The quest for optimality
 in geometric intersection graphs

Paweł Rzążewski

Warsaw University of Technology / University of Warsaw

Episode 1: exact algorithms

Fine-grained complexity and the Exponential-Time Hypothesis

Classical approach to complexity theory

Assuming $P \neq N P$, we partition problems into two sets:

- P (solvable in polynomial time) proven by presenting an algorithm
- NP-hard (no polynomial algorithm) proven by polynomial reductions

Classical approach to complexity theory

Assuming $P \neq N P$, we partition problems into two sets:

- P (solvable in polynomial time) proven by presenting an algorithm
worth attention,
how fast can be solve them?
- NP-hard (no polynomial algorithm) proven by polynomial reductions
hopeless, unsolvable

How hard are hard problems?

- hard problems are quite common (even in practice)
- many new algorithmic techniques

How hard are hard problems?

- hard problems are quite common (even in practice)
- many new algorithmic techniques
- NP-hardness \rightarrow no polynomial algorithm
but maybe $2^{\mathcal{O}(\sqrt{n})}$?
or even $2 \mathcal{O}\left(\log ^{2} n\right)$?

```
polynomial time:
nc}=\mp@subsup{2}{}{c\operatorname{log}n}=\mp@subsup{2}{}{\mathcal{O}(\operatorname{log}n)
```


How hard are hard problems?

- hard problems are quite common (even in practice)
- many new algorithmic techniques
- NP-hardness \rightarrow no polynomial algorithm
but maybe $2^{\mathcal{O}(\sqrt{n})}$?
or even $2^{\mathcal{O}\left(\log ^{2} n\right)}$?

```
polynomial time:
nc}=\mp@subsup{2}{}{c\operatorname{log}n}=\mp@subsup{2}{}{\mathcal{O}(\operatorname{log}n)
```

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1999] There is no algorithm solving 3 -Sat with n variables and $\mathcal{O}(n)$ clauses in time $2^{\circ(n)}$.

How hard are hard problems?

- hard problems are quite common (even in practice)
- many new algorithmic techniques
- NP-hardness \rightarrow no polynomial algorithm
but maybe $2^{\mathcal{O}(\sqrt{n})}$?
or even $2^{\mathcal{O}\left(\log ^{2} n\right)}$?

```
polynomial time:
n}=\mp@subsup{2}{}{c\operatorname{log}n}=\mp@subsup{2}{}{\mathcal{O}(\operatorname{log}n)
```

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1999] There is no algorithm solving 3 -Sat with n variables and $\mathcal{O}(n)$ clauses in time $2^{\circ(n)}$.

$$
\begin{array}{|l}
\hline \text { subexponential time: } 2^{o(n)} \\
\text { e.g. } 2^{\mathcal{O}\left(n^{0.99}\right)} \text { or } 2^{\mathcal{O}(n / \log n)} \\
\hline
\end{array}
$$

A closer look

Being a stronger assumption than $P \neq$ NP, ETH allows for a finer analysis:

- P (solvable in polynomial time)
- NP-hard
(no polynomial algorithm)

P

NP-h

A closer look

Being a stronger assumption than $\mathrm{P} \neq \mathrm{NP}$, ETH allows for a finer analysis:

- P (solvable in polynomial time)
- NP-hard
(no polynomial ETH-hard (no subexponential algorithm) algorithm)

P

ETH-h

SUBEXP

A closer look

Being a stronger assumption than $P \neq$ NP, ETH allows for a finer analysis:

- P (solvable in polynomial time) easy

SUBEXP (solvable in subexponential time)

- NP-hard
(no polynomial ETH-hard (no subexponential algorithm) algorithm) really difficult

P

ETH-h

SUBEXP

Lower bounds

- hardness is proven via reductions
- start from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- construct an instance \mathcal{I} with $N=\mathcal{O}\left(n^{\alpha}\right)$ vertices

Lower bounds

- hardness is proven via reductions
- start from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- construct an instance \mathcal{I} with $N=\mathcal{O}\left(n^{\alpha}\right)$ vertices
algorithm solving \mathcal{I} in time $2^{o\left(N^{1 / \alpha}\right)}$

algorithm solving $3-\mathrm{SAT}$ in time $2^{\circ(n)}$

Lower bounds

- hardness is proven via reductions
- start from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- construct an instance \mathcal{I} with $N=\mathcal{O}\left(n^{\alpha}\right)$ vertices
algorithm solving \mathcal{I} in time $2^{o\left(N^{1 / \alpha}\right)}$

algorithm solving 3-SAT in time $2^{o(n)}$
$\alpha=1$ (linear reduction) \rightarrow no $2^{o(n)}$ algorithm
$\alpha=2$ (quadratic reduction) \rightarrow no $2^{o(\sqrt{n})}$ algorithm

What can we hope for?

- bad news: assuming the ETH, there are no subexponential algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set, Vertex Cover, Hamiltonian Cycle, Max Cut etc.

What can we hope for?

- bad news: assuming the ETH, there are no subexponential algorithms for canonical graph problems
3-Coloring, Independent Set, Clique, Dominating Set, Vertex Cover, Hamiltonian Cycle, Max Cut etc.

Boring!

What can we hope for?

- bad news: assuming the ETH, there are no subexponential algorithms for canonical graph problems 3-Coloring, Independent Set, Clique, Dominating Set, Vertex Cover, Hamiltonian Cycle, Max Cut etc.
Boring!
- what about restricted classes of graphs? planar graphs?

What can we hope for?

- bad news: assuming the ETH, there are no subexponential algorithms for canonical graph problems 3-Coloring, Independent Set, Clique, Dominating Set, Vertex Cover, Hamiltonian Cycle, Max Cut etc.

Boring!

- what about restricted classes of graphs? planar graphs?
- Square-root phenomenon: for planar graphs, most canonical problems can be solved in time $2^{\mathcal{O}(\sqrt{n})}$ assuming the ETH, this cannot be improved to $2^{\circ}(\sqrt{n})$

What can we hope for?

- bad news: assuming the ETH, there are no subexponential algorithms for canonical graph problems 3-Coloring, Independent Set, Clique, Dominating Set, Vertex Cover, Hamiltonian Cycle, Max Cut etc.

Boring!

- what about restricted classes of graphs? planar graphs?
- Square-root phenomenon: for planar graphs, most canonical problems can be solved in time $2^{\mathcal{O}(\sqrt{n})}$ assuming the ETH, this cannot be improved to $2^{\circ(\sqrt{n})}$

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

Subexponential algorithms for planar graphs

 Planar separator theorem [Lipton, Tarjan, 1979].Every planar graph has a balanced separator of size $\mathcal{O}(\sqrt{n})$.

- also specialized versions, e.g. the separator is a cycle

Independent Set

- divide \& conquer gives a $2^{\mathcal{O}(\sqrt{n})}$ algorithm

Geometric intersection graphs

Relations between classes

Separator-based algorithms for disk intersection graphs

k-Coloring disk graphs

Disk separator theorem [Miller et al., 1997]. Intersection graph of disks with ply at most k has a balanced separator of size $\mathcal{O}(\sqrt{n k})$.

k-Coloring disk graphs

Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced separator of size $\mathcal{O}(\sqrt{n k})$.
ply = max number
of disks covering a
single point

k-Coloring disk graphs

Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced separator of size $\mathcal{O}(\sqrt{n k})$.
k-Coloring of disk graphs
ply = max number of disks covering a single point

1. ply $>k \rightarrow$ a clique of size $>k \rightarrow$ return NO
2. ply $\leq k \rightarrow$ a balanced separator S of size $\mathcal{O}(\sqrt{n k})$
3. guess the coloring of S (one of $k^{|S|}=k^{\mathcal{O}(\sqrt{n k})}$ possibilities)
4. recurse using divide \& conquer

k-Coloring disk graphs

Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced separator of size $\mathcal{O}(\sqrt{n k})$.
k-Coloring of disk graphs
ply = max number of disks covering a single point

1. ply $>k \rightarrow$ a clique of size $>k \rightarrow$ return NO
2. ply $\leq k \rightarrow$ a balanced separator S of size $\mathcal{O}(\sqrt{n k})$
3. guess the coloring of S (one of $k^{|S|}=k^{\mathcal{O}(\sqrt{n k})}$ possibilities)
4. recurse using divide \& conquer

Theorem: For any fixed k, k-Coloring can be solved in time $2^{\mathcal{O}(\sqrt{n})}$ for disk graphs.

k-Coloring disk graphs

Disk separator theorem [Miller et al., 1997].
Intersection graph of disks with ply at most k has a balanced separator of size $\mathcal{O}(\sqrt{n k})$.
k-Coloring of disk graphs
ply = max number of disks covering a single point

1. ply $>k \rightarrow$ a clique of size $>k \rightarrow$ return NO
2. ply $\leq k \rightarrow$ a balanced separator S of size $\mathcal{O}(\sqrt{n k})$
3. guess the coloring of S (one of $k^{|S|}=k^{\mathcal{O}(\sqrt{n k})}$ possibilities)
4. recurse using divide \& conquer

Theorem: For any fixed k, k-Coloring can be solved in time $2^{\mathcal{O}(\sqrt{n})}$ for disk graphs.

Key observation:
Yes-instances of k-Coloring do not have large cliques.

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance...

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance... - ... but not too much can happen on a clique

Let Q be a clique in $G,|Q|=\tau$.

- at most one vertex of Q belongs to the optimal solution
- we can branch into $\tau+1$ instances, each of size $n-\tau$

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance...
- ... but not too much can happen on a clique

Let Q be a clique in $G,|Q|=\tau$.

- at most one vertex of Q belongs to the optimal solution
- we can branch into $\tau+1$ instances, each of size $n-\tau$

$$
F(n) \leq(\tau+1) \cdot F(n-\tau)
$$

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance...
- ... but not too much can happen on a clique

Let Q be a clique in $G,|Q|=\tau$.

- at most one vertex of Q belongs to the optimal solution
- we can branch into $\tau+1$ instances, each of size $n-\tau$

$$
F(n) \leq(\tau+1) \cdot F(n-\tau) \leq(\tau+1)^{2} \cdot F(n-2 \tau)
$$

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance...
- ... but not too much can happen on a clique

Let Q be a clique in $G,|Q|=\tau$.

