
MASTER THESIS

Bc. Karel Ha

Solving Endgames in Large
Imperfect-Information Games

such as Poker

Department of Applied Mathematics

Supervisor of the master thesis: doc. Mgr. Milan Hlad́ık, Ph.D.

Study programme: Computer Science

Study branch: Discrete Models and Algorithms

A

A

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

J

J

Q

Q

K

K

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Solving Endgames in Large Imperfect-Information Games such as Poker

Author: Bc. Karel Ha

Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Milan Hlad́ık, Ph.D., Department of Applied Mathematics

Abstract: Endgames have a distinctive role for players. At the late stage of games,
many aspects are finally clearly defined, deeming exhaustive analysis tractable.
Specialised endgame handling is rewarding for games with perfect information
(e.g., Chess databases pre-computed for entire classes of endings, or dividing Go
board into separate independent subgames).

An appealing idea would be to extend this approach to imperfect-information
games such as the famous Poker: play the early parts of the game, and once the
subgame becomes feasible, calculate an ending solution. However, the problem is
much more complex for imperfect information.

Subgames need to be generalized to account for information sets. Unfortunately,
such a generalization cannot be solved straightaway, as it does not generally
preserve optimality. As a consequence, we may end up with a far more exploitable
strategy.

There are currently three techniques to deal with this challenge:

(a) disregard the problem entirely;

(b) use a decomposition technique, which sadly retains only the same quality;

(c) or formalize improvements of strategies into a so-called subgame margin, for
which we construct a “gadget” game that optimizes for the subgame margin.

The last approach is our own result presented at the Thirtieth AAAI Conference
on Artificial Intelligence in 2016.

We experimentally compare the three solutions using a top participant of the
AAAI-14 Computer Poker Competition, the leading playground for agents in im-
perfect-information setting.

Keywords: algorithmic game theory, imperfect-information games, Nash equili-
brium, subgame, endgame, counterfactual regret minimization, Poker

ii

I wish to thank and dedicate my work to:

→ Milan, for assuming the (uneasy) role of my supervisor, for revealing his way
of “the optimized consumption”, and for helping my EPFL dream come true;

→ Martin and Matěj, for accepting me under their guardian wings as a protégé,
and for assisting me in my very first publication;

→ the facilities of CERN, University of West Bohemia, CrossCafe, and Education
and Research Library of Pilsen Region, for being my sanctuaries when I needed
to escape the silence of my room;

→ the Wikipedia, for filling me up with all the wisdom and knowledge, which I
often didn’t know I was missing;

→ the team of AlphaGo, for making such an awesome step towards general AI;

→ azquotes.com, for inspiring and amusing quotes, which I “abused” to lighten
up the dimness of this work;

→ Donald Knuth, for all his hilarious quotes, and for teaching me never to use
Microsoft Word again;

→ to my little brother, for his patience as my roommate during my work on this;

→ and last but not least, to my loving parents, for running our childhood
smoothly, providing for us selflessly, and especially, for waking us up every
single morning during our school years. . . despite our sincerest resistance.

The whole thing that makes a mathematician’s life worthwhile is
that he gets the grudging admiration of three or four colleagues.

Donald Knuth

iii

http://www.azquotes.com

Contents

Introduction 3

0 Preliminaries 4
0.1 Game Theory . 4
0.2 Examples of Games . 4
0.3 The Game of Go . 8
0.4 Combinatorial Game Theory . 10

I Perfect Endgames of Perfect-Information Games 11

A Setting the Scene for Perfect Information 12
A.1 Extensive Form for Perfect-Information 12
A.2 Subgames . 15
A.3 Working Examples . 17

B Chess Endgames 19
B.1 What are Endgames in Chess? 19
B.2 Endgame Tablebases . 20
B.3 Applications of Tablebases . 22

C Go Endgames Using Ad-Hoc Mathematics 26
C.1 Why Focus on Go Endgames? . 26
C.2 Partitioning into (Sub)games and Playing The Game-Sum 27
C.3 Combinatorial Game Theory for the Game of Go 28
C.4 Board Partition and Subgame Dependencies 29
C.5 Local Search and Evaluation in the Endgame 30
C.6 Storing Search Results into Database 32
C.7 Pattern Learning . 33
C.8 Contributions of Combinatorial Game Theory to Go Endgames . 34

D Go Endgames Using Neural Networks 35
D.1 Game-Tree Search . 35
D.2 Neural networks . 36
D.3 Training Pipeline of Neural Networks 37
D.4 Main Algorithm of AlphaGo . 38
D.5 Playing Strength . 39

1

II Imperfectness of Imperfect-Information Endgames 41

E Setting the Scene for Imperfect Information 42
E.1 Extensive Form for Imperfect-Information 42
E.2 Sequence Form . 44
E.3 Solving Games with Linear Programming 45
E.4 Solving Games with Learning Algorithms 47
E.5 Subgames Revisited . 48

F Shortcomings of the Imperfect Information for Subgames 49
F.1 An Intricate Example . 49
F.2 Näıve Re-solving of Rock-Paper-Scissors 50
F.3 A New Hope for Subgames with Imperfect Information 51

G Endgame Solving 52
G.1 Motivation and Overview . 52
G.2 Gadget Game . 53
G.3 Equivalent Linear Program . 53
G.4 Discussion . 54

H CFR-D and Decomposition 55
H.1 Motivation and Overview . 55
H.2 Gadget Game . 56
H.3 Equivalent Linear Program . 57
H.4 Discussion . 57

I Subgame-Margin Maximization 59
I.1 Motivation and Overview . 59
I.2 Subgame Margin . 59
I.3 Linear Program . 62
I.4 Equivalent Gadget Game . 62
I.5 Gadget-Game Counterfactual Values 64
I.6 Experimental Results . 65

J Ideas for Future Work 67
J.1 Margins via Multi-Objective Optimization 67

Conclusion 69

List of Figures 76

List of Tables 77

List of Abbreviations 78

2

Introduction

A successful person isn’t necessarily better than her less successful
peers at solving problems; her pattern-recognition facilities have
just learned what problems are worth solving.

Ray Kurzweil

Endgames have a special role for game playing: the situation towards the end
becomes simpler and many game aspects are clearly defined, e.g., remaining late-
game pieces in Chess, or the division of territories in Go. As opposed to openings
and mid-games, endgames therefore offer the opportunity for a thorough scrutiny
such as an exhaustive search.

This approach is fruitful in games with perfect information (Part I), where
there has been an extensive use of it: a perfect play has been pre-computed for
Chess endgames with up to 7 pieces (Chapter B), while Go endgames can undergo
dynamical in-play analysis, either using combinatorial game theory (Chapter C)
or Monte Carlo simulations aided by convolutional neural networks (Chapter D).

An appealing idea is to extend this approach to imperfect-information games:
play the early parts of the game, and once the subgame becomes feasible, calculate
a solution using a finer-grained abstraction in real time, creating a combined final
strategy. Although this approach is straightforward for perfect-information games
(Chapter A), it is a much more complex problem for imperfect-information games
(Part II).

Firstly, we have to take into consideration information sets, and generalize
the concept of a subgame for imperfect information (Chapter E). Unfortunately,
directly re-solving a subgame does not in general preserve any guarantee of op-
timality, resulting in far more exploitable strategies. We will observe this phe-
nomenon on the elementary example of Rock-Paper-Scissors game with a single
subgame (Chapter F).

The posed challenge may be tackled in three different ways:

(a) Ganzfried and Sandholm (Carnegie Mellon University) disregard the problem
entirely, by advocating empirical improvement over theoretical guarantees
(Chapter G).

(b) Burch, Johanson, and Bowling (University of Alberta) propose a decomposi-
tion technique, which retains at least the same quality of subgame strategies.
Nonetheless, the method receives no incentive to strive for maximal gains
(Chapter H).

(c) We—Moravč́ık, Schmid, Ha, Hlad́ık (Charles University) and Gaukrodger
(Koypetition)—formalize the improvement of subgame strategies into the
notion of a subgame margin. On top of that, we devise a construction
of an equivalent extensive-form game, which maximizes subgame margins
(Chapter I).

Finally, Chapter J provides some suggestions to further develop these ideas,
and enhance them for future work.

3

0. Preliminaries

I can’t go to a restaurant and order food because
I keep looking at the fonts on the menu.

Donald Knuth

Let us start with some games. . .

0.1 Game Theory

You have to learn the rules of the game. And
then you have to play better than anyone else.

Albert Einstein

Game theory is a mathematical discipline dealing with interactions (either con-
flicts or cooperation) between 2 or more agents. Founded by (Von Neumann and
Morgenstern 1953), game theory has countless application in economics, political
science, and psychology, as well as logic, computer science, biology and Poker.

Informally, a game has typically

♠ players, who are assumed to be rational decision-makers (i.e., they would
not make a suboptimal choice of actions),

♠ actions available to each player,

♠ payoffs (or utilities) for every possible combination of such actions.

Games can be represented in two forms:

♠ a normal-form game (NFG) is a representation using (pay-off) matrices.
Examples of NFGs can be found in Section 0.2.

♠ an extensive-form game (EFG) models a game with turns using a game tree.
They are discussed in greater details in Section A.1 and Section E.1.

0.2 Examples of Games

Happy Hunger Games! And may the odds be ever in your favor.

Suzanne Collins, The Hunger Games

Rock-Paper-Scissors (RPS) is a game commonly used to make decision be-
tween two people. Two players pick a (symbolical) tool of their choice:
Rock, Paper or Scissors. Each tool wins against one of the remaining tools
and loses against the other one: Scissors cuts Paper, Paper covers Rock and
Rock crushes Scissors (check also Section F.1).

4

Chess is arguably world’s most famous game, frequently employed to sharpen
one’s intellectual facilities. For decades, this mind sport has functioned as
a “playground” for artificial intelligence (AI) research.

The most notable milestone of computer Chess took place in New York City,
in 1997: the AI community (with the rest of the world) was astonished by
the victory of IBM’s computer system Deep Blue against the world Chess
champion, the grandmaster Garry Kasparov.

It was an impressive achievement, of course, and a human achieve-
ment by the members of the IBM team, but Deep Blue was only
intelligent the way your programmable alarm clock is intelligent.
Not that losing to a $10 million alarm clock made me feel any
better.

Garry Kasparov

The rules of Chess are widely known; for completeness, however, Chess
tutorials such as (Karpov 1997) are recommendable.

Go is another ancient game with countless number of both amateur and pro-
fessional players. The rules (Section 0.3) are even simpler than in Chess;
yet the game is far more complex, with more positions than atoms in the
observable Universe (Section D.1).

As a game of intellect, Go is especially popular with mathematicians. A ded-
icated mathematical discipline of combinatorial game theory (Section 0.4)
has been developed by excellent John Conway, in order to decompose and
study endgame positions (Chapter C).

A few months ago, the Go world experienced a duel similar to the one
of Deep Blue vs. Kasparov. The Humanity, represented by legendary
Korean player Lee Sedol, was defeated by the AI of Google DeepMind’s
program AlphaGo (Chapter D).

Nim is a mathematical game in which two players take turns in removing objects
from distinct heaps. On each turn, a player must remove at least one object,
and may remove any number of objects provided they all come from the
same heap. The goal is to be the player to remove the last object.

