
Veronika Steffanová

User documentation for MATLAB library for
polyhedra

Copyright c⃝ Charles University in Prague

Prague 2012



1. Introduction
Thank you that you decided to try our MATLAB library for polyhedra. It contains
several functions to operate with polyhedra, e.g. conversions between vertex and facet
descriptions in both directions or computations of convex union and intersection of two
polyhedra and removing redundant vertices or facets from vertex or facet description.

This library is fully compatible with freeware Octave too, but before usage change
the installed packages according to the instructions from the last chapter.

There are used strict rules for the input parameters of the functions. If they are not
filled in correctly, the results would be empty values and a message would be received
by console output.

The library belongs to Charles University in Prague, so it cannot be used for com-
mercial purposes.

2



2. Input and output data
structures
There are three data structures used in the library which can be used as input or received
as output.

1. Facets: are represents as a list of inequalities or equalities. The list is composed
of two parts: A stands for a matrix of the left side, and b stands for the right side.
One instance of the structure is used either for equalities or inequalities, never
for both of them. Type is always implied for the context. For the creation of an
instance you can use the constructor or type it manually.

Example: (
1 2
3 4

)
≤

(
5
6

)
Nerovnice.A = [1 2;3 4];

Nerovnice.b = [5;6]

%or

Nerovnice = inequalities([1 2;3 4],[5;6])

2. Vertices: are simply stored in a list, one vertex on each rows.

Example: △ABC, A[0; 0], B[0; 1],C[1; 0]

ABC = [0 0; 0 1; 1 0];

3. Double description: has a little more complicated structure, but it allows you to
find the relations between vertices and inequalities in constant time. Let have a
polyhedron P. Then P.c returns a list of coordinates of all vertices, P(i).c returns
coordinates of ith vertex. P(i).ineq stands for inequalities of all facets, where the
ith vertex lies in. P(i).ineq(j) gives you information about jth facet. There are
two fields: inequal, which contains a inequality of the facet a1 +a2 + . . .+ad ≤ b
like an array [a1, a2, . . . , ad, b], and vert, which contains a list of indices of all
vertices which lies in jth facet.

Example: △ABC, A[0; 0], B[0; 1],C[1; 0], AB : −y ≤ 0, AC : −x ≤ 0, BC :
x + y ≤ 1

ABC.c

ans = 0 0

ans = 0 1

ans = 1 0

ABC(1).c

ans = 0 0

3



ABC(1).ineq(1)

inequal = 0 -1 0

vert = 1 2

ABC(1).ineq(2)

inequal = -1 0 0

vert = 1 3

%return all inequalities

Nerovnice = extractineq(ABC)

%return all vertices in matrix

Vrcholy = extractvertices(ABC)



3. From facet to vertex
description
The conversion from facets to vertices is implemented in the function

[Vertices, Edges] = ineqtovertices(Inequalities,Equalities,’S’)

where the third parameter is optional.
Input: The first parameter Inequlities contains a list of all inequalities of facets

in the format (1). The second parameter Equalities contains a list all equalities in the
same format. In the area of linear programming there are often used both equalities
and inequalities for specification of the polyhedron boundaries, therefore there is an
optional usage of equalities as an input. If you do not want to use both inequalities and
equalities, you can replace any of the parameters by []. The third parameter is optional
and can have only the value ’S’, which says you want as a result a polyhedron in double
description.

Output: The first parameter Vertices contains list of all vertices of the input poly-
hedron according to (2) or the polyhedron in double description if you used the third
input parameter. The second parameter Edges contains list of vectors which defines
unbounded edges of the polyhedron. If there are no unbounded edges, it returns an
empty array. If there are any unbounded edges, it means the polyhedron unbounded
and this information is always displayed in console.

As an input you can use combination of equalities and inequalities of dimension
one and higher. If the polyhedron has no vertex, the Vertices stays empty. It is possible
that there are returned some unbounded edges, but without a vertex it is difficult to say
if there are really edges and if the algorithm found all of them. But you can be sure that
the rays specified by the vector lies in the polyhedron.

5



4. From vertex to facet
description
The conversion from vertex to facet description is implemented by two functions

Polyhedron = verticestoineqcomb(Vertices, ’S’)

Polyhedron = verticestoineqdual(Vertices, ’S’)

where the first one uses incremental algorithm and the second one uses dual graph-
traversal algorithm. But the input and output parameters are same. we recommend to
use the first one, because usually it is faster. But if you have much vertices (more than
50 or 100), but low dimension (2 or 3), the second one can be faster.

Input: The first parameter Vertices contains list of all vertices in the format (2).
The second parameter is optional and can have only the value ’S’, which says you want
as a result a polyhedron in double description.

Output: The first parameter Polyhedron contains a list of all facet in the form
of inequalities according to (1) of the input polyhedron or the polyhedron in double
description, if you used the second input parameter.

The input vertices can be of one or higher dimension and there has to exist their
affine independent subset of d + 1 vertices, where d is the dimension.

6



5. Convex union and
intersection
Functions for convex union and intersection are quite similar, so we describe them in
one chapter.

[Polyhedron, Edges] = union(Polyedr1, Polyedr2, output)

[Polyhedron, Edges] = intersection(Polyedr1, Polyedr2, output)

Input: Both function have three input parameters. The first two parameters stands
for the polyhedra which should be unite or intersect. They can be in any format what
was specified in the second chapter. They must only have the same dimension. The
third parameter specifies the format of output. It can has three values: ’V’ – out will
be in vertex description, ’F’ – output will be in facet description, ’S’ – output will be
in double description.

Output: The first parameter stands for the polyhedron in the format according
to the third input parameter. The second parameter is a list of all unbounded edges.
Unbounded edges have a sense only for union if at least one input polyhedron is in the
facet description, or for intersection if both polyhedra are in the facet description (in
all other cases the output polyhedron is always bounded, so it cannot have unbounded
edges).

7



6. Remove redundancies
There are two function for removing redundancies from the vertex or facet representa-
tion.

Inequalities = rmineq(Inequalities)

Vertices = rmivertices(Vertices)

Both take as an input the polyhedron in the chosen description, and return a polyhedron
where all vertices are extremal (convex hull without any vertex is different from the
convex hull of all vertices), or each inequality defines a facet.

8



7. Installing instructions for
Octave
If you want to use our library for MATLAB in Octave, at first take the file linprog.m,
what is attached to the library, and replace the original file with the same name in the
installed package optim. The path to the file looks like that:

(Octave/gcc-version/share/octave/packeges/optim-version)

The new file can do everything what the old file, but there some repaired bugs
and also add the possibility to study the third parameter of the original linprog from
MATLAB, which says if the result or the linear program is defined (Octave code 180,
MATLAB code 1) or if it is not (all other codes, we set it on 0).

9