- at most one vertex of Q belongs to the optimal solution
- we can branch into $\tau+1$ instances, each of size $n-\tau$

$$
\begin{aligned}
& F(n) \leq(\tau+1) \cdot F(n-\tau) \leq(\tau+1)^{2} \cdot F(n-2 \tau) \\
& \leq \ldots \leq(\tau+1)^{n / \tau} \cdot \mathcal{O}(1)=2^{\mathcal{O}(n / \tau \log \tau)}=2^{\widetilde{\mathcal{O}}(n / \tau)}
\end{aligned}
$$

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance...
- ... but not too much can happen on a clique

Let Q be a clique in $G,|Q|=\tau$.

- at most one vertex of Q belongs to the optimal solution
- we can branch into $\tau+1$ instances, each of size $n-\tau$

$$
\begin{array}{r}
F(n) \leq(\tau+1) \cdot F(n-\tau) \leq(\tau+1)^{2} \cdot F(n-2 \tau) \\
\leq \ldots \leq(\tau+1)^{n / \tau} \cdot \mathcal{O}(1)=2^{\mathcal{O}(n / \tau \log \tau)}=2^{\widetilde{\mathcal{O}}(n / \tau)} \\
\quad \widetilde{\widetilde{\mathcal{O}}(f(n))=f(n) \cdot \operatorname{polylog}(n)}
\end{array}
$$

Independent Set for disk graphs

- existence of a large clique does not trivialize the instance...
- ... but not too much can happen on a clique

Let Q be a clique in $G,|Q|=\tau$.

- at most one vertex of Q belongs to the optimal solution
- we can branch into $\tau+1$ instances, each of size $n-\tau$

$$
\begin{aligned}
& F(n) \leq(\tau+1) \cdot F(n-\tau) \leq(\tau+1)^{2} \cdot F(n-2 \tau) \\
& \leq \ldots \leq(\tau+1)^{n / \tau} \cdot \mathcal{O}(1)=2^{\mathcal{O}(n / \tau \log \tau)}=2^{\widetilde{\mathcal{O}}(n / \tau)} \\
& \widetilde{\mathcal{O}}(f(n))=f(n) \cdot \operatorname{polylog}(n)
\end{aligned}
$$

1. ply $>\tau \rightarrow$ there is a clique of size $>\tau$, branch $\left(2^{\widetilde{\mathcal{O}}(n / \tau)}\right)$
2. ply $\leq \tau \rightarrow$ a balanced separator S of size $\mathcal{O}(\sqrt{n \tau})$
3. guess the solution on S (one of $2^{|S|}=2^{\mathcal{O}(\sqrt{n \tau})}$ possibilities)
4. recurse using divide \& conquer $\left(2^{\mathcal{O}(\sqrt{n \tau})}\right)$

Independent Set for disk graphs, ctd.

- we have two basic steps:
- branching with complexity $2^{\widetilde{\mathcal{O}}(n / \tau)}$
- divide \& conquer with complexity $2^{\mathcal{O}(\sqrt{n \tau})}$

Independent Set for disk graphs, ctd.

- we have two basic steps:
- branching with complexity $2^{\widetilde{\mathcal{O}}(n / \tau)}$
- divide \& conquer with complexity $2^{\mathcal{O}(\sqrt{n \tau})}$
- how to choose the threshold τ ?

$$
\begin{gathered}
n / \tau=\sqrt{n \tau} \\
\tau=n^{1 / 3}
\end{gathered}
$$

Theorem. InDEPENDENT SET can be solved in time $2^{\mathcal{O}\left(n^{2 / 3}\right)}$ for disk graphs.

Independent Set for disk graphs, ctd.

- we have two basic steps:
- branching with complexity $2^{\widetilde{\mathcal{O}}(n / \tau)}$
- divide \& conquer with complexity $2^{\mathcal{O}(\sqrt{n \tau})}$
- how to choose the threshold τ ?

$$
\begin{gathered}
n / \tau=\sqrt{n \tau} \\
\tau=n^{1 / 3}
\end{gathered}
$$

Theorem. InDEPENDENT SET can be solved in time $2^{\mathcal{O}\left(n^{2 / 3}\right)}$ for disk graphs.
we can do much better, more on this later

Independent Set for disk graphs, ctd.

- we have two basic steps:
- branching with complexity $2^{\widetilde{\mathcal{O}}(n / \tau)}$
- divide \& conquer with complexity $2^{\mathcal{O}(\sqrt{n \tau})}$
- how to choose the threshold τ ?

$$
\begin{gathered}
n / \tau=\sqrt{n \tau} \\
\tau=n^{1 / 3}
\end{gathered}
$$

Theorem. InDEPENDENT SET can be solved in time $2^{\mathcal{O}\left(n^{2 / 3}\right)}$ for disk graphs.

we can do much better,
more on this later

Also, still quite boring!

Optimality for

segment and string graphs

Independent Set for string graphs

String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.

Independent Set for string graphs

String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.

Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

Independent Set for string graphs

String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.

Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$ branching

- we either discard v, or choose it to the solution
$F(n) \leq F(n-1)+F\left(n-n^{1 / 3}\right)$

Independent Set for string graphs

 String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$ branching

- we either discard v, or choose it to the solution
$F(n) \leq F(n-1)+F\left(n-n^{1 / 3}\right) \leq F(n-2)+2 \cdot F\left(n-n^{1 / 3}\right)$

Independent Set for string graphs

 String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$ branching

- we either discard v, or choose it to the solution

$$
\begin{aligned}
F(n) & \leq F(n-1)+F\left(n-n^{1 / 3}\right) \leq F(n-2)+2 \cdot F\left(n-n^{1 / 3}\right) \\
& \leq \ldots \leq\left(n^{1 / 3}+1\right) \cdot F\left(n-n^{1 / 3}\right)
\end{aligned}
$$

Independent Set for string graphs

 String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$ branching

- we either discard v, or choose it to the solution

$$
\begin{aligned}
F(n) & \leq F(n-1)+F\left(n-n^{1 / 3}\right) \leq F(n-2)+2 \cdot F\left(n-n^{1 / 3}\right) \\
& \leq \ldots \leq\left(n^{1 / 3}+1\right) \cdot F\left(n-n^{1 / 3}\right) \leq\left(n^{1 / 3}+1\right)^{n^{2 / 3}}=2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}
\end{aligned}
$$

Independent Set for string graphs

 String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$ branching

- we either discard v, or choose it to the solution

$$
\text { complexity } 2 \widetilde{\mathcal{O}}\left(n^{2 / 3}\right)
$$

Independent Set for string graphs

 String separator theorem [Matoušek, 2014, Lee, 2016]. String graphs have balanced separators of size $\mathcal{O}(\sqrt{m})$.Theorem [Fox, Pach, 2011]. Independent Set for string graphs can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$ branching

- we either discard v, or choose it to the solution

$$
\text { complexity } 2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}
$$

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

- guess the solution on S and recurse

$$
\text { complexity } 2 \widetilde{\mathcal{O}}\left(n^{2 / 3}\right)
$$

3-Coloring

1. there is a vertex v of degree at least $\tau=n^{1 / 3} \rightarrow$???

- guessing a color for v does not mean we can discard $N(v)$!

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

- guess the solution on S and recurse: complexity $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

3-Coloring

1. there is a vertex v of degree at least $\tau=n^{1 / 3}$

- consider List 3-Coloring: lists are subsets of $\{1,2,3\}$

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

3-Coloring

1. there is a vertex v of degree at least $\tau=n^{1 / 3}$

- consider List 3-Coloring: lists are subsets of $\{1,2,3\}$
- we can get rid of vertices with one-element lists
- possible lists are $\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

3-Coloring

1. there is a vertex v of degree at least $\tau=n^{1 / 3}$

- consider List 3-Coloring: lists are subsets of $\{1,2,3\}$
- we can get rid of vertices with one-element lists
- possible lists are $\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$
- at least $n^{1 / 3} / 4$ neighbors of v have the same list L
- there is a color c shared by L and $L(v)$
- we branch: either v gets color c or not

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

3-Coloring

1. there is a vertex v of degree at least $\tau=n^{1 / 3}$

- consider List 3-Coloring: lists are subsets of $\{1,2,3\}$
- we can get rid of vertices with one-element lists
- possible lists are $\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$
- at least $n^{1 / 3} / 4$ neighbors of v have the same list L
- there is a color c shared by L and $L(v)$
- we branch: either v gets color c or not
- $N=$ total size of all lists, $N \leq 3 n$

$$
F(N) \leq F(N-1)+F\left(N-n^{1 / 3} / 4\right) \leq 2^{\widetilde{\mathcal{O}}\left(N^{2 / 3}\right)}=2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}
$$

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

3-Coloring

1. there is a vertex v of degree at least $\tau=n^{1 / 3}$

- consider List 3-Coloring: lists are subsets of $\{1,2,3\}$
- we can get rid of vertices with one-element lists
- possible lists are $\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$
- at least $n^{1 / 3} / 4$ neighbors of v have the same list L
- there is a color c shared by L and $L(v)$
- we branch: either v gets color c or not
- $N=$ total size of all lists, $N \leq 3 n$

$$
F(N) \leq F(N-1)+F\left(N-n^{1 / 3} / 4\right) \leq 2^{\widetilde{\mathcal{O}}\left(N^{2 / 3}\right)}=2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}
$$

2. $m \leq n^{4 / 3} \rightarrow$ a balanced separator of size $\mathcal{O}\left(n^{2 / 3}\right)$

What about 4-Coloring?

- the second step (divide \& conquer) works
- in List 4-Coloring lists are subsets of $\{1,2,3,4\}$
- we can get rid of of vertices with one-element lists
- possible lists are

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \ldots,\{1,2,3,4\}
$$

What about 4-Coloring?

- the second step (divide \& conquer) works
- in List 4-Coloring lists are subsets of $\{1,2,3,4\}$
- we can get rid of of vertices with one-element lists
- possible lists are

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \ldots,\{1,2,3,4\}
$$

- if a large-degree vertex v has list $\{1,2\}$ and almost all of its neighbors have lists $\{3,4\}$, we don't know what to do!

What about 4-Coloring?

- the second step (divide \& conquer) works
- in List 4-Coloring lists are subsets of $\{1,2,3,4\}$
- we can get rid of of vertices with one-element lists
- possible lists are

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \ldots,\{1,2,3,4\}
$$

- if a large-degree vertex v has list $\{1,2\}$ and almost all of its neighbors have lists $\{3,4\}$, we don't know what to do!
- these edges are meaningless for coloring, why not just remove them?

What about 4-Coloring?

- the second step (divide \& conquer) works
- in List 4-Coloring lists are subsets of $\{1,2,3,4\}$
- we can get rid of of vertices with one-element lists
- possible lists are

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \ldots,\{1,2,3,4\}
$$

- if a large-degree vertex v has list $\{1,2\}$ and almost all of its neighbors have lists $\{3,4\}$, we don't know what to do!
- these edges are meaningless for coloring, why not just remove them?