Poker is a popular card game and an example of an imperfect-information game:
as opposed to all previous games, there is a vital role in players’ private cards
and the chance. We will see that notion of a subgame needs to be adapted
for imperfect-information games, which will cause several complications and
will call for novel solutions (Part II).

Following the examples of Deep Blue and AlphaGo, also the Poker world had
a chance to meet a superhuman AI champion: Cepheus—the first Poker-
bot which has weakly solved Limit Texas Hold’em variant of Poker (Bowling
et al. 2015).

Currently, the game of the most active computer Poker research is the two-
player version of No-Limit Texas Hold’em (Heads-Up NLHE). For the rules
of it, read for instance Appendix A of (Ganzfried and Sandholm 2015).

5

Note

The following examples and figures are taken from the classic
textbook Algorithmic Game Theory (Nisan et al. 2007).

Football is a more beautiful game in high definition.

José Mourinho

Matching Pennies is a 2-choice version of RPS. Two players, Matcher and
Mismatcher, pick either H(eads) or T(ails) of a (penny) coin. If chosen
sides match, Matcher wins (receives the utility of 1) and Mismatcher loses
(receives the utility of −1). If the sides mismatch, Mismatcher wins and
Matcher loses.

Figure 1: Matching Pennies: player 1 as the Matcher, player 2 as the Mismatcher
(Nisan et al. 2007)

Prisoner’s Dilemma is a notorious example from game theory. Two players,
prisoners, are on trial for a crime, each with choice to confess or to remain
silent.

If they both keep silence, charges against them cannot be proved, and both
will serve a short prison term of 2 years (for minor offenses). If just one
of them confesses, his term will be reduced to 1 year and he will be used
as a witness against the other, who in turn will get a sentence of 5 years.
Finally, if they both confess, they both will get a small relief for cooperation,
and each will be sentenced to 4 years instead of 5. (Nisan et al. 2007,
Section 1.1.1)

Figure 2: Prisoner’s Dilemma (Nisan et al. 2007)

6

The situation modeled by the Prisoner’s Dilemma arises naturally in a lot
of different situations. One such example is ISP Routing Game.

ISP Routing Game models an Internet Service Provider (ISP), who needs to
send Internet packets from source s1 (in his own network ISP1) to target t1
(in the network ISP2 of another provider). The two networks are connected
via two transit points, C (for confess) and S (for silent):

Figure 3: ISP Routing Game (Nisan et al. 2007)

There is a unit cost per edge: if the provider sends a packet through closer
C, it costs him 1 unit and the opponent pays 4 units for routing from C
to t1. ISP1 behaves selfishly! On the contrary, if he sends a packet through
farther S, it costs 2 units. The opponent however pays only 1 unit, because
t1 is nearer to S than to C. ISP1 behaves altruistically!

Now ISP2 will send traffic, too, choosing again between C or S. If we accu-
mulate all costs from both traffics, and write it down for each combination
of selfish/altruistic players, we get the identical NFG as in Figure 2.

Traffic Light Two players, drivers of cars, arrive at a crossroad perpendicu-
larly to one another. If at most 1 driver crosses, the situation will be safe
and their payoffs will be non-negative, with a slightly better payoff for the
passing driver. If however both drivers decide to pass the crossroad, the re-
sult will be sub-optimal, as both drivers obtain drastically negative payoffs
and die.

Figure 4: Traffic Light (Nisan et al. 2007)

7

This is an example of a coordination game, where a common trusted co-
ordination device is desirable. Such a device (e.g., a traffic light or the
right-of-way priority rule) justify the concept of a correlated equilibrium
(Nisan et al. 2007, Subsection 1.3.6).

Battle of Sexes is another coordination game: Two players, Boy and Girl, are
arranging an activity for their date. The Girl wishes to go (S)hopping,
while the Boy wants to go for a (B)eer:

Figure 5: Battle of Sexes (Nisan et al. 2007)

Notice they both prefer to agree (rather than disagree) on the activity,
because this way they will be together. If however, they disagree and end
up alone without a date, both would rather spend the evening doing their
favorite activity.

0.3 The Game of Go

You don’t have to be really good anymore to get good results.
What’s happening with Chess is that it’s gradually losing its
place as the par excellence of intellectual activity. Smart people
in search of a challenging board game might try a game called Go.

Hans Berliner

Black and White place pieces (stones) on the unoccupied intersections (points)
of a board with a 19 × 19 grid of lines. Players take turns, Black moves first.
Surprisingly, there are only 2 basic rules of Go:

The rule of liberty Every stone remaining on the board must have at least one
open point (an intersection, called a liberty) directly next to it (up, down,
left, or right), or must be part of a connected group that has at least one
such liberty next to it.

Stones or groups of stones which lose their last liberty are removed from
the board.

8

Figure 6: The rule of liberty

The Ko rule The stones on the board must never repeat the previous position
of stones, so as to prevent unending cycles in game play.

Figure 7: The Ko rule

Since Ko rule applies only to a previous move, this gives rise to Ko fights :
the player, who is “banned” from repeating a move, makes a play elsewhere,
which may have no particular good qualities, but which demands an instant
reply. Then the ban comes to an end, and recapture is again possible for
Ko. This kind of distracting play is called a Ko threat.

There are several scoring rules to determine the winner of a game. In the
match of AlphaGo against Lee Sedol (Chapter D), the area scoring was used.
Under area scoring system, player’s score is:

♠ the number of stones that the player has on the board

♠ plus the number of empty intersections surrounded by that player’s stones

♠ plus komi(dashi) points for the White player (i.e., a compensation for the
first move advantage of the Black player)

Elo rating can be used to denote players’ ranks. Alternatively, kyu/dan
(in Japanese) or gup/dan (in Korean) system is also widely popular:

Rank Type Range Stage
double-digit kyu1 (DDK) 30–21k beginner
double-digit kyu 20–11k casual player
single-digit kyu (SDK) 10–1k intermediate amateur
amateur dan 1–7d advanced amateur

(8d is special title)
professional dan 1–9p professional player

(10d is special title)

Table 1: Ranks in Go

Handicap system is used to even up differences in ranks: Black can place 1
or more stones in advance as a compensation for White’s greater strength.

1gup in Korean

9

0.4 Combinatorial Game Theory

The simplest game of all is the Endgame, 0. I courteously offer you
the first move, and call upon you to make it. You lose, of course,
because 0 is defined as the game in which it is never legal to make
a move.

John Conway, On Numbers and Games

Note

This section is based on the founding work On Numbers and
Games (Conway 1976). For more on combinatorial game theory,
read also the illustrative (Berlekamp, Conway, and Guy 1983).

The combinatorial game theory (CGT) studies games without chance such as
Nim or Go. Combinatorial games can be viewed as mathematical models of Go
positions.

Definition 1. A (combinatorial) game is an ordered pair of sets of games:

G = {GL|GR}

where GL = {GL1 , GL2 , . . .} and GR = {GR1 , GR2 , . . .} are sets of new posi-
tions, to which the two players of the game, Left and Right, can move.

To avoid complications with the inductive definition, note that GL and GR
can (potentially) be empty or infinite. In order to start the basis of induction,
the empty set is used, to define the so-called Endgame2:

0 = {∅|∅} = {|},

No player may move in the Endgame; the first player to move thus always loses.
One may view independent local subgames on the Go board as combinatorial

games. To combine the subgames (with finished analyses), we need the notion
of a (combinatorial) game sum:

Definition 2. The sum G+H of games G = {A,B,C, . . . Z|a, b, c, . . . z} and
H = {A′, B′, . . . Z ′|a′, b′, . . . z′} is the game

{A+H, . . . Z +H,G+ A′, . . . G+ Z ′|a+H, . . . z +H,G+ a′, . . . G+ z′}

This was an approach of Martin Müller to solve endgames in Go (Chapter C).

2This is just a coincidence in names and an example of John Conway’s humor.

10

Part I

Perfect Endgames
of Perfect-Information Games

11

A. Setting the Scene for Perfect
Information

In order to improve your game, you must study the endgame
before everything else. For whereas the endings can be studied
and mastered by themselves, the middle game and opening must
be studied in relation to the end game.

José Raúl Capablanca

For many games, solving their late stages (endgames) can be done in a dynamic
way, by the in-play analysis. In other words, we are often able to postpone the
computation of the endgame strategy until the endgame itself is actually reached
in the real play.

On the other hand, endgames can be also pre-computed (often up to a perfect
play) and cached for later. Such a “memoization” approach is advantageous
in popular games such as Chess.

A.1 Extensive Form for Perfect-Information

Trees that are slow to grow bear the best fruit.

Molière

Games with perfect information can be naturally represented with a game tree:

5 left

take 1 4 left

take 1 3 left

take 1 2 left
take 1 1 left

1 -1

take 2 0 left
-1 1

take 2 1 left
-1 1

take 2 2 left
take 1 1 left

-1 1

take 2 0 left
1 -1

take 2

take 1 2 left
take 1 1 left

-1 1

take 2 0 left
1 -1

take 2 1 left
-1 1

Figure A.1: Game tree of (1,2)-Nim with 1 heap of 5 stones (rendered by Gambit

using the included example nim.efg)

The representation with a (directed) tree (instead of a pay-off matrix) is called
an extensive form.

Formally, an extensive-form game (EFG) for a perfect-information game (Os-
borne and Rubinstein 1994, p. 200) consists of:

12

♠ a finite set of players P ,

♠ a finite set H of all possible histories (i.e., paths from the root to vertices
of the game tree) such that

♦ each history consists of individual actions (i.e., tree edges),

♦ ∅ ∈ H (i.e., the tree root),

♦ relation h v h′ means that history h is a prefix (ancestor) of h′,

♦ if h′ ∈ H and h v h′, then h ∈ H,

♦ set Z ⊆ H is the set of terminal histories, i.e., histories that are not
prefixes of any other histories.

♠ the set of available actions A(h) = {a : (h, a) ∈ H} for every (non-terminal)
node h ∈ H \ Z (i.e., edges to children),

♠ a function p : P → H \ Z, which assigns an acting player p(h) to each
non-terminal history h.

♠ a utility function ui : Z → R.

We’ll also need to know a strategy, the expected utility and a best response (BR).

♠ A (behavior) strategy σi of player i defines a probability distribution over
actions A(h) at every node h ∈ H with p(h) = i (i.e., everywhere where
player i acts). The set Σi contains all possible strategies of player i, and
by σ[S←σ∗] we denote the combined strategy of σ∗ (within part S) and σ
(elsewhere).

Additionally, a strategy can be pure (strictly one action is always chosen)
or mixed (a probability distribution over pure strategies).

♠ A strategy profile σ is a tuple of players’ strategies: σ = (σ1, σ2, . . . , σ|P |).
The set of all possible strategy profiles is denoted as Σ and it is the Cartesian
product Σ =

∏
i∈P Σi.

