Milan Hladík's Publications:

Range sets for weak efficiency in multiobjective linear programming and a parametric polytopes intersection problem

Milan Hladík, Miroslav Rada, Sebastian Sitarz, and Elif Garajová. Range sets for weak efficiency in multiobjective linear programming and a parametric polytopes intersection problem. Optim., 68(2-3):645–666, 2019.

Download

[PDF] [gzipped postscript] [postscript] [HTML] 

Abstract

The aim of this paper is to obtain the range set for a given multiobjective linear programming problem and a weakly efficient solution. The range set is the set of all values of a parameter such that a given weakly efficient solution remains efficient when the objective coefficients vary in a given direction. The problem was originally formulated by Benson in 1985 and left to be solved. We formulate an algorithm for determining the range set, based on some hard optimization problems. Due to toughness of these optimization problems, we propose also lower and upper bound approximation techniques. In the second part, we focus on topological properties of the range set. In particular, we prove that a range set is formed by a finite union of intervals and we propose upper bounds on the number of intervals. Our approach to tackle the range set problem is via the intersection problem of parametric polytopes. Thus, our results have much wider area of applicability since the intersection (and separability) problem of convex polyhedra is important in many fields of optimization.

BibTeX

@article{HlaRad2019a,
 author = "Milan Hlad\'{\i}k and Miroslav Rada and Sebastian Sitarz and Elif Garajov\'{a}",
 title = "Range sets for weak efficiency in multiobjective linear programming and a parametric polytopes intersection problem",
 journal = "Optim.",
 fjournal = "Optimization",
 volume = "68",
 number = "2-3",
 pages = "645-666",
 year = "2019",
 doi = "10.1080/02331934.2018.1561692",
 issn = "0233-1934",
 url = "https://doi.org/10.1080/02331934.2018.1561692",
 bib2html_dl_html = "https://doi.org/10.1080/02331934.2018.1561692",
 bib2html_dl_pdf = "https://doi.org/10.1080/02331934.2018.1561692",
 abstract = "The aim of this paper is to obtain the range set for a given multiobjective linear programming problem and a weakly efficient solution. The range set is the set of all values of a parameter such that a given weakly efficient solution remains efficient when the objective coefficients vary in a given direction. The problem was originally formulated by Benson in 1985 and left to be solved. We formulate an algorithm for determining the range set, based on some hard optimization problems. Due to toughness of these optimization problems, we propose also lower and upper bound approximation techniques. In the second part, we focus on topological properties of the range set. In particular, we prove that a range set is formed by a finite union of intervals and we propose upper bounds on the number of intervals. Our approach to tackle the range set problem is via the intersection problem of parametric polytopes. Thus, our results have much wider area of applicability since the intersection (and separability) problem of convex polyhedra is important in many fields of optimization.", 
 keywords = "Multiobjective linear programming; Efficient solution; Sensitivity analysis; Range set",
}

Generated by bib2html.pl (written by Patrick Riley ) on Wed Oct 23, 2024 08:16:44