The resulting graph might not be a string graph \rightarrow we cannot use the separator theorem!

k-Coloring of string graphs

Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for $k=3$, can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$,
2. for $k \geq 4$, cannot be solved in time $2^{o(n)}$ (under the ETH).

k-Coloring of string graphs

Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for $k=3$, can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right) \text {, }}$
2. for $k \geq 4$, cannot be solved in time $2^{o(n)}$ (under the ETH).

- Let's try to show hardness for List 4-Coloring. What do we know about the constructed instance G ?

k-Coloring of string graphs

Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for $k=3$, can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right) \text {, }}$
2. for $k \geq 4$, cannot be solved in time $2^{o(n)}$ (under the ETH).

- Let's try to show hardness for List 4-Coloring. What do we know about the constructed instance G ?
- it has $\Theta\left(n^{2}\right)$ edges
(otherwise we get a sublinear separator)

k-Coloring of string graphs

Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for $k=3$, can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$,
2. for $k \geq 4$, cannot be solved in time $2^{o(n)}$ (under the ETH).

- Let's try to show hardness for List 4-Coloring.

What do we know about the constructed instance G ?

- it has $\Theta\left(n^{2}\right)$ edges
(otherwise we get a sublinear separator)
- for (almost) every large-degree vertex v, its (almost) every neighbor has a totally disjoint list of colors
(otherwise can branch effectively)

k-Coloring of string graphs

Theorem [Bonnet, Rz., 2018]. k-Coloring for string graphs:

1. for $k=3$, can be solved in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$,
2. for $k \geq 4$, cannot be solved in time $2^{o(n)}$ (under the ETH).

- Let's try to show hardness for List 4-Coloring. What do we know about the constructed instance G ?
- it has $\Theta\left(n^{2}\right)$ edges
(otherwise we get a sublinear separator)
- for (almost) every large-degree vertex v, its (almost) every neighbor has a totally disjoint list of colors
(otherwise can branch effectively)

Even though G is dense, almost all its edges are meaningless!

Hardness of List 4-Coloring

- reduce from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- variables: $v_{1}, v_{2} \ldots, v_{n}$, clauses C_{1}, \ldots, C_{m}
- we show hardness even for segment graphs

Hardness of List 4-Coloring

- reduce from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- variables: $v_{1}, v_{2} \ldots, v_{n}$, clauses C_{1}, \ldots, C_{m}
- we show hardness even for segment graphs
- introduce a grid-like structure of variable segments $\left(x_{i}\right)$ and literal segments $\left(y_{j}\right)$

Hardness of List 4-Coloring

- reduce from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- variables: $v_{1}, v_{2} \ldots, v_{n}$, clauses C_{1}, \ldots, C_{m}
- we show hardness even for segment graphs
- introduce a grid-like structure of variable segments $\left(x_{i}\right)$ and literal segments $\left(y_{j}\right)$
- x_{i} 's have lists $\{1,2\}$, y_{i} 's have lists $\{3,4\}$ variable segments: x_{i} represents v_{i}

Intended meaning:
1 and 3 correspond to true
2 and 4 correspond to false

literal segments y_{j}, grouped by clauses

Hardness of List 4-Coloring, ctd.

- consistency of colorings segments x_{i} and segments y_{j}, that correspond to the same variable

literal segments y_{j}, grouped by clauses

Hardness of List 4-Coloring, ctd.

- consistency of colorings segments x_{i} and segments y_{j}, that correspond to the same variable positive occurrence x_{i} gets color 1 iff y_{j} gets color 3 negative occurrence x_{i} gets color 1 iff y_{j} gets color 4
variable segments: x_{i} represents v_{i}

Intended meaning:
1 and 3 correspond to true
2 and 4 correspond to false

literal segments y_{j}, grouped by clauses

Hardness of List 4-Coloring, etd.

- consistency of colorings segments x_{i} and segments y_{j}, that correspond to the same variable positive occurrence x_{i} gets color 1 iff y_{j} gets color 3 negative occurrence x_{i} gets color 1 iff y_{j} gets color 4
- satisfiability
\square at least one of y 's
variable segments:
x_{i} represents v_{i}
Intended meaning:
1 and 3 correspond to true

2 and 4 correspond to false
literal segments y_{j}, grouped by clauses

Consistency gadgets

x_{i} gets color 1 iff y_{j} gets color 3
x_{i} gets color 1 iff y_{j} gets color 4

Consistency gadgets

Satisfiability gadget

at least one of u_{i}, y_{j}, y_{k} must get color 3

Satisfiability gadget

at least one of u_{i}, y_{j}, y_{k} must get color 3

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l}
\{1,4\} & & & & \\
\{2,4\} & & & & \\
& & & \\
\{3,4\} & & & & \\
& & & & \\
\{1,2,3\} & y_{i} & y_{j} & y_{k}
\end{array} \\
& \{3,4\}\{3,4\}\{3,4\}
\end{aligned}
$$

- note segments with three-element lists (if all lists have at most two elements, then the problem is in P)

Wrap-up

- we reduced from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- how many segments do we have?

x_{i} 's	
y_{j} 's	
\square	
\square	
tota	

Wrap-up

- we reduced from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- how many segments do we have?

$x_{i}^{\prime} \mathrm{s}$	n
y_{j} 's	$3 m$
\square	$3 m \times 3$
\square	$m \times 4$
tota	$n+16 m=\mathcal{O}(n)$

Wrap-up

- we reduced from 3-SAT with n variables and $m=\mathcal{O}(n)$ clauses
- how many segments do we have?

$x_{i}^{\prime} \mathrm{s}$	n
$y_{j} \mathrm{~s}$	$3 m$
\square	$3 m \times 3$
\square	$m \times 4$
tota	$n+16 m=\mathcal{O}(n)$

- solving List 4-Coloring in segment graphs with N vertices in time $2^{o(N)}$
\rightarrow solving 3 -SAT in time $2^{o(n)}$
\rightarrow ETH fails

Feedback Vertex Set in string graphs

- remove the minimum number vertices to destroy all cycles
- if we have a small separator, the divide \& conquer works
- what if we have a vertex of large degree?

Feedback Vertex Set in string graphs

- remove the minimum number vertices to destroy all cycles
- if we have a small separator, the divide \& conquer works
- what if we have a vertex of large degree?

Theorem [Lee, 2016].
String graphs with no subgraph $K_{t, t}$ have $\mathcal{O}(n \cdot t \log t)$ edges.

Feedback Vertex Set in string graphs

- remove the minimum number vertices to destroy all cycles
- if we have a small separator, the divide \& conquer works
- what if we have a vertex of large degree?

Theorem [Lee, 2016].
String graphs with no subgraph $K_{t, t}$ have $\mathcal{O}(n \cdot t \log t)$ edges.

- combining with the separator of size $\mathcal{O}(\sqrt{m})$, we get

Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.

Feedback Vertex Set in string graphs

Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.

- set $t=n^{1 / 3}$

Feedback Vertex Set in string graphs

 Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.- set $t=n^{1 / 3}$

1. if there are at least $\widetilde{\Omega}\left(n^{4 / 3}\right)$ edges

- there is a biclique $K_{n^{1 / 3}, n^{1 / 3}}$ for $t=n^{1 / 3}$, classes A and B

Feedback Vertex Set in string graphs

 Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.- set $t=n^{1 / 3}$

1. if there are at least $\widetilde{\Omega}\left(n^{4 / 3}\right)$ edges

- there is a biclique $K_{n^{1 / 3}, n^{1 / 3}}$ for $t=n^{1 / 3}$, classes A and B
- we must remove all but one vertex from A or B

Feedback Vertex Set in string graphs

 Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.- set $t=n^{1 / 3}$

1. if there are at least $\widetilde{\Omega}\left(n^{4 / 3}\right)$ edges

- there is a biclique $K_{n^{1 / 3}, n^{1 / 3}}$ for $t=n^{1 / 3}$, classes A and B
- we must remove all but one vertex from A or B
- branch: we select a class (2 ways) and a vertex ($n^{1 / 3}$ ways) that might survive

$$
F(n) \leq 2 n^{1 / 3} \cdot F\left(n-n^{1 / 3}\right) \leq 2 \widetilde{\mathcal{O}}\left(n^{2 / 3}\right)
$$

Feedback Vertex Set in string graphs

 Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.- set $t=n^{1 / 3}$

1. if there are at least $\widetilde{\Omega}\left(n^{4 / 3}\right)$ edges

- there is a biclique $K_{n^{1 / 3}, n^{1 / 3}}$ for $t=n^{1 / 3}$, classes A and B
- we must remove all but one vertex from A or B
- branch: we select a class (2 ways) and a vertex ($n^{1 / 3}$ ways) that might survive

$$
F(n) \leq 2 n^{1 / 3} \cdot F\left(n-n^{1 / 3}\right) \leq 2 \widetilde{\mathcal{O}}\left(n^{2 / 3}\right)
$$

2. otherwise there is a balanced separator of size $\widetilde{\mathcal{O}}\left(n^{2 / 3}\right) \rightarrow$ divide \& conquer works in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$
total running time is $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$

Feedback Vertex Set in string graphs

 Corollary. Every string graph either has a biclique $K_{t, t}$ or a balanced separator of size $\widetilde{\mathcal{O}}(\sqrt{n \cdot t})$.- set $t=n^{1 / 3}$

1. if there are at least $\widetilde{\Omega}\left(n^{4 / 3}\right)$ edges

- there is a biclique $K_{n^{1 / 3}, n^{1 / 3}}$ for $t=n^{1 / 3}$, classes A and B
- we must remove all but one vertex from A or B
- branch: we select a class (2 ways) and a vertex ($n^{1 / 3}$ ways) that might survive

$$
F(n) \leq 2 n^{1 / 3} \cdot F\left(n-n^{1 / 3}\right) \leq 2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}
$$

2. otherwise there is a balanced separator of size $\widetilde{\mathcal{O}}\left(n^{2 / 3}\right) \rightarrow$ divide \& conquer works in time $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$
total running time is $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$

- But no $2^{\circ(n)}$ algorithm for Odd Cycle Transversal

A detour: the need of representation and robust algorithms

Finding geometric representations

- How fast can we find representations?