By σ−i we denote the strategy profile of i’s opponents:

σ−i = (σ1, σ2, . . . σi−1, σi+1, . . . σ|P |)

♠ We use the symbol πσ (resp. πσi) to evaluate the overall (resp. player i’s)
probability corresponding to a strategy profile σ. The probability πσ(h)
of reaching node h can be decomposed to each player’s contribution as

πσ(h) =
∏
i∈P

πσi (h)

Furthermore, the probability πσ−i(h) (shortly π−i(h)) is the product of all
players’ contribution, except for i’s one:

πσ−i(h) =
∏
j 6=i

πσj (h)

13

♠ Given a strategy profile σ, the expected utility ui(σ) for player i is the sum
of utilities in the leaves, weighted by the probabilities of reaching them:

ui(σ) =
∑
z∈Z

πσ(z) · ui(z)

♠ Player i’s best response BRi(σ−i) (briefly BRi(σ)) is a strategy σi ∈ Σi

maximizing his expected utility against other players:

ui(σ) = max
σ′i∈Σi

ui(σ
′
i, σ−i)

Given a fixed σ−i, one technique to find some BR is to recursively traverse
the game tree and pick the most valuable action at each node (i.e. the child
with the maximal expected utility).

Note

There may be several best responses due to a multiplicity
of actions with the maximum value. Let us assume BRi(σ−i)
denotes any of them: this simplification is not harmful at all,
since each BR leads to the same (maximal) value of the total
utility.

♠ A Nash equilibrium (NE) is a strategy profile where players are playing best
responses against each other. Formally, σ is an NE if every i ∈ P has

ui(σ) = max
σ′i∈Σi

ui(σ
′
i, σ−i)

(i.e., no player has any incentive to deviate from his strategy).

♠ For a given profile σ, its exploitability

εσ =
u1(CBR(σ2), σ2) + u2(σ1, CBR(σ1))

2

expresses how much σ loses to a worst-case opponent, averaged over both
players. An NE has an exploitability of 0, because it is unexploitable.

Finally, two common properties of games are:

♠ two-player property: P = {1, 2}

♠ zero-sum property: For any profile σ ∈ Σ, players’ utilities cancel out∑
i∈P

ui(σ) = 0.

In particular, two-player zero-sum games capture the antagonistic behavior: what
one player gains, the other one loses. Typical examples are games such as RPS,
Chess, Go, Heads-Up Poker, etc.

14

A.2 Subgames

At that time I did not suspect that it [“An Oligopoly Model with
Demand Inertia” (Selten 1968)] often would be quoted, almost
exclusively for the definition of subgame perfectness.

Reinhard Selten

In the perfect-information setting, a subgame is a game corresponding to a subtree
of the game tree. Specifically, any node in the tree induces its own subgame:

Figure A.2: Subgame induced by node 22

Note

For the upcoming proofs, we define the notation for the restriction
of the expected utility on a subgame rooted in node h ∈ H:

uhi (σ) =
∑

z∈Z, hvz

πσ(h, z)ui(z)

where πσ(h, z) is the probability of reaching z from h under σ.

If we fix the strategies of opponents, re-solving subgames can only improve
our strategy:

Theorem 1 (subgame re-solving and utility). The re-computed sub-strategies can
be “placed back” into the full-game strategy, without decreasing the total expected
utility.

Proof. Let σ be any full-game strategy and σS be its restriction to a subgame S
rooted at node r. Assume we found a better (or even optimal) strategy σ∗ for
the subgame S, i.e., the new expected utility of any player i is better within S:

uri (σ
∗) ≥ uri (σS) (A.1)

15

The new re-combined strategy σ′ = σ[S←σ∗] cannot decrease i’s utility:

ui(σ
′) =

∑
z∈Z

πσ
′
(z)ui(z) =

∑
z∈Z∩S

πσ
′
(z)ui(z) +

∑
z∈Z\S

πσ
′
(z)ui(z)

=

[
πσ
′
(r)

∑
z∈Z∩S

πσ
∗
(r, z)ui(z)

]
+
∑
z∈Z\S

πσ
′
(z)ui(z)

= πσ(r)uri (σ
∗) +

∑
z∈Z\S

πσ(z)ui(z)

(A.1)

≥ πσ(r)uri (σS) +
∑
z∈Z\S

πσ(z)ui(z)

=
∑
z∈Z∩S

πσ(z)ui(z) +
∑
z∈Z\S

πσ(z)ui(z) = ui(σ)

Therefore, combining the new σ∗ with the full-game σ does not decrease the total
expected utility. �

Note that Theorem 1 also extends to imperfect-information subgames (Def-
inition 4, Section E.5). Nevertheless, the perfect-information setting offers one
additional advantage: no opponent can exploit the newly computed sub-strategy
by adjusting his play, either in the trunk or in the subgame.

Theorem 2 (unexploitable subgame re-solving). Assume we are given a two-
person zero-sum game, its subgame S rooted at node r and a fixed player i. Let
σi be the original strategy, σ∗i the re-computed strategy that only differs within S,
let σ−i = BR(σi) and σ∗−i = BR(σ∗i) be opponent’s corresponding best responses,
and let σ = (σi, σ−i) and σ∗ = (σ∗i , σ

∗
−i) be the resulting profiles.

If uri (σ) ≤ uri (σ
∗) (player i’s worst-case utility does not decrease in the sub-

game), then at every node h ∈ H \ S we also have uhi (σ) ≤ uhi (σ
∗) (player i’s

worst-case utilities outside the subgame do not decrease).

Proof. By definition, all best responses produce equal expected utilities, because
they all maximize opponent’s value. We can therefore do all calculations of util-
ities with respect to an arbitrary best response, e.g., the standard BR retrieved
by the backward induction1.

Let Th be the subtree rooted at h. If Th does not contain S (i.e., h 6v r),
then the best responses σ−i and σ∗−i are identical within Th, trivially implying
uhi (σ) = uhi (σ

∗). On the other hand, if Th does contain S, we will prove the
inequality by mathematical induction on the height of Th.

For the base case, the minimum-height tree containing S is the subgame
tree Tr itself, where the inequality holds by assumptions. For the inductive step,
let node h has k children h1, . . . hk, and without loss of generality Th1 contains S.
By the induction hypothesis, uh1i (σ) ≤ uh1i (σ∗). Because the subtrees of the
remaining children do not contain S (i.e., hj 6v r for j = 2, . . . , k), σ and σ∗ are

again identical there. Hence, u
hj
i (σ) = u

hj
i (σ∗) for j = 2, . . . , k, and we get

u
hj
i (σ) ≤ u

hj
i (σ∗), j = 1, . . . , k (A.2)

1Recursively select the action with the maximum utility, or any of them in case there is more
than one maximal.

16

If i is the acting player of h (i.e., p(h) = i), then by expressing utilities as
weighted sums of children’s utilities, we have

uhi (σ) =
∑

j=1,...,k

πσ(h, hj)u
hj
i (σ)

=
∑

j=1,...,k

πσ
∗
(h, hj)u

hj
i (σ)

(A.2)

≤
∑

j=1,...,k

πσ
∗
(h, hj)u

hj
i (σ∗) = uhi (σ

∗)

where the second equality holds because σ and σ∗ are identical outside the S. If
otherwise the opponent is acting (i.e., p(h) 6= i), he aims to choose an action with
minimal i’s utility (due to the zero-sum property):

uhi (σ) = min
j=1,...,k

u
hj
i (σ)

(A.2)

≤ min
j=1,...,k

u
hj
i (σ∗) = uhi (σ

∗)

So in both cases uhi (σ) ≤ uhi (σ
∗). �

Corollary 1. If a player employs a re-computed subgame strategy, the opponent
has no way to adjust his strategy, in order to increase his own overall utility.

Proof. Apply Theorem 2 to the root of the game (i.e., h := ∅). �

This means that we can deal with subgames of perfect-information games
separately, either by pre-computation or by dynamic re-solving. This approach
has met success, e.g., in Checkers with 5× 1020 states, which would be otherwise
intractable: Checkers has been solved both in terms of the game’s value and
an optimal NE strategy (Schaeffer et al. 2007).

Moreover, we may freely combine the newly found strategies with the original
ones: Theorem 1 guarantees they won’t be inferior, and Theorem 2 guarantees
their unexploitability by the opponent.

Note

The situation in imperfect-information setting is different: in fact,
Claim 3 (p. 50) proves that a re-solved subgame strategy can
indeed be exploited.

A.3 Working Examples

Few things are harder to put up with than
the annoyance of a good example.

Mark Twain

Subgame solutions are used particularly in perfect-information games with an ex-
tensive form such as Chess or Go. There, the endgame technique has been used
for long time as one way to defeat the colossal size of the game tree. In these

17

specific domains, endgame solving has additional significance, as it improves the
playing quality of agents as well.

In Chapter B, we will see the power of subgame pre-computation with the
example of Chess solutions to endings, stored in so-called endgame tablebases.
They are used in real world to aid professional Chess players, either in proving
their guaranteed victory or in analysing past games. Moreover, since tablebases
are mathematically proven to be optimal, they provide a glimpse into the world
of “perfect Chess” played by “all-knowing super-players”.

In contrast, Chapter C demonstrates how the in-play approach to endgames is
beneficial in the game of Go. Once reaching the late stage, the board is partitioned
into distinct parts. The corresponding (and provably independent) subgames are
re-solved “on the fly”, just to be afterwards combined using the combinatorial
game theory.

Chapter D reviews the modern approach to computer Go used by Google
DeepMind: their Go program AlphaGo combines Monte Carlo tree search with
neural networks to treat each position as if it were an endgame. This in particular
means that several moves into the future are simulated and the corresponding
part of the game tree is unrolled and possibly expanded. The rest of the tree is
discarded, effectively leaving only the relevant subgame for the oncoming play.

18

B. Chess Endgames

B.1 What are Endgames in Chess?

Studying openings is just memorizing moves and looking for traps.
Studying the endgame is Chess.

Josh Waitzkin

The notion of Chess endgame has no strict definition and differs by various au-
thors. The common sense says it begins when only few pieces are left. Here are
another examples of endgame definitions:

♠ positions in which each player has less than thirteen points in material (not
counting the king) (Speelman 1981, pp. 7–8)

♠ positions in which the king can be used actively (but there are some famous
exceptions to that) (Speelman 1981, pp. 7–8)

♠ positions having four or fewer pieces other than kings and pawns (Minev
2004, p. 5)

♠ positions without queens (Fine 1952),

♠ positions when each player has less than a queen plus rook in material

♠ positions when the player who is about to move can force a win or a draw
against any variation of moves (Portisch and Sárközy 1981)

♠ positions with these three characteristics (Alburt and Krogius 1999):

(a) endgames favor an aggressive king;

(b) passed pawns1 increase greatly in importance;

(c) Zugzwang2 is a factor in endgames (rarely in other stages of the game).

♠ Not Quite an Endgame (NQE) are positions where each player has at most
one piece (other than kings and pawns), and positions with more material
where each player has at most two pieces (Flear 2007, pp. 7–8)

Nevertheless, endgames have one thing in common: the complexity of the
board is often manageable by computers, making it feasible to compute the perfect
strategy.

1a pawn with no opposing pawns to prevent it from advancing to the 8th rank (i.e., there
are no opposing pawns in front of it either on the same file or on an adjacent file)

2a disadvantageous situation in Chess wherein one player has to make a move, even though
he would prefer to pass and not move

19

B.2 Endgame Tablebases

Studying the endgame is like cheating.

