vertex of degree ∆

Grid minor theorem for unit disk graphs
Lemma[Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

I if G has no clique of size p, then ∆ ≤ 6p

2

I centers or all neighbors
are in the radius-2 disk

I centers in each region
correspond to a clique

I take a vertex of degree ∆

Grid minor theorem for unit disk graphs
Lemma[Fomin, Lokshtanov, Saurabh ’11].
Every unit disk graph G with bounded maximum degree and
treewidth Ω(t) has a t × t grid minor.

I if G has no clique of size p, then ∆ ≤ 6p

2

I centers or all neighbors
are in the radius-2 disk

I centers in each region
correspond to a clique

Theorem [FLS ’11].
Every unit disk graph with no p-clique
and treewidth Ω(p · t) has a t × t grid minor.

I take a vertex of degree ∆

I add some technical magic

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

Initialization.

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

1. If |C | > k + 2, return NO.

Initialization.

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

1. If |C | > k + 2, return NO.

2. If |C | > kε, branch:

Initialization.

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

1. If |C | > k + 2, return NO.

2. If |C | > kε, branch:

Initialization.

T (n, k) ≤ k2ε · T (n, k − kε) ≤ exp{k1−ε log k} · poly(n)

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

1. If |C | > k + 2, return NO.

2. If |C | > kε, branch:

Initialization.

exp{k1−ε log k} · poly(n)

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

1. If |C | > k + 2, return NO.

2. If |C | > kε, branch:

Initialization.

(b) grid minor of size t × t → return NO

(a) treewidth = O(kε · t) = kO(1/2+ε), divide & conquer

3. If |C | < kε, then one of the following occurs:

exp{k1−ε log k} · poly(n)

exp{k1+ε} · poly(n)

Yet another win-win algorithm
I k-Feedback Vertex Set in unit disk graphs:

is there a feedback vertex set of size ≤ k?

C ← a maximum clique in G (polynomial to find)
t ← 100

√
k

ε← 0.25

1. If |C | > k + 2, return NO.

2. If |C | > kε, branch:

Initialization.

(b) grid minor of size t × t → return NO

(a) treewidth = O(kε · t) = kO(1/2+ε), divide & conquer

3. If |C | < kε, then one of the following occurs:

exp{k1−ε log k} · poly(n)

exp{k1+ε} · poly(n)

Overall running time is 2O(k0.75·log k) · poly(n).

Concluding comments
I this works for k-Cycle Packing, k-Cycle, k-Path,

(Connected) k-Vertex Cover

I can be used to obtain EPTASes

Concluding comments
I this works for k-Cycle Packing, k-Cycle, k-Path,

(Connected) k-Vertex Cover

I can be used to obtain EPTASes

I does not generalize to non-unit disk graphs

Concluding comments
I this works for k-Cycle Packing, k-Cycle, k-Path,

(Connected) k-Vertex Cover

I can be used to obtain EPTASes

I does not generalize to non-unit disk graphs

I we know algorithms with running time 2O(
√

k) · poly(n)
e.g. [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi ’19]

I no 2o(
√

k) · poly(n)-algorithms, unless the ETH fails

Concluding comments
I this works for k-Cycle Packing, k-Cycle, k-Path,

(Connected) k-Vertex Cover

I can be used to obtain EPTASes

I does not generalize to non-unit disk graphs

I we know algorithms with running time 2O(
√

k) · poly(n)
e.g. [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi ’19]

I no 2o(
√

k) · poly(n)-algorithms, unless the ETH fails