Finding geometric representations

- How fast can we find representations?
- Bad news: it is NP-hard to recognize string graphs, segment graphs [Kratochvíl, Matoušek, early 90s], (U) DGs [Breu, Kirkpatrick, '98, Kratochvíl, Hliněný, '01]

Finding geometric representations

- How fast can we find representations?
- Bad news: it is NP-hard to recognize string graphs, segment graphs [Kratochvíl, Matoušek, early 90s], (U) DGs [Breu, Kirkpatrick, '98, Kratochvíl, Hliněný, '01]
- NP-complete? Given a representation, you can verify it.

Finding geometric representations

- How fast can we find representations?
- Bad news: it is NP-hard to recognize string graphs, segment graphs [Kratochvíl, Matoušek, early 90s], (U) DGs [Breu, Kirkpatrick, '98, Kratochvíl, Hliněný, '01]
- NP-complete? Given a representation, you can verify it.
- Bad news: there are n-vertex string graphs, whose every representation requires $2^{\Omega(n)}$ crossing points [KM]
- Bad news: there are n-vertex segment graphs, whose every representation requires coordinates with $2^{\Omega(n)}$ digits [KM]

Finding geometric representations

- How fast can we find representations?
- Bad news: it is NP-hard to recognize string graphs, segment graphs [Kratochvíl, Matoušek, early 90s], (U) DGs [Breu, Kirkpatrick, '98, Kratochvíl, Hliněný, '01]
- NP-complete? Given a representation, you can verify it.
- Bad news: there are n-vertex string graphs, whose every representation requires $2^{\Omega(n)}$ crossing points [KM]
- Bad news: there are n-vertex segment graphs, whose every representation requires coordinates with $2^{\Omega(n)}$ digits [KM]
- is it even decidable? (yes, a non-trivial argument by Tarski)

Finding geometric representations

- How fast can we find representations?
- Bad news: it is NP-hard to recognize string graphs, segment graphs [Kratochvíl, Matoušek, early 90s], (U) DGs [Breu, Kirkpatrick, '98, Kratochvíl, Hliněný, '01]
- NP-complete? Given a representation, you can verify it.
- Bad news: there are n-vertex string graphs, whose every representation requires $2^{\Omega(n)}$ crossing points [KM]
- Bad news: there are n-vertex segment graphs, whose every representation requires coordinates with $2^{\Omega(n)}$ digits [KM]
- is it even decidable? (yes, a non-trivial argument by Tarski)

Theorem [Schaefer, Sedgewick, Štefankovič, '03].
Recognizing string graphs is in NP.

Recognizing segment graphs

- What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, '17].
Recognizing segment graphs is in $\exists \mathbb{R}$-complete.

Recognizing segment graphs

- What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, '17].
Recognizing segment graphs is in $\exists \mathbb{R}$-complete.

```
NP = class of problems
polynomially equivalent to SAT.
SAT: decide if a formula is true
\exists\mp@subsup{x}{1}{}\exists\mp@subsup{x}{2}{}\ldots\exists\mp@subsup{x}{n}{}\Phi(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})
xi's are boolean,
\phi is quantifier-free and uses
\wedge , \vee , \neg , = , \rightarrow
```


Recognizing segment graphs

- What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, '17].
Recognizing segment graphs is in $\exists \mathbb{R}$-complete.

NP $=$ class of problems	$\exists \mathbb{R}$ - class of problems
polynomially equivalent to SAT.	polynomially equivalent to ETR.
SAT: decide if a formula is true	ETR: decide is a formula is true
$\exists x_{1} \exists x_{2} \ldots \exists x_{n} \Phi\left(x_{1}, \ldots, x_{n}\right)$	$\exists x_{1} \exists x_{2} \ldots \exists x_{n} \Phi\left(x_{1}, \ldots, x_{n}\right)$
x_{i}^{\prime} 's are boolean,	x_{i}^{\prime} 's are reals,
Φ is quantifier-free and uses	Φ is quantifier-free and uses
$\wedge, \vee, \neg,=, \rightarrow$	$\wedge, \vee, \neg,=, \rightarrow,>,+,-, \times$ (in $\mathbb{R})$

Recognizing segment graphs

- What about segment graphs? Any non-trivial witness?

Theorem [Schaefer, Štefankovič, '17].
Recognizing segment graphs is in $\exists \mathbb{R}$-complete.

$\mathrm{NP}=$ class of problems	$\exists \mathbb{R}$ - class of problems
polynomially equivalent to SAT.	polynomially equivalent to ETR.

SAT: decide if a formula is true ETR: decide is a formula is true
$\exists x_{1} \exists x_{2} \ldots \exists x_{n} \Phi\left(x_{1}, \ldots, x_{n}\right) \quad \exists x_{1} \exists x_{2} \ldots \exists x_{n} \Phi\left(x_{1}, \ldots, x_{n}\right)$
x_{i} 's are boolean,
x_{i} 's are reals,
ϕ is quantifier-free and uses
Φ is quantifier-free and uses
$\wedge, \vee, \neg,=, \rightarrow$

- a strong indication that the problem is not in NP!
- similar for unit disk graphs [Kang, Müller, '12]

What about our algorithms?

Independent SET in disk graphs

1. ply $>n^{1 / 3} \rightarrow$ a clique of size $>n^{1 / 3}$, branch
2. ply $\leq n^{1 / 3} \rightarrow$ a balanced separator S of size $\mathcal{O}\left(n^{2 / 3}\right)$
3. guess the solution on S
4. recurse using divide \& conquer

Total running time: $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

- where do we need a representation?

What about our algorithms?

Independent Set in disk graphs

1. ply $>n^{1 / 3} \rightarrow$ a clique of size $>n^{1 / 3}$, branch
2. ply $\leq n^{1 / 3} \rightarrow$ a balanced separator S of size $\mathcal{O}\left(n^{2 / 3}\right)$
3. guess the solution on S
4. recurse using divide \& conquer

Total running time: $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

- where do we need a representation?

What about our algorithms?

Independent Set in disk graphs

1. ply $>n^{1 / 3} \rightarrow$ a clique of size $>n^{1 / 3}$, branch
2. ply $\leq n^{1 / 3} \rightarrow$ a balanced separator S of size $\mathcal{O}\left(n^{2 / 3}\right)$
3. guess the solution on S
4. recurse using divide \& conquer

Total running time: $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

- where do we need a representation?
- enumerating all possibilities takes time $n^{n^{2 / 3}}=2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$

What about our algorithms?

Independent Set in disk graphs

1. if we find a clique of size $>n^{1 / 3}$, branch
2. otherwise, find a balanced separator S of size $\mathcal{O}\left(n^{2 / 3}\right)$
3. guess the solution on S
4. recurse using divide \& conquer

Total running time: $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}+2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}=2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$.

- where do we need a representation?
- enumerating all possibilities takes time $n^{n^{2 / 3}}=2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$
- we do not really need a representation!

Robust algorithms

- An algorithm is robust, if it either
- computes the correct solution, or
- correctly concludes that the input does not belong to the right class (here: disk graphs)
- notion introduced by Spinrad

Robust algorithms

- An algorithm is robust, if it either
- computes the correct solution, or
- correctly concludes that the input does not belong to the right class (here: disk graphs)
- notion introduced by Spinrad
- it's not really an algorithm for disk graphs, but for the class $\mathcal{X}=$ graphs with balanced separators of size $\mathcal{O}(\sqrt{n \cdot \omega(G)})$
- disk graphs $\subseteq \mathcal{X}$

Robust algorithms

- An algorithm is robust, if it either
- computes the correct solution, or
- correctly concludes that the input does not belong to the right class (here: disk graphs)
- notion introduced by Spinrad
- it's not really an algorithm for disk graphs, but for the class $\mathcal{X}=$ graphs with balanced separators of size $\mathcal{O}(\sqrt{n \cdot \omega(G)})$
- disk graphs $\subseteq \mathcal{X}$
- on the other hand, our hardness results hold even if a geometric representation is given

When large cliques do not help

Clique in disk graphs

- Clique is polynomially solvable in UDG [Clark et al., 1990]
- the complexity for DG is open
- the existence of a large clique does not make the problem any easier!

Clique in disk graphs

- Clique is polynomially solvable in UDG [Clark et al., 1990]
- the complexity for DG is open
- the existence of a large clique does not make the problem any easier!
- we need to make our hands dirty and look at the properties of geometric representations
- by some
epsilon-perturbation we can assume that no three centers are aligned

Notation: vertex v_{i} is represented by a disk with the center c_{i}

C_{4} 's in disk graphs

Simple observation.
In any disk representation of of C_{4} with vertices $v_{1}, v_{2}, v_{3}, v_{4}$: the line $\ell\left(c_{2} c_{4}\right)$ crosses the segment $c_{1} c_{3}$, or the line $\ell\left(c_{1} c_{3}\right)$ crosses the segment $c_{2} c_{4}$.

C_{4} 's in disk graphs

Simple observation.
In any disk representation of of C_{4} with vertices $v_{1}, v_{2}, v_{3}, v_{4}$: the line $\ell\left(c_{2} c_{4}\right)$ crosses the segment $c_{1} c_{3}$, or the line $\ell\left(c_{1} c_{3}\right)$ crosses the segment $c_{2} c_{4}$.

Proof by picture (follows from the Δ inequality)

C_{4} 's in disk graphs

Simple observation.
In any disk representation of of C_{4} with vertices $v_{1}, v_{2}, v_{3}, v_{4}$: the line $\ell\left(c_{2} c_{4}\right)$ crosses the segment $c_{1} c_{3}$, or the line $\ell\left(c_{1} c_{3}\right)$ crosses the segment $c_{2} c_{4}$.