Michael Frannett

An endgame tablebase is a database of pre-calculated, exhaustively analyzed
Chess endgames stored as tables of positions together with the best consequent
moves. Upon reaching an arbitrary tablebase position, the database thus provides
an optimal strategy to play perfect Chess.

Tablebases are designed for a given set of pieces, e.g., KKing and QQueen
versus kKing (KQ-K). There are 3 basic steps in their process of creation:

1 Generation: Computer generates all legal positions for the given pieces. For
each position, the tablebase evaluates the situation separately for White-to-
move and Black-to-move.

In the case of KQ-K, the number of positions amounts to≈ 40000. Such number
is due to the symmetry argument (Levy and Newborn 2009): assume the k is
on square a1, b1, c1, d1, b2, c2, d2, c3, d3, or d4 (see diagram on Figure B.1).
Other squares are equivalent by symmetry of rotation or reflection.

Now there are ≈ 60 remaining squares for the K and at most 62 squares for
the Q. Therefore, there are at most 10× 60× 62 = 37200 KQ-K positions.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0j0Z0Z
3Z0jkZ0Z0
20jkj0Z0Z
1jkjkZ0Z0

a b c d e f g h

Figure B.1: Non-symmetric positions for k (Levy and Newborn 2009)

Adding one new piece into a pawnless endgame multiplies the count of po-
sitions by ≈ 60 (the approximate quantity of unoccupied positions). Pawns
would break the front-back and diagonal symmetries, because they care about
direction in their moves (Muller 2006).

2 Evaluation: The generated positions are evaluated using the backward induc-
tion3, which in Chess is also called the retrograde analysis. Each position is
evaluated as a win or a loss in a certain number of moves. At the end of the
retrograde analysis, positions which are not designated as wins or losses are
necessarily draws.

3backward reasoning applied in general game theory, in order to solve easier subgames

20

Invented by Richard Bellman in 1965, the retrograde analysis faithfully follows
the approach of dynamic programming (Bellman 1965):

(a) checkmated positions are determined in the beginning

(b) a position is winning in n + 1 moves if the player can reach a position
winning in n moves (more precisely, where the opponent loses in at most
n moves)

Positions are generated in the order of increasing depth to mate (DTM), i.e.,
the number of moves necessary to force a checkmate.

Alternatively, Tim Krabbé (Krabbé 2014) describes retrograde analysis by gen-
erating (from the perspective of White to mate):

(1) a database of all possible positions given the material (see the previous
step of Generation),

(2) a sub-database made of all positions where Black is mated,

(3) positions where White can reach mate (DTM = 1),

(4) positions where Black cannot prevent White giving mate next move,

(5) positions where White can always reach a position where Black cannot
prevent him from giving mate next move (DTM = 2).

(6) And so on, always a ply4 further away from mate until all positions con-
nected to mate are found.

By connecting these positions back to mate, the shortest path through the
database is formed. Such a path contains perfect play: White moves towards
the quickest mate, Black moves towards the slowest mate (which can be a draw
or even Black’s win).

3 Verification: The self-consistency of the tablebase is verified by indepen-
dently searching for each position (both Black and White to move). The score
of the best move has to be in line with the score in the table. As pinpointed
by (Bourzutschky 2006), this (seemingly optional) step is important:

This is a necessary and sufficient condition for tablebase accuracy.
Since the verification program was developed independently of the
generation program (I don’t even have the source code for the gen-
eration program) the likelihood of errors is pretty small.

Additionally, the computation of tablebases can be simplified if a priori in-
formation is provided. For instance, a position KRP(a2)-KBP(a3) with pawns
blocking each other (diagram in Figure B.2) reduces number of possibilities for
the pawns: instead of 48 × 47 = 2, 256 permutations for the pawns’ locations,
only single one needs to be considered (Herik, Herschberg, and Nakad 1987).

4In standard Chess terminology, one move consists of a turn by each player. Therefore a ply
in Chess is a half-move. Thus, after 20 moves in a Chess game, 40 plies have been completed:
20 by White and 20 by Black.

21

80Z0Z0Z0J
7S0Z0akZ0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3o0Z0Z0Z0
2PZ0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure B.2: KRP(a2)-KBP(a3) (Herik, Herschberg, and Nakad 1987)

B.3 Applications of Tablebases

Fratbot #1: Mate in 143 moves.
Fratbot #2: Oh, p**h. You win again!
Bender: Uh-oh, nerds!

Futurama, Season 1, Episode 11

♠ Complexity of solving Chess
Generalized Chess5 has been proven to be EXPTIME-complete (Fraenkel
and Lichtenstein 1981): it takes exponential time to determine the winner
of any position in the worst case. The result, however, gives no lower bound
on the amount of work required to solve regular 8× 8 Chess.

Conversely, there has been progress from the other side: as of 2012, all 7 and
fewer piece endgames (2 kings and up to 5 other pieces) have been solved
(Lomonosov Tablebases at http://tb7.Chessok.com/). Evidently, focusing
on endgame significantly decreases the complexity; tablebases thus provide
“powerful arsenal” to play perfect Chess endings.

♠ Effects on Chess theory
Tablebases have enabled significant breakthroughs in Chess endgame the-
ory. They caused major changes in the view on many endgame piece com-
binations, which were considered to result in a completely different way.
Some impressive examples (Wikipedia 2016):

♦ KQR-KQR endgames. Despite the equality of material, the player to
move wins in 67.74% of positions (Haworth 2001).

♦ In both KQR-KQR and KQQ-KQQ, the first player to check usually
wins (Nunn 2002, p. 379, 384).

♦ Many positions are winnable although at first sight they appear to be
non-winnable. For example, the position in Figure B.3 is a win for

5Chess played with an arbitrarily large number of pieces on an arbitrarily large chessboard

22

http://tb7.chessok.com/

Black in 154 moves (during which the white pawn is liquidated after
around eighty moves).

80Z0Z0Z0j
7Z0Z0A0Z0
60ZBZ0Z0Z
5Z0O0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0J0Z0Z
1Z0Z0ZqZ0

a b c d e f g h

Figure B.3: Black to move wins in 154 moves. (Wikipedia 2016)

♦ In the position of Figure B.4, the White pawn’s first move is at move
119 against optimal defense by Black:

80Z0Z0Z0Z
7Z0l0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0S0
40Z0Z0Z0Z
3Z0Z0Z0Zk
20ZPZ0ZRZ
1J0Z0Z0Z0

a b c d e f g h

Figure B.4: 119 moves to pawn’s first move (Wikipedia 2016)

♠ The longest checkmates
The researchers behind the Lomonosov tablebases discovered following end-
games, proved to be the longest 7-man checkmates (Lomonosov Tablebases
2014).

A pawnless endgamerRook, bBishop andnKnight against QQueen and
NKnight (Figure B.5) can be mated after stunning number of 545 moves!

It is the longest pawnless endgame possible with 7 pieces, others are far
behind. The closest endgame to this one by length (rRook, bBishop and

nKnight against QQueen and BBishop) is much less complex and won by
the side with more pieces, not the queen.

23

8QM0Z0ZnZ
7Z0Z0Z0s0
60Z0j0Z0Z
5Z0Z0Z0Z0
4bZ0J0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure B.5: KRBN-KQN: White mates in 545. (Lomonosov Tablebases 2014)

No human expert and not even the best Chess programs are able to find
the winning solution. Top Chess players admit that they fail to understand
the logic behind the initial 400 moves. There are even no captures until
move 523. The authors attribute this immense complexity to the balance
of piece values: 11 against 12, which is the minimal advantage.

One simple idea to create an even more complex endgame with pawns
is to build on the previous position and make use of pawns’ promotion.
The ending position ofrRook, bBishop and nKnight versus QQueen and
pPawn in Figure B.6 implements this idea:

80m0j0Z0Z
7Z0Z0Z0L0
60Z0Z0JPZ
5Z0Z0Z0Z0
40Z0Z0Z0a
3ZrZ0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure B.6: The longest 7-man checkmate: White forces a mate after 549 moves.
(Lomonosov Tablebases 2014)

White promotes his pPawn on the 6th move. Strangely, the promotion is
to NKnight instead of QQueen, so as to check the kKing and avoid losing
the QQueen (Figure B.7). Afterwards, the familiar KRBN-KQN ending
emerges and checkmate is forced by White in 544 moves.

24

80Z0Z0Z0L
7Z0Znj0O0
60Z0Z0a0Z
5Z0Z0Z0Z0
40s0Z0Z0Z
3Z0Z0ZKZ0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure B.7: Mate in 544: g8 = N (Lomonosov Tablebases 2014)

The KRBN-KQP(g6) position is the absolute winner of “the competition
for the longest 7-man checkmate”. It took 3 additional years to prove it,
because pawn endings also require minor endings (positions after captur-
ing pieces or promoting pawns), posing great challenges to computational
power, storage and data organization.

(Lomonosov Tablebases 2014) show another 6 monstrously huge endgames,
each with over 500 forced moves to checkmate. The authors remark on the
surprising gap in number of moves between the “hateful eight” KRBN-KQN
and derived positions, and the next (9th and 10th) longest 7-piece endgames:
KBNP-KBP and KNNP-KRB require only 346 moves to mate.

And what about the view on the longest 8-man endgames? The longest 6-
man mate takes 262 moves (KRN-KNN). One more piece (7-man endings)
doubles the maximum depth. Promisingly, the longest 8-man ending may
reveal a mate in over 1000 moves. However, there are much more positions
with relatively balanced strengths on both sides, making 8-man endgames
much richer but also more complicated. On top of that, the complexity
of computation is simply ludicrous: one would need about 10 PB of disk
space and 50 TB of RAM. As of 2014, only top 10 supercomputers can solve
this problem. (Lomonosov Tablebases 2014)

Note

These examples of enormously lengthy checkmates call into the
question the 50-move rule: a draw claimable by any player, if no
pawn has been moved and no capture has occurred in the last
50 moves. In situations with a checkmate forced after a huge yet
proven number of moves, a draw would be incorrectly announced,
in spite of a guaranteed victory.

25

C. Go Endgames Using Ad-Hoc
Mathematics

Combinatorial game theory captures an essential part of what Go
is about. I think that in one form or another, it will become a key
component of all successful future Go programs.1

Martin Müller 1995

The ancient game of Go offers astounding complexity: the board size, the quantity
of possible moves and the average game length produce an astronomical number
of valid positions.

More than in any other classic game, human intuition plays a vital role for
a successful play: Go offers great richness of geometrical, combinatorial and log-
ical structure, ready to be exploited by human players.

Quoting Google DeepMind, the game of Go is agreed to be “the most chal-
lenging of classic games for artificial intelligence owing to its enormous search
space and the difficulty of evaluating board positions and moves” (Silver et al.
2016).

Note

This chapter is based on the work of Martin Müller (Müller 1995)
submitted as a doctoral thesis at ETH Zürich. Since the focus
of our survey are imperfect-information games rather than Go,
this chapter mostly summarizes his work.

Martin Müller reported in 1995 that (at that time) Go programs “comprehend
only the most basic concepts of Go” and that “to make progress, [he feels] it is
necessary both to encode more Go-specific knowledge and to push forward the
application of theories such as combinatorial game theory to Go” (Müller 1995).
Here follows the overview and the results of his endeavors.