Proof by picture

 (follows from the Δ inequality)
Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph. Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- every S_{i} and every S_{j}^{\prime} correspond to $2 K_{2}$ in \bar{G} \rightarrow their endpoints induce a C_{4} in G $\rightarrow \ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- (\star): for every i, j either $\ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- (\star): for every i, j either $\ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}
- define: $a_{i}=$ number of $S_{j}^{\prime \prime}$'s intersected by $\ell\left(S_{i}\right)$
$b_{i}=$ number of $\ell\left(S_{j}^{\prime}\right)^{\prime}$'s intersected by S_{i}
$c_{i}=$ number of S_{j}^{\prime} 's intersected by S_{i}
$\sum_{i=1}^{p}\left(a_{i}+b_{i}-c_{i}\right)=$ number of pairs i, j satisfying $(\star)=p q$

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- (\star): for every i, j either $\ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}
- define: $a_{i}=$ number of $S_{j}^{\prime \prime}$'s intersected by $\ell\left(S_{i}\right)$ $b_{i}=$ number of $\ell\left(S_{j}^{\prime}\right)^{\prime}$'s intersected by S_{i} $c_{i}=$ number of S_{j}^{\prime} 's intersected by S_{i}
$\sum_{i=1}^{p}\left(a_{i}+b_{i}-c_{i}\right)=$ number of pairs i, j satisfying $(\star)=p q$
- $a_{i}=$ \# of points where a line crosses a closed curve: even

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- (\star): for every i, j either $\ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}
- define: $a_{i}=$ number of $S_{j}^{\prime \prime}$'s intersected by $\ell\left(S_{i}\right)$
$b_{i}=$ number of $\ell\left(S_{j}^{\prime}\right)^{\prime}$'s intersected by S_{i}
$c_{i}=$ number of S_{j}^{\prime} 's intersected by S_{i}
$\sum_{i=1}^{p}\left(a_{i}+b_{i}-c_{i}\right)=$ number of pairs i, j satisfying $(\star)=p q$
- $a_{i}=\#$ of points where a line crosses a closed curve: even
- $\sum_{i=1}^{p} b_{i}=\sum_{i=j}^{q} a_{j}^{\prime}$: also even

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- (\star): for every i, j either $\ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}
- define: $a_{i}=$ number of $S_{j}^{\prime \prime}$'s intersected by $\ell\left(S_{i}\right)$ $b_{i}=$ number of $\ell\left(S_{j}^{\prime}\right)^{\prime}$'s intersected by S_{i} $c_{i}=$ number of S_{j}^{\prime} 's intersected by S_{i}
$\sum_{i=1}^{p}\left(a_{i}+b_{i}-c_{i}\right)=$ number of pairs i, j satisfying $(\star)=p q$
- $a_{i}=\#$ of points where a line crosses a closed curve: even
- $\sum_{i=1}^{p} b_{i}=\sum_{i=j}^{q} a_{j}^{\prime}$: also even
- $c_{i}=\#$ of intersection points of two closed curves: even

Non-disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Proof by contradiction.

- suppose there is a representation
- let S_{1}, \ldots, S_{p} and $S_{1}^{\prime}, \ldots, S_{q}^{\prime}$ be segments of the co-cycles
- (\star): for every i, j either $\ell\left(S_{i}\right)$ crosses S_{j} or $\ell\left(S_{j}\right)$ crosses S_{j}
- define: $a_{i}=$ number of $S_{j}^{\prime \prime}$'s intersected by $\ell\left(S_{i}\right)$ $b_{i}=$ number of $\ell\left(S_{j}^{\prime}\right)$'s intersected by S_{i} $c_{i}=$ number of S_{j}^{\prime} 's intersected by S_{i}
$\sum_{i=1}^{p}\left(a_{i}+b_{i}-c_{i}\right)=$ number of pairs i, j satisfying $(\star)=p q$
- $a_{i}=\#$ of points where a line crosses a closed curve: even
- $\sum_{i=1}^{p} b_{i}=\sum_{i=j}^{q} a_{j}^{\prime}:$ also even
- $c_{i}=\#$ of intersection points of two closed curves: even
- $\sum_{i=1}^{p}\left(a_{i}+b_{i}-c_{i}\right)=p q$ is even \rightarrow contradiction

Clique for disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Theorem [Györi, Kostochka, Łuczak, '97].
If odd girth is at least δn, then there is X, such that $|X|=\widetilde{\mathcal{O}}(1 / \delta)$ and $G-X$ is bipartite.

Clique for disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Theorem [Györi, Kostochka, Łuczak, '97]. If odd girth is at least δn, then there is X, such that $|X|=\widetilde{\mathcal{O}}(1 / \delta)$ and $G-X$ is bipartite.

Clique in $G \equiv$ Independent Set in \bar{G}

Clique for disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Theorem [Györi, Kostochka, Łuczak, '97]. If odd girth is at least δn, then there is X, such that $|X|=\widehat{\mathcal{O}}(1 / \delta)$ and $G-X$ is bipartite.

Clique in $G \equiv$ Independent Set in \bar{G}

Independent Set in a co-disk graph:

1. vertex of degree at least $n^{1 / 3} \rightarrow$ branching
2. no odd cycle of length $<n^{1 / 3} \rightarrow$
there is $|X|=\mathcal{O}\left(n^{2 / 3}\right)$ and $G-X$ bipartite
3. odd C of length $\leq n^{1 / 3}$ and $\Delta \leq n^{1 / 3} \rightarrow$
$|N[C]| \leq n^{2 / 3}$ and $G-N[C]$ is bipartite

Clique for disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Theorem [Györi, Kostochka, Łuczak, '97]. If odd girth is at least δn, then there is X, such that $|X|=\mathcal{O}(1 / \delta)$ and $G-X$ is bipartite.

Clique in $G \equiv$ Independent Set in \bar{G}

Independent Set in a co-disk graph:

1. vertex of degree at least $n^{1 / 3} \rightarrow$ branching
2. no odd cycle of length $<n^{1 / 3} \rightarrow$$\left\{\begin{array}{l}2^{\tilde{\sigma}\left(n^{2 / 3}\right)} \\ \text { guess the }\end{array}\right.$ there is $|X|=\mathcal{O}\left(n^{2 / 3}\right)$ and $G-X$ bipartite
3. odd C of length $\leq n^{1 / 3}$ and $\Delta \leq n^{1 / 3} \rightarrow$ $|N[C]| \leq n^{2 / 3}$ and $G-N[C]$ is bipartite solution on X or $N[C]$ and finish in poly time

Clique for disk graphs

Observation [Bonnet, Giannopoulos, Kim, Rz. Sikora, 2018]. For odd p, q, the graph $G=\overline{C_{p}+C_{q}}$ is not a disk graph.
Theorem [Györi, Kostochka, Łuczak, '97]. If odd girth is at least δn, then there is X, such that $|X|=\mathcal{O}(1 / \delta)$ and $G-X$ is bipartite.

$$
\text { Clique in } G \equiv \text { Independent Set in } \bar{G}
$$

Independent Set in a co-disk graph:

1. vertex of degree at least $n^{1 / 3} \rightarrow$ branching
2. no odd cycle of length $<n^{1 / 3} \rightarrow$$\left\{\begin{array}{l}2^{\tilde{O}\left(n^{2 / 3}\right)} \\ \text { guess the }\end{array}\right.$ there is $|X|=\mathcal{O}\left(n^{2 / 3}\right)$ and $G-X$ bipartite
3. odd C of length $\leq n^{1 / 3}$ and $\Delta \leq n^{1 / 3} \rightarrow$ $|N[C]| \leq n^{2 / 3}$ and $G-N[C]$ is bipartite solution on X or $N[C]$ and finish in poly time Theorem [BGKRzS '18].
Clique in disk graphs can be solved in time $2^{\widetilde{O}\left(n^{2 / 3}\right)}$.

Open problem: Max Cut in disk graphs

- partition vertices into two sets, to maximize the number of crossing edges
- NP-hard on unit disk graphs, reduction is quadratic \rightarrow no $2^{o(\sqrt{n})}$ algorithm
- is there a subexponential algorithm?

Open problem: Max Cut in disk graphs

- partition vertices into two sets, to maximize the number of crossing edges
- NP-hard on unit disk graphs, reduction is quadratic \rightarrow no $2^{o(\sqrt{n})}$ algorithm
- is there a subexponential algorithm?
- Warning: edge-weighted version has no subexponential algorithm on complete graphs!

Open problem: Max Cut in disk graphs

- partition vertices into two sets, to maximize the number of crossing edges
- NP-hard on unit disk graphs, reduction is quadratic \rightarrow no $2^{o(\sqrt{n})}$ algorithm
- is there a subexponential algorithm?
- Warning: edge-weighted version has no subexponential algorithm on complete graphs!
- complexity even unclear for (unit) interval graphs

Episode 2: parameterized algorithms

Geometric separators

k-Independent Set in unit disk graphs

- is there an independent set of size at least k ?
- are there k disjoint disks?

k-Independent Set in unit disk graphs

- is there an independent set of size at least k ?
- are there k disjoint disks?
- a solution should take some space: if total area is $<k \cdot \pi$, then NO

k-Independent Set in unit disk graphs

- is there an independent set of size at least k ?
- are there k disjoint disks?
- a solution should take some space: if total area is $<k \cdot \pi$, then NO
- large area implies that a greedy algorithm works: if total area is $\geq k \cdot 9 \cdot \pi$, then YES

all disks intersecting the given one are contained in a disk of radius 3

k-Independent Set in unit disk graphs

- is there an independent set of size at least k ?
- are there k disjoint disks?
- a solution should take some space: if total area is $<k \cdot \pi$, then NO
- large area implies that a greedy algorithm works: if total area is $\geq k \cdot 9 \cdot \pi$, then YES

all disks intersecting the given one are contained in a disk of radius 3
- assume that $\pi \cdot k \leq$ total area $\leq 9 \pi \cdot k$

Geometric separator theorem for unit disks

Geometric separator theorem [Alber, Fiala, '04].
Given a collection of unit disks with total area A, there exists a set S of disks, such that:

- total area of disks in S is $\mathcal{O}(\sqrt{A})$,
- removing S gives connected parts of roughly equal area.

Geometric separator theorem for unit disks

Geometric separator theorem [Alber, Fiala, '04].
Given a collection of unit disks with total area A, there exists a set S of disks, such that:

- total area of disks in S is $\mathcal{O}(\sqrt{A})$,
- removing S gives connected parts of roughly equal area.

Geometric separator theorem for unit disks

Geometric separator theorem [Alber, Fiala, '04].
Given a collection of unit disks with total area A, there exists a set S of disks, such that:

- total area of disks in S is $\mathcal{O}(\sqrt{A})$,
- removing S gives connected parts of roughly equal area.

Divide \& conquer using geometric separators
Algorithm [Alber, Fiala, '04].

1. $A=$ total area
2. if $A<\pi \cdot k$, return NO
3. if $A>9 \pi \cdot k$, return YES
4. find the geometric separator S of area $\mathcal{O}(\sqrt{A})$
5. guess the solution on S
6. remove S and recurse

Divide \& conquer using geometric separators
Algorithm [Alber, Fiala, '04].

1. $A=$ total area
2. if $A<\pi \cdot k$, return NO
3. if $A>9 \pi \cdot k$, return YES
4. find the geometric separator S of area $\mathcal{O}(\sqrt{A})$
5. guess the solution on S
6. remove S and recurse

Divide \& conquer using geometric separators
Algorithm [Alber, Fiala, '04].

1. $A=$ total area
2. if $A<\pi \cdot k$, return NO
3. if $A>9 \pi \cdot k$, return YES
4. find the geometric separator S of area $\mathcal{O}(\sqrt{A})$
5. guess the solution on S
6. remove S and recurse

- what is the largest possible independent set in S ?

$$
\operatorname{area}(S) / \pi=\mathcal{O}(\sqrt{k})
$$

Divide \& conquer using geometric separators
Algorithm [Alber, Fiala, '04].

1. $A=$ total area
2. if $A<\pi \cdot k$, return NO
3. if $A>9 \pi \cdot k$, return YES
4. find the geometric separator S of area $\mathcal{O}(\sqrt{A})$
5. guess the solution on S
6. remove S and recurse

- what is the largest possible independent set in S ?

$$
\operatorname{area}(S) / \pi=\mathcal{O}(\sqrt{k})
$$

- what is the maximum number of independent sets in S ?

$$
\sum_{i=0}^{\mathcal{O}(\sqrt{k})}\binom{n}{i}=n \mathcal{O}(\sqrt{k})
$$

Divide \& conquer using geometric separators

Algorithm [Alber, Fiala, '04].

1. $A=$ total area
2. if $A<\pi \cdot k$, return NO
3. if $A>9 \pi \cdot k$, return YES
4. find the geometric separator S of area $\mathcal{O}(\sqrt{A})$
5. guess the solution on S
6. remove S and recurse

- what is the largest possible independent set in S ?

$$
\operatorname{area}(S) / \pi=\mathcal{O}(\sqrt{k})
$$

- what is the maximum number of independent sets in S ?

$$
\sum_{i=0}^{\mathcal{O}(\sqrt{k})}\binom{n}{i}=n \mathcal{O}(\sqrt{k})
$$

- overall complexity is $n^{\mathcal{O}(\sqrt{k})}$

Evaluation

Strengths

- simple
- parameterized
- faster than what we had in the classical setting:
$\sum_{k=1}^{n} n^{\mathcal{O}(\sqrt{k})}=2^{\widetilde{\mathcal{O}}(\sqrt{n})}$, compared to $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$
- optimal (under ETH)
- works also for disks and other shapes with bounded area

Weaknesses

- doesn't work for general disk graphs, not to say about segment/string graphs
- necessarily requires a representation given

Evaluation

Strengths

- simple
- parameterized
- faster than what we had in the classical setting:
$\sum_{k=1}^{n} n^{\mathcal{O}(\sqrt{k})}=2^{\widetilde{\mathcal{O}}(\sqrt{n})}$, compared to $2^{\widetilde{\mathcal{O}}\left(n^{2 / 3}\right)}$
- optimal (under ETH)
- works also for disks and other shapes with bounded area
- in the remainder of this part we will learn how to address the first weakness, using a different approach

Voronoi-diagram approach

Voronoi diagrams

- we are given n points in the plane (objects)
- each point of the plane is assigned to the closest object

Voronoi diagrams

- we are given n points in the plane (objects)
- each point of the plane is assigned to the closest object

Voronoi diagrams

- we are given n points in the plane (objects)
- each point of the plane is assigned to the closest object

- it is (almost) a 3-regular 2-connected planar graph

Voronoi diagrams

- we are given n points in the plane (objects)
- each point of the plane is assigned to the closest object

- it is (almost) a 3-regular 2-connected planar graph

Theorem [Marx, Pilipczuk '15]. Each graph like this has a balanced noose separator of size $\mathcal{O}(\sqrt{n})$.

Solution Voronoi diagram

- consider a solution to the problem $-k$ disjoint disks

Solution Voronoi diagram

- consider a solution to the problem - k disjoint disks
- build the solution Voronoi diagram, where objects are centers of the disks in the solution

Solution Voronoi diagram

- consider a solution to the problem $-k$ disjoint disks
- build the solution Voronoi diagram, where objects are centers of the disks in the solution
- there is a balanced noose separator, alternatingly visiting

Solution Voronoi diagram

- consider a solution to the problem $-k$ disjoint disks
- build the solution Voronoi diagram, where objects are centers of the disks in the solution
- there is a balanced noose separator, alternatingly visiting $\mathcal{O}(\sqrt{k})$ vertices and faces of the diagram

Solution Voronoi diagram

- consider a solution to the problem $-k$ disjoint disks
- build the solution Voronoi diagram, where objects are centers of the disks in the solution
- there is a balanced noose separator, alternatingly visiting $\mathcal{O}(\sqrt{k})$ vertices and faces of the diagram
- turn the noose separator to a polygon 「

Separators in a solution Voronoi diagram

- every disk touching the outline of the polygon or any of the disks on its vertices can be discarded

Separators in a solution Voronoi diagram

- every disk touching the outline of the polygon or any of the disks on its vertices can be discarded
this is in the solution, so its neighbors cannot be

Separators in a solution Voronoi diagram

- every disk touching the outline of the polygon or any of the disks on its vertices can be discarded
this is in the solution,
this cannot be in the solution, because it in the

Separators in a solution Voronoi diagram

- every disk touching the outline of the polygon or any of the disks on its vertices can be discarded

Separators in a solution Voronoi diagram

- every disk touching the outline of the polygon or any of the disks on its vertices can be discarded
- apply recursion to disks inside and outside the polygon, we look for a solutions of size k_{1}, k_{2}, where $k_{1}+k_{2}=k$ and $k_{1}, k_{2} \leq \frac{2}{3} k$

How to get a solution Voronoi diagram?

- but how can we know the solution Voronoi diagram?

How to get a solution Voronoi diagram?

- but how can we know the solution Voronoi diagram?
- we can't, but we can still guess the polygon separator Γ

How to get a solution Voronoi diagram?

- but how can we know the solution Voronoi diagram?
- we can't, but we can still guess the polygon separator Γ
- vertices of Γ are:
- $\mathcal{O}(\sqrt{k})$ centers of disks
- $\mathcal{O}(\sqrt{k})$ vertices the Voronoi diagram \rightarrow each of them is uniquely defined by 3 centers

How to get a solution Voronoi diagram?

- but how can we know the solution Voronoi diagram?
- we can't, but we can still guess the polygon separator Γ
- vertices of Γ are:
- $\mathcal{O}(\sqrt{k})$ centers of disks
- $\mathcal{O}(\sqrt{k})$ vertices the Voronoi diagram \rightarrow each of them is uniquely defined by 3 centers
- so in order to guess Γ we need to guess $\mathcal{O}(\sqrt{k})$ disks this requires time $n^{\mathcal{O}(\sqrt{k})}$

How to get a solution Voronoi diagram?

- but how can we know the solution Voronoi diagram?
- we can't, but we can still guess the polygon separator Γ
- vertices of Γ are:
- $\mathcal{O}(\sqrt{k})$ centers of disks
- $\mathcal{O}(\sqrt{k})$ vertices the Voronoi diagram \rightarrow each of them is uniquely defined by 3 centers
- so in order to guess Γ we need to guess $\mathcal{O}(\sqrt{k})$ disks this requires time $n^{\mathcal{O}(\sqrt{k})}$

$$
T(n, k) \leq n^{\mathcal{O}(\sqrt{k})} \cdot k^{2} \cdot 2 T\left(n, \frac{2}{3} k\right)=n^{\mathcal{O}(\sqrt{k})}
$$

From disks to other geometric objects

- disks can be seen as connected subgraphs of a fine grid

From disks to other geometric objects

- disks can be seen as connected subgraphs of a fine grid

- string graphs $=$ intersection graphs of connected subgraphs of planar graphs

General statement

- the whole approach can be re-interpreted in terms of packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk '15].
Given a planar graph G with r vertices and n connected subgraphs of G, in time $n^{\mathcal{O}(\sqrt{k})} \cdot \operatorname{poly}(r)$ we can decide if there is a collection of k disjoint subgraphs.

General statement

- the whole approach can be re-interpreted in terms of packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk '15].
Given a planar graph G with r vertices and n connected subgraphs of G, in time $n^{\mathcal{O}(\sqrt{k})} \cdot \operatorname{poly}(r)$ we can decide if there is a collection of k disjoint subgraphs.

- no assumptions on area
- works for weighted variants
- to some extent works also for covering variant (domination)
- necessarily requires geometric represention
- r is the number of geometric vertices: for string graphs it might be exponential in n
- for disks and segments $r=\operatorname{poly}(n)$

General statement

- the whole approach can be re-interpreted in terms of packing disjoint subgraphs of planar graphs

Theorem [Marx, Pilipczuk '15].
Given a planar graph G with r vertices and n connected subgraphs of G, in time $n^{\mathcal{O}(\sqrt{k})} \cdot \operatorname{poly}(r)$ we can decide if there is a collection of k disjoint subgraphs.

- no assumptions on area
- works for weighted variants
- to some extent works also for covering variant (domination)
- necessarily requires geometric represention
- r is the number of geometric vertices: for string graphs it might be exponential in n
- for disks and segments $r=\operatorname{poly}(n)$
- Open question: For disk graphs, is there a robust algorithm for INDEPENDENT SET with complexity $2^{o(k)}$ or $2^{\widetilde{\mathcal{O}}(\sqrt{n})}$?

Lower bounds

for parameterized algorithms

Parameterized lower bounds

- we know that k-Independent SET can be solved in time $n^{\mathcal{O}(\sqrt{k})}$ in disk graphs
- we aim to show that this is asymptotically optimal

Parameterized lower bounds

- we know that k-Independent SET can be solved in time $n^{\mathcal{O}(\sqrt{k})}$ in disk graphs
- we aim to show that this is asymptotically optimal
- we will need the following

Theorem.
Assuming the ETH, k-CLIQUE cannot be solved in time $n^{o(k)}$.