C.1 Why Focus on Go Endgames?

(Müller 1995) mentions the following advantages of Go endgames for research:

♠ The situation towards the end of game becomes clearer. This simplification
helps to study Go in an easier and more controlled way.

♠ Some endgame positions allows for an exact solution within reasonable time.

1This prognosis is in fact misaligned: AlphaGo, the most successful Go program designed so
far, uses almost no Go-specific knowledge. To compare Müller’s prediction with current trends,
consult the Note on page 34 and Chapter D.

26

♠ Understanding parts of board improves the understanding of the whole
game. Such partial evaluations aids various heuristics for solving the full
board. Humans reason similarly: by observing the score since the early
midgame, they decide based on such a heuristic analysis (Shukaku 1985).

♠ Methods and techniques for partitioning, searching and scoring during end-
game are frequently also applicable to the midgame and opening.

♠ Endgames provide a simplified, more manageable sub-domain allowing the
use of stronger theoretical models than the larger, more general problem.

C.2 Partitioning into (Sub)games and Playing

The Game-Sum

Divide et impera.

Philip II of Macedon

A typical Go position contains several subgames (local scenes) suitable for inde-
pendent analysis. Initially, the subgames have no influences on one another due
to their mutual distance. Nevertheless, as the game progresses, they gain the
crucial role thanks to a more distinct board partitioning via walls of safe stones:

Figure C.1: An immortal wall enabling an exact analysis during late end-
game (Müller 1995)

No move can have any influence across these “immortal” walls and significant
parts of the board belong with certainty to one of the players. The connected
components of remaining stones define local subgames independent from each
other.

In the opening and midgame, partitioning can be only approximate. On the
other hand, the partitioning in the endgame becomes more precise: the statuses
of all big groups have been settled, and the outlines of territories are clear. If
each local game is simple enough for complete analysis (such as in Figure C.1),
CGT can compute an optimal move for the full board position.

Now follows the general procedure of (Müller 1995) for playing Go as a sum
of local games:

27

1. Board partition: find safe blocks, safe territories, and local areas.

2. Generate local game trees in each area.

3. Evaluate local terminal positions.

4. Transform local game trees into combinatorial games and simplify them.

5. Find an optimal move in the CGT sum-game and play it.

Müller proposes heuristic algorithms for playing the entire game, and exact algo-
rithms for late endgame positions.

Undoubtedly, the task of solving endgames in 1995 (when computer Go was
at its infancy) already played an important role.

C.3 Combinatorial Game Theory for the Game

of Go

You get surreal numbers by playing games.
I used to feel guilty in Cambridge that I spent all day playing
games, while I was supposed to be doing mathematics. Then,
when I discovered surreal numbers, I realized that playing games
is math.

John Conway

(Müller 1995) suggests to replace the “standard model” of computer Go by a sum-
game model. Here follows some general benefits and problems of the sum-game
model for computer Go, as listed the work:

Benefits

+ suitability to the knowledge and style of Go programs (at that time): local
fighting, surrounding territories, etc.

+ reusing of local game analysis for a high-quality game play

+ simplifying move generation and evaluation of positions

+ translating Go terms into the theory, without need for separate programming

+ evaluating opponent’s endgame moves

+ assessing sufficiently good moves even with a reduced local game database

+ computing the game-theoretic value of a position long before the end

+ opportunities for parallelism: independent local searches, evaluations and op-
erations on mathematical games, etc.

+ perfect computer play in late endgame

28

Obstacles

- required accurate board partition and dependency recognition

- common issues of selective search: misleading evaluation due to missing crucial
moves in complicated games

- the lack of long-range full-board planning: “This is probably not a big issue
until programs reach amateur Dan or even professional level.” (Müller 1995)

Additionally, a strict endgame analysis is impossible, when any of these limits
is reached:

- partition: There is insufficient amount of blocks that can be proven safe. Some
of the areas are hence too large for the complete search.

- summation: No move with dominating incentive2 exists, and both summing
and partial search would take too long.

- Ko: CGT relies on the independence of local subgames. In the case of Ko, the
independence is broken: a locally bad move may be globally best if it serves as
a Ko threat (recall Section 0.3). Müller mentioned in 1995 there was ongoing
research to generalize the theory for handling Kos.

- unneccessary complexity in “straightforward” situations: In cases where
the focus of play is straightforward (i.e., only one local situation is relevant),
CGT introduces additional complexity. It investigates moves for both players
in this and every other position.

C.4 Board Partition and Subgame Dependen-

cies

Independence? That’s middle class blasphemy. We are all depen-
dent on one another, every soul of us on Earth.

George Bernard Shaw

In addition, (Müller 1995) mentions several further obstacles of the sum-game
model, caused by the heuristic board partition:

- the impossibility of a perfect precise split: During the opening and mid-
game, there are almost no surrounded spaces. Moreover, the surrounding stones
would not be invulnerable yet. Heuristics is needed for board partition to split
the imperfectly surrounded areas.

- the infeasibility of exhaustive search in still large subgames: The pro-
gram is obliged to give a move in few seconds or minutes. However, there still
remain areas intractable for an exhaustive search.

2the improvement made by moving in a game – Müller 1995, Chapter 3, p. 38

29

In such subgames, Müller employs selective search method. He limits the num-
ber of generated moves and stops the search before reaching a terminal position.
For each local game, nodes to expand need to be decided and expert modules
for search and evaluation need to be selected. A post-processing stage handles
detected dependencies between games.

- the dependencies between the resulting subgames, which arise with
the previously mentioned heuristics: The effect of such dependencies dif-
fers widely. Often it is so small that independence is a useful approximation.
However, in cases when a move works as a double threat, dependency analysis
is crucial.

Trivial strategies to overcome dependencies involve:

♦ ignoring the dependency, as if the games were independent;

♦ proving that the dependency does not affect the value of the sum, or the
play of the sum game;

♦ merging mutually dependent local games, then re-search the combined
game, possibly using previously generated information on single games;

♦ analyzing the interaction between local games, then use a specialized the-
ory to compute the joint game value;

Hence, the sum-game model makes sense mostly during the endgame phase.
This general principle is as well applicable in poker: we wait until the late stage
of the game, when there is more impact in re-solving the reached endgames.

C.5 Local Search and Evaluation in the End-

game

True genius resides in the capacity for evaluation of uncertain,
hazardous, and conflicting information.

Winston Churchill

Once the board is partitioned, the algorithm of (Müller 1995) performs following
steps to convert a Go endgame into a combinatorial game:

1. Generate local game trees: all legal moves are generated from both players’
point of view, with exceptions of:

(a) pruning rules3, e.g., pruning dominated subgame trees: the evaluation
of nodes allows for pruning moves dominated by other moves.

Moves with a dominating alternative are labelled as locally bad moves.

(b) termination rules4 for static evaluation of a position, without further
tree expansion

3analogous to policy networks of AlphaGo in Chapter D.
4analogous to value network of AlphaGo in Chapter D.

30

2. Score local terminal positions:

(a) scoring (Section 0.3) comes in two widely accepted variants:

♦ Chinese variant, which counts stones and empty points belonging to
either color,

♦ Japanese variant, which counts territory and prisoners.

Both variants have straightforward implementation because safe stones,
dead stones, territories and neutral points are known exactly in the
endgame.

(b) terminal positions can be recognized by

♦ no more legal moves,

♦ no more good moves,

♦ the value of position already known from the transposition table,
pattern, or local position database.

A position is additionally considered terminal, once we can assess its
value from another source. Such a value can be any value in the sense
of mathematical games.

3. Evaluate local games as mathematical games. Explicitly, evaluate terminal
positions, and back up the values in the tree, resulting in a mathematical-
game evaluation of each node.

Even though the program reaches a solved position, (Müller 1995) notes
that a “suicidal” opponent may later cause great troubles, by endangering
his immortal stones. Such an act would violate the assumptions on board
partitioning and give rise to new unexpected positions with a rather com-
plicated optimal play.

Figure C.2: Local game tree with evaluation of terminal nodes (Müller 1995)

4. Select an option in the resulting (abstract) sum game.

5. Translate the chosen option from the abstract game into a corresponding
move in Go. This move is taken as the first move with sufficient incentive.

31

C.6 Storing Search Results into Database

I’m blessed with very fast memorization skills,
so I don’t have to read it too far in advance.

Jaimie Alexander

Search and analysis produce the complete description of possible endgame plays,
facilitating the perfect strategy. The results are stored in a database of local po-
sitions. Local subgames during a live play are then matched one-to-one to a set
of database positions. The value of a full board position is the sum of local posi-
tion values and the algorithm for sum-game evaluation selects the best available
response.

A version with lower memory requirements is implemented, too. This is
achieved by saving only a selection of positions, and re-doing the search, in case
the subgame is missing in the database.

An important question is what to store. Table C.1 gives some possible answers:

Type of database Content
Full → every position discovered during ex-

haustive search
Color-complete (Black or White) → every position reachable by non-

dominated moves of the color and ar-
bitrary opponent’s moves (pruned bad
moves of the color)

Optimal → at least one position corresponding
to every non-dominated option of every
reachable position (guaranteed optimal
play from every position in database)

Sufficiently good → guaranteed optimal score from
a starting position (might fail to exploit
some opponent mistakes)

Table C.1: Possible database variants of local games (Müller 1995)

One needs to make a trade-off between re-computation time and storage space.
A sensible solution is to store only complicated moves in the database, and re-
calculate the rest when necessary. It is a good idea to save only the information
whether a move is locally good or bad, but discard all refutations5. Such a type
of database is robust against a good opponent; however, it suffers from a play
of a locally bad opponent. This rare situation would call for the re-computation
of a subtree in order to find a refutation.

The number of possible moves in an n-point area is approximately 2n (n for
each player), and such a play generates an n− 1 point area. Thus, the size of the
game tree is approximately 2n·2(n−1)· . . .·2 = 2nn! nodes. Such a combinatorial
explosion makes even fairly small endgames prohibitively expensive.

5trees proving that bad moves are inferior

32

Müller overcomes this hardness with a transposition table. A transposition
table detects identical board positions, reducing the size of the search space from
≈ 2nn! to 3n states (see the comparison in Table C.2).

n 2nn! 3n

1 2 3
2 8 9
3 48 27
4 384 81
5 3840 243
6 46080 729
7 645120 2187
8 10321920 6561
9 185794560 19683

10 3715891200 59049

Table C.2: Reduction of search space by transposition table

C.7 Pattern Learning

To understand is to perceive patterns.

Isaiah Berlin

Pattern recognition is a key component of the AlphaGo program (Chapter D).
Arguably, the program’s success may also be attributed to learning Go patterns
from human expert plays.

For comparison, (Müller 1995) hails computer Go as a vehicle for research
in visual perception, machine learning and neural networks (advocating to En-
derton 1991; Schraudolph, Dayan, and Sejnowski 1994; Stoutamire 1991; Wilcox
1979).

Being introduced just and only to Go rules, learning programs can typically
pick up basic Go principles, such as saving a stone from capture, and familiarize
themselves with low-level game concepts. However, these concepts and principles
have already been integrated into other far superior expert-based programs.