- proof by a textbook reduction from 3-SAT

Grid Tiling

- we are given a square $t \times t$ grid

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{l}(1,1)(1,2) \\ (2,2)(2,3)\end{array} & \begin{array}{l}(1,1)(1,3) \\ (1,4)(2,4) \\ (3,1)\end{array} & \begin{array}{l}(1,4)(2,3) \\ (2,4)(4,1)\end{array} & \begin{array}{l}(1,1)(1,4) \\ (2,2)(2,3)\end{array} & \begin{array}{l}(1,1)(1,2) \\ (2,2)(2,3)\end{array} \\ \hline \begin{array}{l}(1,2)(1,3) \\ (3,2)(4,1)\end{array} & \begin{array}{l}(2,1)(2,2) \\ (3,3)(3,5)\end{array} & \begin{array}{l}(2,1)(2,3) \\ (3,4)(3,5)\end{array} & \begin{array}{l}(2,5)(3,4) \\ (4,1)(4,2)\end{array} & \begin{array}{l}(1,1)(1,2) \\ (3,2)\end{array} \\ \hline \begin{array}{l}(1,1)(1,2) \\ (1,3)(1,4)\end{array} & \begin{array}{l}(1,1)(1,3) \\ (2,4)(3,4)\end{array} & \begin{array}{l}(1,4)(2,1) \\ (2,2)(2,3)\end{array} & \begin{array}{l}(1,2)(1,4) \\ (3,1)(3,3)\end{array} & \begin{array}{l}(1,1)(1,2) \\ (1,3)(2,2)\end{array} \\ \hline \begin{array}{l}(1,2)(1,3) \\ (2,2)(2,3)\end{array} & \begin{array}{l}(1,3)(2,1) \\ (2,3)(2,4)\end{array} & \begin{array}{l}(2,1)(2,4) \\ (3,1)(3,2)\end{array} & \begin{array}{l}(1,3)(2,3) \\ (2,4)(4,1)\end{array} & \begin{array}{l}(1,4)(2,1) \\ (2,2)(3,1)\end{array} \\ \hline(2,1)(3,1)\end{array}\right\}$

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are equal
- the second coordinates in each column are equal
$\left.\begin{array}{|l|l|l|l|l|}\hline(1,1)(1,2) \\ (2,2)(2,3)\end{array} \begin{array}{l}(1,1)(1,3) \\ (1,4)(2,4) \\ (3,1)\end{array}\right)$

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are equal
- the second coordinates in each column are equal
- how fast can we solve it?
$\left.\begin{array}{|l|l|l|l|l|}\hline(1,1)(1,2) \\ (2,2)(2,3)\end{array} \begin{array}{l}(1,1)(1,3) \\ (1,4)(2,4) \\ (3,1)\end{array}\right)$

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are equal
- the second coordinates in each column are equal
- how fast can we solve it?
- guess everything: $\left(n^{2}\right)^{t^{2}}=n^{\mathcal{O}\left(t^{2}\right)}$
$\left.\begin{array}{|l|l|l|l|l|}\hline(1,1)(1,2) \\ (2,2)(2,3)\end{array} \begin{array}{l}(1,1)(1,3) \\ (1,4)(2,4) \\ (3,1)\end{array}\right)$

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are equal
- the second coordinates in each column are equal
- how fast can we solve it?
- guess everything: $\left(n^{2}\right)^{t^{2}}=n^{\mathcal{O}\left(t^{2}\right)}$
- guess the diagonal: $\left(n^{2}\right)^{t}=n^{\mathcal{O}(t)}$
$\left.\begin{array}{|l|l|l|l|l|}\hline(1,1)(1,2) \\ (2,2)(2,3)\end{array} \begin{array}{l}(1,1)(1,3) \\ (1,4)(2,4) \\ (3,1)\end{array}\right)$

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are equal
- the second coordinates in each column are equal
- how fast can we solve it?
- guess everything: $\left(n^{2}\right)^{t^{2}}=n^{\mathcal{O}\left(t^{2}\right)}$
- guess the diagonal: $\left(n^{2}\right)^{t}=n^{\mathcal{O}(t)}$
- we will show that this is optimal
$\left.\begin{array}{|l|l|l|l|l|}\hline(1,1)(1,2) \\ (2,2)(2,3)\end{array} \begin{array}{l}(1,1)(1,3) \\ (1,4)(2,4) \\ (3,1)\end{array}\right)$

Hardness of Grid Tiling

- $t \times t$ grid, each cell with some pairs from $[n] \times[n]$

Theorem. Grid Tiling cannot be solved in time $n^{o(t)}$, unless the ETH fails.

Hardness of Grid Tiling

- $t \times t$ grid, each cell with some pairs from $[n] \times[n]$

Theorem. Grid Tiling cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- reduction from k-CLIQUE with vertices $1,2, \ldots, n, t=k$

Hardness of Grid Tiling

- $t \times t$ grid, each cell with some pairs from $[n] \times[n]$

Theorem. Grid Tiling cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- reduction from k-Clique with vertices $1,2, \ldots, n, t=k$
- Sets for the cell (i, j) :
- $(x, y) \in S_{i, i}$ if $x=y$
- $(x, y) \in S_{i, j}$ if $x y \in E$

(i, i)	(i, j)	(i, j)	(i, j)	(i, j)
$i \in[n]$	$(i j \in[n]$	$(i j \in[n]$	$(i j \in[n]$	$(i j \in[n]$
(i, j)	(i, i)	(i, j)	(i, j)	(i, j)
$i j \in[n]$	$i \in[n]$	$(i j \in[n]$	$(i j \in[n]$	$(i j \in[n]$
(i, j)	(i, j)	(i, i)	(i, j)	(i, j)
$i j \in[n]$	$(i j \in[n]$	$i \in[n]$	$(i j \in[n]$	$(i j \in[n]$
(i, j)	(i, j)	(i, j)	(i, i)	(i, j)
$i j \in[n]$	$(i j \in[n]$	$(i j \in[n]$	$i \in[n]$	$(i j \in[n]$
(i, j)	(i, j)	(i, j)	(i, j)	(i, i)
$i j \in[n]$	$i j \in[n]$	$i j \in[n]$	$i j \in[n]$	$i \in[n]$

Hardness of Grid Tiling

- $t \times t$ grid, each cell with some pairs from $[n] \times[n]$

Theorem. Grid Tiling cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- reduction from k-CLIQUE with vertices $1,2, \ldots, n, t=k$
- Sets for the cell (i, j) : - $(x, y) \in S_{i, i}$ if $x=y$
- $(x, y) \in S_{i, j}$ if $x y \in E$
- Selected pairs on the diagonal correspond to a clique

Hardness of Grid Tiling

- $t \times t$ grid, each cell with some pairs from $[n] \times[n]$

Theorem. Grid Tiling cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- reduction from k-CLIQUE with vertices $1,2, \ldots, n, t=k$
- Sets for the cell (i, j) :
- $(x, y) \in S_{i, i}$ if $x=y$
- $(x, y) \in S_{i, j}$ if $x y \in E$
- Selected pairs on the diagonal correspond to a clique
- solving GRID Tiling in time $n^{o(t)} \rightarrow$ solving k-Clique in time $n^{o(k)}$

Grid Tiling

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are equal
- the second coodrinates in each column are equal

Theorem. Assuming the ETH, there is no algorithm solving Grid Tiling in time $n^{o(t)}$.

Grid Tiling with \leq

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are non-decreasing
- the second coodrinates in each column are non-decreasing

Theorem. Assuming the ETH, there is no algorithm solving Grid Tiling with \leq in time $n^{o(t)}$.

Grid Tiling with \leq

- we are given a square $t \times t$ grid
- in each cell (i, j) we have $S_{i, j} \subseteq[n] \times[n]$
- for each cell choose one pair, such that:
- the first coordinates in each row are non-decreasing
- the second coodrinates in each column are non-decreasing

Theorem. Assuming the ETH, there is no algorithm solving Grid Tiling with \leq in time $n^{o(t)}$.

- each set $S_{i, j}$ can be seen as points of $n \times n$ grid

$$
\begin{aligned}
& (1,1)(1,2)(1,3) \\
& (2,2)(2,3) \\
& (3,1)(3,4) \\
& (4,2)(4,4)
\end{aligned}
$$

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
a single cell:

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
a single cell:

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
introduce unit disks centered at these points

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
- disks from one cell form a clique: we have t^{2} cliques \rightarrow size of max independent set is $\leq t^{2}$
- disks from consecutive cells can be chosen if coordinates are non-decreasing

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
- disks from one cell form a clique: we have t^{2} cliques \rightarrow size of max independent set is $\leq t^{2}$
- disks from consecutive cells can be chosen if coordinates are non-decreasing
- so the solution of size $k=t^{2}$ exists if and only if there is a solution for Grid Tiling

Hardness of Independent Set in UDGs

Theorem. Grid Tiling with \leq cannot be solved in time $n^{o(t)}$, unless the ETH fails.

- $t \times t$ outer grid, $n \times n$ inner grids
- disks from one cell form a clique: we have t^{2} cliques \rightarrow size of max independent set is $\leq t^{2}$
- disks from consecutive cells can be chosen if coordinates are non-decreasing
- so the solution of size $k=t^{2}$ exists if and only if there is a solution for Grid Tiling
- number of disks $N \leq t^{2} \cdot n^{2}$
- solving Independent Set in time $N^{o(\sqrt{k})}$ \rightarrow solving GRID Tiling in time $n^{\circ(t)} \rightarrow$ the ETH fails

Other faces of Grid Tiling

- similar approach can be used to show lower bounds for (Connected) Dominating Set [Marx + Kisfaludi-Bak]
- reductions are not specific to disks: in general they can be adjusted for any convex fat shapes

Other faces of Grid Tiling

- similar approach can be used to show lower bounds for (Connected) Dominating Set [Marx + Kisfaludi-Bak]
- reductions are not specific to disks: in general they can be adjusted for any convex fat shapes
- there is a variant for k-Coloring

Theorem [Biró, Bonnet, Marx, Miltzow, Rz., '16]. k-Coloring of intersection graphs of translates of any convex fat shape cannot be solved in time $2^{o(\sqrt{n k})}$.

Other faces of Grid Tiling

- similar approach can be used to show lower bounds for (Connected) Dominating Set [Marx + Kisfaludi-Bak]
- reductions are not specific to disks: in general they can be adjusted for any convex fat shapes
- there is a variant for k-Coloring

Theorem [Biró, Bonnet, Marx, Miltzow, Rz., '16]. k-Coloring of intersection graphs of translates of any convex fat shape cannot be solved in time $2^{o(\sqrt{n k})}$.

- there are also versions for any dimension d : for Independent Set: $2^{\mathcal{O}\left(k^{1-1 / d}\right)}$ [Marx, Sidiropoulos '15] for k-Coloring:
$2^{\widetilde{\mathcal{O}}\left(n^{1 / d} \cdot k^{1-1 / d}\right)}$ [BBMMRz '16]

Other faces of Grid Tiling

- similar approach can be used to show lower bounds for (Connected) Dominating Set [Marx + Kisfaludi-Bak]
- reductions are not specific to disks: in general they can be adjusted for any convex fat shapes
- there is a variant for k-Coloring

Theorem [Biró, Bonnet, Marx, Miltzow, Rz., '16]. k-Coloring of intersection graphs of translates of any convex fat shape cannot be solved in time $2^{o(\sqrt{n k})}$.