Neural networks are therefore more adapt at playing locally good shapes, but
possess no idea when to play it (this part has changed thanks to AlphaGo). These
systems are vulnerable to other Go agents with better knowledge of tactics.

Conclusively, (Müller 1995) suggests pattern matching as a promising means
for advancements in computer Go.

When patterns are broken, new worlds emerge.

Tuli Kupferberg

33

C.8 Contributions of Combinatorial Game The-

ory to Go Endgames

You can retire from a job, but don’t ever retire from making
extremely meaningful contributions in life.

Stephen Covey

Müller’s doctoral thesis acclaims these contributions to computer science:

♠ “Scientists are fascinated by problems which can be stated simply, yet are
hard to solve. Computer Go is a prime example. We have brought the
divide-and-conquer approach, a fundamental paradigm of computer science,
to bear on computer Go.”

♠ “The application of a sophisticated mathematical theory to computer Go
provides an example of algorithms for a nontrivial decomposition of a com-
plex problem.”

These are contributions specific to computer Go:

♠ “We have implemented a late endgame player, a niche where program play
surpasses human play in both speed and exactness. We did this by apply-
ing concepts from CGT to Go. The program plays a wide variety of‘late
endgame positions perfectly.”

♠ “We have developed algorithms for board partition and dependency analy-
sis.”

In conclusion, the work employs a technique of applying an elaborate mathemati-
cal theory (CGT) to deal with endgames. In particular, CGT is used to “connect”
individual relevant subgames, which may be solved independently.

As we will see later, the situation in the case of Poker is slightly more delicate:
the imperfect-information property prevents us from using an immediate divide-
and-conquer approach. Instead, we will augment the information, by saturation
with appropriate game states (Definition 3 in Section E.5).

Note

It is also interesting to compare the method of (Müller 1995) with
the modern approach of AlphaGo.

The ad-hoc Go-specific knowledge is replaced with general-
learning neural networks and the probabilistic Monte Carlo Tree
Search algorithm. Such a combination has the capability to sur-
pass professional human players at the highest ranks.

What’s more, this solution can be adapted to other games
without substantial modifications. With enough data, the system
can be trained without any need to imbue it with game-specific
knowledge. Follow Chapter D for more details.

34

D. Go Endgames Using Neural
Networks

Creativity involves breaking out of established patterns in order
to look at things in a different way.

Edward de Bono

As of today, over 20 years have passed since Müller’s work on computer Go
(Chapter C). DeepMind, a London-based AI start-up recently acquired by Google,
has developed the strongest computer Go program so far: AlphaGo.

Note

This chapter is based on the article “Mastering the game of Go
with deep neural networks and tree search” (Silver et al. 2016),
which documents the internals of AlphaGo.

For more details, also consult my presentations on AlphaGo
given at:

♠ Spring School of Combinatorics 2016 (Charles University)
http://www.slideshare.net/KarelHa1/mastering-the

-game-of-go-with-deep-neural-networks-and-tree

-search-presentation

♠ Optimization Seminar (Charles University)
http://www.slideshare.net/KarelHa1/alphago

-mastering-the-game-of-go-with-deep-neural

-networks-and-tree-search

♠ Distributed Computing group (ETH Zürich)
http://www.slideshare.net/KarelHa1/alphago

-for-disco-group-of-eth-zurich

D.1 Game-Tree Search

There are more possible positions in Go than there are atoms
in the universe. That makes Go a googol [10100] times more com-
plex than Chess.

Google DeepMind

Optimal value v∗(s) determines the outcome of the game from every board posi-
tion s under perfect play by all players. This value can be computed by recur-
sively traversing the search tree containing approximately bd possible sequences
of moves, where b is the breadth of game (number of legal moves per position)
and d is its depth (game length).

In the case of Chess, these are b ≈ 35 and d ≈ 80, whereas Go has b ≈ 250
and d ≈ 150. This amounts to a terrifying overnumerousness: there are more Go

35

http://www.slideshare.net/KarelHa1/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search-presentation
http://www.slideshare.net/KarelHa1/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search-presentation
http://www.slideshare.net/KarelHa1/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search-presentation
http://www.slideshare.net/KarelHa1/alphago-mastering-the-game-of-go-with-deep-neural-networks-and-tree-search
http://www.slideshare.net/KarelHa1/alphago-mastering-the-game-of-go-with-deep-neural-networks-and-tree-search
http://www.slideshare.net/KarelHa1/alphago-mastering-the-game-of-go-with-deep-neural-networks-and-tree-search
http://www.slideshare.net/KarelHa1/alphago-for-disco-group-of-eth-zurich
http://www.slideshare.net/KarelHa1/alphago-for-disco-group-of-eth-zurich
https://deepmind.com/alpha-go.html

positions than atoms in the observable Universe. Therefore, exhaustive search is
deemed intractable.

How to handle the size of the game tree?

♠ For the breadth, we train a neural network to select moves.

♠ For the depth, we train a neural network to evaluate the current position.

♠ For the tree traverse, we use Monte Carlo tree search method.

Monte Carlo tree search (MCTS) is a Monte Carlo heuristic version
of the classical tree search. However, instead of traversing the entire game tree,
the MCTS selects the most promising moves, expanding the search tree based
on random sampling.

In each iteration, the game is played-out to the very end, by choosing moves
at random. The final outcome of each playout is then used to accordingly weigh
the nodes in the game tree. Thus, better nodes are more likely to be chosen in
future playouts.

Figure D.1: The scheme of MCTS

D.2 Neural networks

Your brain does not manufacture thoughts.
Your thoughts shape neural networks.

Deepak Chopra

Inspired by biological neural networks, an artificial neural network (ANN) is
a network of interconnected nodes that make up a model (see Figure D.2).

Figure D.2: A shallow neural network with 3 layers

36

We can think of ANNs as statistical learning models that are used to approx-
imate functions with a large number of inputs. Neural networks are typically
used when the amount of inputs is far too large for standard machine learning
approaches.

A deep neural network (DNN) is a term for any neural network with many
hidden layers (but most commonly we use it for convolutional neural networks).
It can model complex non-linear relationships in domains such as speech, images,
videos, board positions in Go, etc.

A convolutional neural network (CNN) is a neural network suitable for
high-dimensional inputs (e.g., many pixels in an image). CNNs are frequently
used in computer vision, e.g., for identifying objects in an image, face detection
in photos, etc. They are resistant to expectable transformations of input, such
as changes in illumination or translations of objects in a picture.

D.3 Training Pipeline of Neural Networks

Pattern recognition and association make up the core of our
thought. These activities involve millions of operations carried
out in parallel, outside the field of our consciousness. If AI ap-
peared to hit a brick wall after a few quick victories, it did so
owing to its inability to emulate these processes.

Daniel Crevier

AlphaGo employs two kinds of deep CNNs—a policy network (for move selection)
and a value network (for board evaluation):

Figure D.3: Comparison between policy and value network (Silver et al. 2016)

37

The following figure outlines the entire training process of AlphaGo’s networks.

Figure D.4: Training the neural networks of AlphaGo: the pipeline and the ar-
chitecture (Silver et al. 2016)

Rollout policy pπ is a CNN rapidly sampling actions during a rollout (a fast-
forward simulation from a position to the end of a game). It predicts expert
human moves less accurately but much faster than pσ (below). The output is
a probability distribution over all moves.

Policy network is a move-selecting CNN. It addresses the problem of the
game-tree breadth. There are two flavors of these networks:

♠ SL policy network pσ is trained by supervised learning to predict expert
human moves.

♠ RL policy network pρ is trained by reinforcement learning to win in
the games of self-play.

Value network vθ is a CNN evaluating board positions, so as to address
the problem of the game-tree depth. It is trained by regression to predict the
outcome in positions of the self-played games.

D.4 Main Algorithm of AlphaGo

Computers are good at following instructions,
but not at reading your mind.

Donald Knuth

Finally, the neural networks are combined with MCTS into the main algorithm.
During the play, AlphaGo simulates up to 100 possible continuations per each

move by selecting the most promising actions and following them. This way, it
descends the game-tree down to a depth given by a parameter. At that point,
leaf nodes are evaluated in two ways:

(1) using the dedicated value network vθ,

(2) simulating the self-play until the terminal positions, using the fast rollout
policy pπ.

38

The two are mixed into the final value of the leaf node.
Once all simulations for a single round are finished, all new values are back-

propagated to the root, thus updating necessary variables on the way up.
For more details, consult (Silver et al. 2016) or my mentioned presentations.

Note

Main algorithm demonstrates the connection to our theme of end-
games : the simulations may be viewed as “solving endgames”. In
particular, the pπ rollouts somehow remind of exhaustive search
for the game value during the late stage of the play. In this
sense, the approaches of AlphaGo and endgame computation bear
a striking similarity.

On the other hand, AlphaGo performs the same simulation
algorithm during the whole game: from an empty board until
the final move. Therefore, it would be imprecise to talk about
“endgame”.

D.5 Playing Strength

I know AlphaGo is a computer, but if no one told me, maybe
I would think the player was a little strange, but a very strong
player, a real person.

Fan Hui

In order to assess the playing strength of AlphaGo, DeepMind has organized
an internal tournament against other Go programs.1 Figure D.5 displays the
outcome of the tournament:

Figure D.5: Tournament with other programs and Fan Hui (Silver et al. 2016)

The 95%-confidence intervals were used. Programs were allowed approxi-
mately 5 seconds of computational time per move, and some of them (with faded

1CrazyStone and Zen are the strongest commercial programs, whereas Pachi and Fuego are
strongest among the open-source ones.

39

tops of bars) also later played with four handicap stones (i.e., free extra moves
at the beginning of each game) against all others.

The Elo scale was used to measure the playing strength: a 230-point gap equals
to a 79%-probability of winning, as well corresponding to about one amateur dan
rank difference on KGS Go Server2. The ranks achieved by programs on KGS
are shown on the right side.

Finally, AlphaGo played two spectacular duels against professional human
players:

Fan Hui

♠ professional 2nd dan

♠ European Go Champion in 2013, 2014 and 2015

♠ European Professional Go Champion in 2016

→ AlphaGo won 5:0 in a formal match in October 2015, becoming the
first program to ever beat a professional Go player in an even game.3

Lee Sedol “The Strong Stone”

♠ professional 9th dan

♠ the 2nd in international titles

♠ the 5th youngest (12 years 4 months) to become a professional Go
player in South Korean history

♠ the top Go player in the world over the past decade

♠ Legendary Lee Sedol would win 97 out of 100 games against Fan Hui.

→ AlphaGo won 4:1 in March 2016. Each game was won by resignation.

The winner of the match was awarded the prize of $1,000,000. Google
DeepMind donated this money to charities, including UNICEF, and various
Go organisations.

Lee Sedol received $170,000 (i.e., $150,000 for participation in all games
and extra $20,000 for every victory).

I have never been so much celebrated and
praised for winning one single game.

Lee Sedol

Note

Following from this, computers seem to have reached the “super-
human” level of expertise and they now appear to be superior to
humans in the game of Go.

2https://www.gokgs.com/
3https://deepmind.com/alpha-go.html

40

https://www.gokgs.com/
https://deepmind.com/alpha-go.html

Part II

Imperfectness
of Imperfect-Information

Endgames

41

E. Setting the Scene for
Imperfect Information

Intelligence is a game of imperfect information. We can guess our
opponent’s moves, but we can’t be sure until the game is over.