- there are also versions for any dimension d : | for Independent Set: | $2^{\mathcal{O}\left(k^{1-1 / d}\right)}$ |
| :--- | :--- |
| for k-Coloring: | $2^{\widetilde{\mathcal{O}}\left(n^{1 / d} \cdot k^{1-1 / d}\right)}$ [Marx, Sidiropoulos '15] |

... but it's a different story

Bidimensionality in geometric graphs

Minors

- minor $=$ a graph obtained by deleting vertices/edges and contracting edges

Minors

- minor $=$ a graph obtained by deleting vertices/edges and contracting edges

Minors

- minor $=$ a graph obtained by deleting vertices/edges and contracting edges

Minors

- minor $=$ a graph obtained by deleting vertices/edges and contracting edges

Minors

- minor $=$ a graph obtained by deleting vertices/edges and contracting edges
- find some disjoint connected subgraphs and contract them to single vertices

Minors

- minor $=$ a graph obtained by deleting vertices/edges and contracting edges
- find some disjoint connected subgraphs and contract them to single vertices

Minors

- minor = a graph obtained by deleting vertices/edges and contracting edges
- find some disjoint connected subgraphs and contract them to single vertices

Grid minor theorem

- the presence of $t \times t$ grid minor forces treewidth $\geq t$

Grid minor theorem

- the presence of $t \times t$ grid minor forces treewidth $\geq t$

Grid minor theorem [Robertson, Seymour '86]. Every graph with treewidth $\geq f(t)$ contains a $t \times t$ grid minor.

Grid minor theorem

- the presence of $t \times t$ grid minor forces treewidth $\geq t$

Grid minor theorem [Chuzhoy, Tan '19].
Every graph with treewidth $\widetilde{\Omega}\left(t^{9}\right)$ contains a $t \times t$ grid minor.

Grid minor theorem

- the presence of $t \times t$ grid minor forces treewidth $\geq t$

Grid minor theorem [Chuzhoy, Tan '19].
Every graph with treewidth $\widetilde{\Omega}\left(t^{9}\right)$ contains a $t \times t$ grid minor.
Planar grid minor theorem [Robertson, Seymour, Thomas '94, Gu, Tamaki '12].
Every planar graph with treewidth $\geq 9 / 2 \cdot t$ contains a $t \times t$ grid minor. There is a poly-time algorithm for finding a grid or a tree decomposition.

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$
- if not, we have a $100 \sqrt{k} \times 100 \sqrt{k}$ grid minor

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$
- if not, we have a $100 \sqrt{k} \times 100 \sqrt{k}$ grid minor

- k-Feedback Vertex Set: is there a feedback vertex set of size $\leq k$?

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$
- if not, we have a $100 \sqrt{k} \times 100 \sqrt{k}$ grid minor

NO

- k-Feedback Vertex Set: is there a feedback vertex set of size $\leq k$?

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$
- if not, we have a $100 \sqrt{k} \times 100 \sqrt{k}$ grid minor

- k-Path: is there a path of length $\geq k$?

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$
- if not, we have a $100 \sqrt{k} \times 100 \sqrt{k}$ grid minor

YES!

- k-Path:
is there a path of length $\geq k$?

Bidimensionality for planar graphs

- if treewidth is $\mathcal{O}(\sqrt{k})$, then many problem can be solved in time $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$
- if not, we have a $100 \sqrt{k} \times 100 \sqrt{k}$ grid minor

- $2^{\widetilde{\mathcal{O}}(\sqrt{k})} \cdot \operatorname{poly}(n)$-algorithms for many parameterized problems

Grid minors in unit disk graphs

- we aim to prove a grid minor theorem for unit disk graphs

Grid minors in unit disk graphs

- we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh '11].
Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

Grid minors in unit disk graphs

- we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh '11].
Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

Grid minors in unit disk graphs

- we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh '11].
Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

Grid minors in unit disk graphs

- we aim to prove a grid minor theorem for unit disk graphs

Lemma [Fomin, Lokshtanov, Saurabh '11].
Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

- $R(G)$ - region graph, $R(G)$ is planar

Grid minors in unit disk graphs, continued

- $R(G)$ - region graph, $R(G)$ is planar

Grid minors in unit disk graphs, continued

- $R(G)$ - region graph, $R(G)$ is planar

Lemma. $\mathrm{tw}(G)=\mathcal{O}(\operatorname{tw}(R(G))$

- construct a tree decomposition of G based on a tree decomposition of $R(G)$

Grid minors in unit disk graphs, continued

- $R(G)$ - region graph, $R(G)$ is planar

Lemma. $\operatorname{tw}(G)=\mathcal{O}(\operatorname{tw}(R(G))$

- construct a tree decomposition of G based on a tree decomposition of $R(G)$

How to use it?

- $R(G)$ contains $t \times t$ grid minor, where $t=\mathcal{O}(\operatorname{tw}(R(G)))$.

Grid minors in unit disk graphs, continued

- $R(G)$ - region graph, $R(G)$ is planar

Lemma. $\mathrm{tw}(G)=\mathcal{O}(\operatorname{tw}(R(G))$

- construct a tree decomposition of G based on a tree decomposition of $R(G)$

How to use it?

- $R(G)$ contains $t \times t$ grid minor, where $t=\mathcal{O}(\operatorname{tw}(R(G)))$.
- using this, we construct a $t^{\prime} \times t^{\prime}$ grid minor in G, where $t^{\prime}=\mathcal{O}(t)=\mathcal{O}(\operatorname{tw}(G))$

Grid minor theorem for unit disk graphs

Lemma[Fomin, Lokshtanov, Saurabh '11].
Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

Grid minor theorem for unit disk graphs

Lemma[Fomin, Lokshtanov, Saurabh '11].
Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.

- if G has no clique of size p, then $\Delta \leq 6 p$

Grid minor theorem for unit disk graphs

 Lemma[Fomin, Lokshtanov, Saurabh '11]. Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.- if G has no clique of size p, then $\Delta \leq 6 p$
- take a vertex of degree Δ
- centers or all neighbors are in the radius-2 disk

Grid minor theorem for unit disk graphs

 Lemma[Fomin, Lokshtanov, Saurabh '11]. Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.- if G has no clique of size p, then $\Delta \leq 6 p$
- take a vertex of degree Δ
- centers or all neighbors are in the radius-2 disk
- centers in each region correspond to a clique

Grid minor theorem for unit disk graphs

 Lemma[Fomin, Lokshtanov, Saurabh '11]. Every unit disk graph G with bounded maximum degree and treewidth $\Omega(t)$ has a $t \times t$ grid minor.- if G has no clique of size p, then $\Delta \leq 6 p$
- take a vertex of degree Δ
- centers or all neighbors are in the radius-2 disk
- centers in each region correspond to a clique
- add some technical magic

Theorem [FLS '11].

Every unit disk graph with no p-clique and treewidth $\Omega(p \cdot t)$ has a $t \times t$ grid minor.

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?
Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find) $t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$? Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find) $t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

1. If $|C|>k+2$, return NO .

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?
Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find) $t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

1. If $|C|>k+2$, return NO .
2. If $|C|>k^{\varepsilon}$, branch:

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?
Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find) $t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

1. If $|C|>k+2$, return NO .
2. If $|C|>k^{\varepsilon}$, branch:
$T(n, k) \leq k^{2 \varepsilon} \cdot T\left(n, k-k^{\varepsilon}\right) \leq \exp \left\{k^{1-\epsilon} \log k\right\} \cdot \operatorname{poly}(n)$

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?
Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find) $t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

1. If $|C|>k+2$, return NO.
2. If $|C|>k^{\varepsilon}$, branch: $\exp \left\{k^{1-\epsilon} \log k\right\} \cdot \operatorname{poly}(n)$

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?
Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find)
$t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

1. If $|C|>k+2$, return NO .
2. If $|C|>k^{\varepsilon}$, branch: $\exp \left\{k^{1-\epsilon} \log k\right\} \cdot \operatorname{poly}(n)$
3. If $|C|<k^{\varepsilon}$, then one of the following occurs:
(a) treewidth $=\mathcal{O}\left(k^{\varepsilon} \cdot t\right)=k^{\mathcal{O}(1 / 2+\varepsilon)}$, divide \& conquer $\exp \left\{k^{1+\epsilon}\right\} \cdot \operatorname{poly}(n)$
(b) grid minor of size $t \times t \rightarrow$ return NO

Yet another win-win algorithm

- k-Feedback Vertex Set in unit disk graphs: is there a feedback vertex set of size $\leq k$?
Initialization.
$C \leftarrow$ a maximum clique in G (polynomial to find)
$t \leftarrow 100 \sqrt{k}$
$\varepsilon \leftarrow 0.25$

1. If $|C|>k+2$, return NO .
2. If $|C|>k^{\varepsilon}$, branch: $\exp \left\{k^{1-\epsilon} \log k\right\} \cdot \operatorname{poly}(n)$
3. If $|C|<k^{\varepsilon}$, then one of the following occurs:
(a) treewidth $=\mathcal{O}\left(k^{\varepsilon} \cdot t\right)=k^{\mathcal{O}(1 / 2+\varepsilon)}$, divide \& conquer $\exp \left\{k^{1+\epsilon}\right\} \cdot \operatorname{poly}(n)$
(b) grid minor of size $t \times t \rightarrow$ return NO

Overall running time is $2^{\mathcal{O}\left(k^{0.75} \cdot \log k\right)} \cdot \operatorname{poly}(n)$.

Concluding comments

- this works for k-CyCle PACKing, k-CyCle, k-PATH, (Connected) k-Vertex Cover
- can be used to obtain EPTASes

Concluding comments

- this works for k-CyCle PACKING, k-CyCle, k-PATh, (Connected) k-Vertex Cover
- can be used to obtain EPTASes
- does not generalize to non-unit disk graphs

Concluding comments

- this works for k-CyCle PACKING, k-CyCle, k-PATH, (Connected) k-Vertex Cover
- can be used to obtain EPTASes
- does not generalize to non-unit disk graphs
- we know algorithms with running time $2^{\mathcal{O}(\sqrt{k})} \cdot \operatorname{poly}(n)$ e.g. [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi '19]
- no $2^{o(\sqrt{k})} \cdot \operatorname{poly}(n)$-algorithms, unless the ETH fails

Concluding comments

- this works for k-CyCle PACKING, k-CyCle, k-PATH, (Connected) k-Vertex Cover
- can be used to obtain EPTASes
- does not generalize to non-unit disk graphs
- we know algorithms with running time $2^{\mathcal{O}(\sqrt{k})} \cdot \operatorname{poly}(n)$ e.g. [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi '19]
- no $2^{o(\sqrt{k})} \cdot \operatorname{poly}(n)$-algorithms, unless the ETH fails