Khalid Muhammad

So far we were dealing with perfect-information games: neither chance nor hid-
den information were involved in Chess or Go. Any player can theoretically
(with unlimited computational resources and/or infinite amount of time) look
ahead, investigate all possible continuations, pick the best one and play perfectly.
Of course in case of Chess and Go, an exhaustive search may easily take longer
than the age of the Universe. Nevertheless, there are no mathematical limitations
preventing such analysis.

Imperfect-information games, on the other hand, need to also include private
information, e.g., opponent’s cards in Poker. We cannot (and should not) play
differently in equivalent states, whose indistinguishability is caused by private
information of our opponent. Such missing knowledge is captured in the concept
of an information set.

E.1 Extensive Form for Imperfect-Information

Education is only a ladder to gather fruit from
the tree of knowledge, not the fruit itself.

Albert Einstein

Recall extensive forms for perfect-information games from Section A.1. An exten-
sive form (for an imperfect-information game) is the usual extensive form with
additional:

♠ chance player c (e. g. a dice, the card dealer, the nature etc.). The set
of players is thus P ∪ {c} and the probability corresponding to a strategy
profile σ includes the chance:

πσ(h) =
∏
i∈P∪c

πσi (h)

♠ function fc determining the probability distribution over actions A(h) for
every chance node h (i.e., p(h) = c).

♠ partition Ii of nodes {h ∈ H : p(h) = i}, which is called the information
partition of player i. Its element I ∈ Ii is an information set of player i.
By I(h) ∈ Ii (with p(h) = i) we denote the information set containing h,
and by Z(I) = {z ∈ Z|z A h, h ∈ I} the set of terminal nodes reachable
from I.

42

An information set represents grouping of histories that are indistinguish-
able from i’s point of view. In the game of poker, for example, this might
be because of opponents’ hidden cards.

1

L 2

l 1
S

2 2

T
0 3

r 1
S

5 6

T
6 1

R
3 3

Figure E.1: An imperfect-information game tree with information sets (Nisan
et al. 2007, p. 67)

There are further notions related to EFGs:

♠ A (behavior) strategy σi of player i gives a probability distribution over
A(I) at every I ∈ Ii, and πσ(I, a) is the probability of action a at the
information set I. Again, Σi denotes the set of all possible strategies for
player i.

♠ σ|I→a denotes the strategy identical to σ with the only one exception: the
action a is always played at the information set I.

♠ The counterfactual value vσi (I) is a “what-if” value in a hypothetical sce-
nario, where one had taken the actions to arrive at I.

Formally, it is the expected utility provided that the information set I
is reached and all players play according to strategy σ with exception of
player i, who plays to reach I:

vσi (I) =
∑

h∈I, h′∈Z

πσ−i(h)πσ(h, h′)ui(h
′)

πσ−i(I)

Likewise, for a ∈ A(I)

vσi (I, a) =
∑

h∈I, h′∈Z

πσ−i(h)πσ(h · a, h′)ui(h′)
πσ−i(I)

♠ A counterfactual best response CBRi(σ−i) (briefly CBRi(σ) or CBR(σ−i))
of player i is a strategy maximizing the counterfactual value at each infor-
mation set I ∈ Ii:

πσ(I, a) ≥ 0 ⇐⇒ vσi (I, a) = max
a′∈A(I)

vσi (I, a′)

Note that CBRi(σ) is always a best response BRi(σ), but the reverse im-
plication does not need to hold: a best response σ can select an arbitrary
action in an unreachable information set I (the one where πσ(I) = 0). Such
best responses are in general not counterfactual best responses.

43

♠ For the sake of notation’s simplicity, we will define a counterfactual best-
response value (CBV) as the counterfactual value for the strategy, where
player i plays according CBRi(σ−i) rather than the original σ. Formally, it
is

CBV σ
i (I) = v

(σ−i,CBRi(σ−i))
i (I)

♠ An EFG with (non-singleton) information sets can have a perfect recall :
any two states from the same information set I ∈ Ii share the same history
of past actions and same passed information sets of i.

Games without this property have a imperfect recall : at some stage of the
game a player forgets what happened so far, either some actions taken or
some information sets reached.

♠ In perfect-recall games, z[I] denotes z’s unique ancestor h that lies in I
(i.e., h ∈ I and h v z).

E.2 Sequence Form
Error is ever the sequence of haste.

Duke of Wellington
Note

This section is based on Nisan et al. 2007, Section 3.10.

One possible way (Nisan et al. 2007, pp. 73–74) to solve EFGs is by solving a cor-
responding linear program (LP) called the strategic form. However, the number
of pure strategies (over which players are mixing) is generally exponential, as we
need to combine all action choices across all information sets (see Figure E.2). The
size of the strategic-form LP increases rapidly, deeming the problem intractable.

1

L 2

l 1
S

2 2

T
0 3

r 1
S

5 6

T
6 1

R
3 3

Figure E.2: An EFG and its corresponding strategic-form pay-off matrices.
(Nisan et al. 2007, p. 67)

A possible solution is to use the sequence form (Nisan et al. 2007, pp. 70–
73). This form of LP has variables just for sequences of actions. Only sequences
from the same root-to-leaf paths are then combined:

1

L 2

l 1
S

2 2

T
0 3

r 1
S

5 6

T
6 1

R
3 3

Figure E.3: A game with sequences S1 = {∅, L,R, LS, LT} and S2 = {∅, l, r}
and its corresponding sequence-form pay-off matrices. (Nisan et al. 2007, p. 67)

44

♠ Sequence si(I) describes player i’s history of actions, i.e., edges passed along
the path from the root to information set I ∈ Ii.
Set Si denotes the set of all i’s valid sequences: every non-empty sequence
s ∈ Si is uniquely determined by its last action a ∈ AI at an information
set I ∈ Ii. We can characterize

Si = {∅} ∪ {si(I) · a | I ∈ Ii, a ∈ A(I)}

which leads to the linear size |Si| = 1 +
∑

I∈Ii |A(I)|.

♠ The realization probability (of a sequence s ∈ Si under a strategy σi ∈ Σi)
is πσi [s] =

∏
a∈s π

σi(a).

♠ Recall that a mixed strategy µ1 is a probability distribution over (all) pure
strategies of player 1. A realization plan1 x : S1 → R expresses the proba-
bility of following sequence s under a mixed strategy µ1:

x(s) =
∑

pure strategy σ

µ1(σ) πσ[s]

If µ1 is a behavior strategy and sequence s ends in a state h, we directly
get x(s) = πµ11 (h).

E.3 Solving Games with Linear Programming

If you optimize everything, you will always be unhappy.

Donald Knuth

Note

This section is based on Nisan et al. 2007, Section 3.11.

Realization plans play the role of variables in sequence-form LP formulations. We
think of realization plans as vectors x := (xs)s∈S1 ∈ R|S1| and y := (ys)s∈S2 ∈ R|S2|.
Not all vectors x ≥ 0, y ≥ 0 can be realization plans, though. We need to add
two more types of LP constraints.

The first kind of necessary conditions states that the probability of a sequence
can be decomposed into probabilities of its immediate continuations:

xs1(I) =
∑
a∈A(I)

xs1(I·a), I ∈ I1,

ys2(I′) =
∑

a′∈A(I′)

ys2(I′·a′), I ′ ∈ I2.
(E.1)

The second kind of conditions ensures that the probabilities in realization plans
sum to 1:

x∅ = 1, y∅ = 1 (E.2)

1For player 2, a realization plan y : S2 → R would be defined similarly.

45

Interestingly, the conditions (E.1), (E.2) are also sufficient, giving a full charac-
terization for realization plans (Nisan et al. 2007, Proposition 3.10, p. 71).

Now we re-formulate (E.1) and (E.2) using sequence constraint matrices :

Ex = e, x ≥ 0 and Fy = f, y ≥ 0. (E.3)

The first player gets a sequence constraint matrix E ∈ {−1, 0, 1}(1+|I1|)×|S1|, where
columns are indexed by sequences from s ∈ S1 and rows by equations of (E.1)
and (E.2). Specifically, the first row of Ex = e has form

x∅ = 1,

and the row corresponding to an information set I ∈ I1 looks like

xs1(I) −
∑
a∈A(I)

xs1(I·a) = 0.

The sequence constraint vector e on the right-hand side is thus (1, 0, . . . , 0)>.
Matrix E is sparse as it has only O(|I1| +

∑
I∈Ii |A(I)|) non-zero elements. For

F ∈ {−1, 0, 1}(1+|I2|)×|S2| and f = (1, 0, . . . , 0)>, constraints Fy = f are analo-
gous.

The sequence-form payoff matrix A ∈ R|S1|×|S2| of player 1 is described for
every sequence s ∈ S1 and s′ ∈ S2 by

As,s′ =
∑
z∈Z

s1(z)=s, s2(z)=s′

πc(z) u1(z),

where πc(z) is the contribution of the chance to the probability, along the path
to leaf z. The sequence-form payoff matrix of player 2 is −A from the zero-sum
property. Because the probability of reaching any leaf z can be decomposed as
πσ(z) = πσ1 [s1(z)] · πσ2 [s2(z)] · πc(z), we can write player 1’s utility as

u1(σ) =
∑
z∈Z

πσ1 [s1(z)]·πσ2 [s2(z)]·πc(z)·u1(z) =
∑
z∈Z

xs1(z)ys2(z)πc(z)u1(z) = x>Ay

So a best-response realization plan x against arbitrary realization plan y maxi-
mizes the utility u1(σ) = x>(Ay). By (E.3), we can find such x as a solution to
the following LP (parametrized by y):

max (Ay)>x

Ex = e

x ≥ 0.

(E.4)

This LP has a finite optimal value, because it is

(a) feasible: Any valid realization plan x will do.

(b) bounded : Since x expresses probabilities, 0 ≤ x ≤ 1 = (1, . . . , 1)>, giving
an upper bound (Ay)>x ≤ |Ay|> 1.

46

The corresponding dual LP with a vector of dual variables u ∈ R1+|I1|:

min e>u

E>u ≥ Ay.
(E.5)

is therefore also feasible, bounded and has the equal optimal value by the strong
duality theorem. In a zero-sum game, when player 1 wants to maximize his utility
x>Ay = u>e, his opponent wants to minimize it by his choice of a realization
plan y. Realization plans are characterized by constraints of (E.3). All of this
leads to this LP formulation

min
u,y

e>u

E>u− Ay ≥ 0

Fy = f

y ≥ 0

(E.6)

with such a dual LP

max
v,x

f>v

Ex = e

F>v − A>x ≤ 0

x ≥ 0,

(E.7)

where v is the vector of (negative) CBVs for player 2 (Nisan et al. 2007; Čermák,
Bošanský, and Lisý 2014). The (E.7) is the standard sequence-form LP formula-
tion used for solving EFGs.

Notably, E, F and A are sparse matrices, with the number of variables and
non-zero values linear in the size of the game tree. So zero-sum EFGs can be
solved by (dual) linear programming for the linear-sized LPs (E.7).

E.4 Solving Games with Learning Algorithms

Perfecting oneself is as much unlearning as it is learning.

Edsger Dijkstra

In contrast to solving games by linear programming, we can approximate Nash
equilibrium of EFGs using various learning algorithms :

(Vanilla) counterfactual regret minimization (CFR) is a self-playing al-
gorithm based on regret matching. In the learning phase, it improves itself
by summing the total amount of counterfactual regret (a regret related to
counterfactual values), for every action at each decision point. The average
strategy over all iterations converges towards a NE for the game, and it is
thus used as the final strategy during the play. (Zinkevich et al. 2007)

Monte Carlo counterfactual regret minimization (MCCFR) is a Monte
Carlo version of CFR. Rather than traversing the full game tree, it proba-
bilistically samples actions to speed up computation per learning iteration.

47

The partial tree exploration is nevertheless compensated by weighting re-
grets with appropriate probabilities. (Johanson et al. 2012)

CFR+ is a new CFR-type algorithm based on regret-matching+. A cumulative
counterfactual regret+ (max(·, 0)) is used instead. It typically outperforms
the previously known algorithms by an order of magnitude or more in terms
of computation time, while also potentially requiring less memory. Another
advantage is that many of the cumulative regret values are zero, whereas
in CFR, negative regret continues to accumulate indefinitely. This reduces
the entropy of the data needed during the computation. (Tammelin et al.
2015)

These iterative methods run faster than methods with sequence-form LPs, and
use significantly less memory. Moreover, they guarantee a convergence to Nash
equilibrium in limit (Zinkevich et al. 2007, Theorem 4). Therefore, they cur-
rently prevail as dominant solutions, and are standardly used for solving large
imperfect-information games. For a detailed overview, study also (Nisan et al.
2007, Chapter 4) or (Bošanský 2013).

E.5 Subgames Revisited

When you think you can’t, revisit a previous triumph.

Jack Canfield

So far, the information sets have grouped only those states where the player was
the acting player. For subgames, it is also necessary to include the states that are
indistinguishable from the point of view of other players. Therefore, we define
the augmented information sets (Burch, Johanson, and Bowling 2014):

Definition 3 (augmented information set). For any player i ∈ P , let Hi(h)
be the sequence of player i’s information sets reached by player i on the path
to h, and the actions taken by player i.

Then augmented information set Ii(h) is defined by the following charac-
terization:

Ii(h) = Ii(h
′) ⇐⇒ Hi(h) = Hi(h

′)

for any two states h, h′ ∈ H.

At this point, we may finally define the notion of a subgame (Burch, Johanson,
and Bowling 2014):

Definition 4 (subgame). An (imperfect-information) subgame is a forest
of subtrees, closed under both the descendant relation and membership within
augmented information sets for any player.

Consult Section F.2 for an illustrative example.

48

F. Shortcomings of the Imperfect
Information for Subgames

Our shortcomings are the eyes with which we see the ideal.

Friedrich Nietzsche

In this chapter we will notice how the situation for subgames becomes more
delicate within the imperfect-information setting. A re-solved subgame strategy
can end up being more exploitable: even if we play a best response (BR) in the
subgame, we assume the fixed original strategy in the trunk of the game
tree.

This is, however, not true since the opponent can distinguish the states within
our own information set, which—for us—are indistinguishable. He can therefore
freely change his behavior in the trunk and manipulate against our best response
for his own benefit. For more illustration, study the example in Section F.1 (taken
from Burch, Johanson, and Bowling 2014).

F.1 An Intricate Example

It’s very simple. Scissors cuts paper. Paper covers rock. Rock
crushes lizard. Lizard poisons Spock. Spock smashes scissors.
Scissors decapitates lizard. Lizard eats paper. Paper disproves
Spock. Spock vaporizes rock. And as it always has, rock crushes
scissors.

Sheldon Cooper (The Big Bang Theory), Season 2, Episode 8

To see the difficulties of combining a re-solved subgame strategy with an original
trunk strategy, we will consider RPS as our running example:

1

rock 2R

rock draw
0 0

paper 2 wins
-1 1

scissors 1 wins
1 -1

paper 2P

rock 1 wins
1 -1

paper draw
0 0

scissors 2 wins
-1 1

scissors 2S

rock 2 wins
-1 1

paper 1 wins
1 -1

scissors draw
0 0

Figure F.1: Extensive form of RPS: Scissors cuts paper. Paper covers rock. Rock
crushes scissors. (Burch, Johanson, and Bowling 2014; Ganzfried and Sandholm
2015)

49

Figure F.1 displays the extensive form of RPS: rather than showing the choices
simultaneously, the two players take turns in picking their action. However, their
decisions are mutually hidden, and revealed only at the end.

The blue “bubble” encircling the 3 acting nodes of player 2 marks his (only)
information set I2 = {2R, 2P , 2S}, where states correspond to the action chosen
by the first player. This imperfect information represents the fact that he is
unaware of 1’s preceding choice.

F.2 Näıve Re-solving of Rock-Paper-Scissors

Every mathematical discipline goes through three periods of de-
velopment: the näıve, the formal, and the critical.

David Hilbert

One apparent subgame (recall Definition 4) of RPS is the endgame when player 2
picks his choice:

2R

rock draw
0 0

paper 2 wins
-1 1

scissors 1 wins
1 -1

2P

rock 1 wins
1 -1

paper draw
0 0

scissors 2 wins
-1 1

2S

rock 2 wins
-1 1

paper 1 wins
1 -1

scissors draw
0 0

Figure F.2: An (imperfect-information) subgame S of RPS (Burch, Johanson,
and Bowling 2014)

At the beginning of subgame S, player 2 resides in one of the three states
I2 = {2R, 2P , 2S} depending on opponent’s strategy in the (removed) trunk.
Specifically, the probability of being in state 2R equals to 1’s probability to choose
rock, and likewise for states 2P and 2S. The three augmented information sets
of player 1 (Definition 3) are IR1 = {2R}, IP1 = {2P} and IS1 = {2S}.

It is not enough to näıvely re-solve subgame S with the assumption of a fixed
strategy in the trunk:

Claim 3 (Ganzfried and Sandholm 2015, Proposition 1; Burch, Johanson, and
Bowling 2014). If subgame S is re-solved with a fixed trunk strategy, there is
an equilibristic solution (i.e., a best response against the fixed trunk strategy) that
player 1 can exploit, once he is allowed to adjust his strategy in the trunk.

Proof. Suppose the initial strategy σ = (σ1, σ2) is uniformly random1. Evidently,
σ is an equilibrium for the full game of RPS.

1Every move is selected with the same probability 1
3 .

50

Now, if we discard the trunk and assume the fixed trunk strategy σ1, player 2
is to be in any of the states I2 = {2R, 2P , 2S} with the equal probability. Because
of this, each action results in the same expected utility of 0 (e.g., playing rock
gives utility 1

3
· 0 + 1

3
· (−1) + 1

3
· 1 = 0). Hence, it is irrelevant for which strategy

player 2 decides, as all strategies produce equally good utilities, and thus, all are
BRs to 1’s strategy2.

Player 2 can opt for a strategy σR2 of always playing rock, as it is a valid BR.
This would become the equilibristic solution from the statement. If player 1 can
change his strategy in the trunk, though, he may naturally exploit the equilibristic
solution of player 2. Namely, a strategy σP1 of always playing paper certainly
defeats σR2 . �

Corollary 2. Even in a two-player zero-sum game with a unique equilibrium and
a single subgame, the trunk strategy and the re-solved (even optimal) subgame
strategy can fail to merge into a full-game equilibrium.

F.3 A New Hope for Subgames with Imperfect

Information

Help me, Obi-Wan Kenobi; you’re my only hope.

Princess Leia (Star Wars: Episode IV – A New Hope)

The dismal example of RPS shows the obstacles of näıvely using the same ap-
proach as with the perfect-information case. Solving subgames separately thus
appear as an impossible mission.

However, in the following chapters we will look into two recent techniques,
which deal with imperfect-information subgames in a promising way:

(i) endgame solving (Ganzfried and Sandholm 2015) in Chapter G

(ii) CFR-D and decomposition (Burch, Johanson, and Bowling 2014) in Chap-
ter H

We also re-state both of them using equivalent LP formulations. Treating these
techniques as optimization problems will help to reveal their underlying features.

Finally in Chapter I, we use these insights to motivate our own, new technique:
subgame-margin maximization (Moravč́ık et al. 2016).

2Player 1 has only one possibility, the empty strategy, since he takes no action in subgame S.

51

G. Endgame Solving

Poker has the only river in the world you can
drown in more than once.

an old Poker joke

Note

This chapter summarizes the approach, methods and results of the
authors Ganzfried and Sandholm 2015.

G.1 Motivation and Overview

Memorizing a playbook is like memorizing a script. When they
change the script at the last minute it’s like changing a play
in a game.

Michael Strahan

Two-player zero-sum imperfect-information games can be solved via linear pro-
gramming (Koller, Megiddo, and Von Stengel 1994), by modelling sequences
of moves as variables of a sequence-form LP (recall Section E.3). This approach
scales well to games with up to 108 game states. Unfortunately, many attractive
Poker games are far larger (Johanson 2013):

♠ two-player Limit Texas Hold’em ≈ 1017 states

♠ two-player No-Limit Texas Hold’em1 ≈ 10165 states.

It is possible to find approximate equilibrium with iterative algorithms, as well.
These methods are guaranteed to converge in the limit, and scale to at least 1012

states (Hoda et al. 2010; Zinkevich et al. 2007). Nevertheless, that is still not
enough for the mentioned big poker variants.

Today, a prevailing approach to enormous imperfect-information games (such
as LHE or NLHE) is to reduce their sizes by means of abstractions :

Information abstraction groups together different signals (e.g., similar poker
hands).

Action abstraction discretizes an immense action space, making it thus smaller
and more manageable.

The method afterwards finds an approximate equilibrium in the abstracted game.
An appealing idea to diminish harmful effects of the abstraction and the

approximate-equilibrium search, is to solve endgames dynamically: an agent only
needs to deal with those portions of the game that are actually reached during
a play. As a consequence, the endgame can be re-solved with a finer abstraction
and more precise pot and stack sizes.

1the most popular online variant of Poker

52

G.2 Gadget Game

What is so brilliant about the gadgets is their simplicity.

Desmond Llewelyn

The idea is to pre-compute coarser strategy for the initial phase of game. After
reaching certain end-phase situation during a real play, one can obtain better
strategy for the current play using finer abstraction in the endgame that has
arisen and players’ current probability distributions.

We start by constructing a fine-grained subgame abstraction. The original
strategies for the subgame are discarded and only the strategies prior to the
subgame (i.e., the trunk) are needed. The strategies in the trunk are used to
compute the joint distribution (i.e., belief) over the states at the beginning of the
subgame.

Finally, we add a chance node c just before the fine-grained subgame S. The
node leads to the states at the root of the subgame. The chance node plays
according to the computed belief. Adding the chance node “roots” the subgame,
thus making it a proper tree of a well-defined game (Figure G.1).

Figure G.1: A gadget game for endgame solving

G.3 Equivalent Linear Program

The equivalent LP formulation for the abstracted endgame

max
v,x

f>v

Ex = e

F>v − A>x ≤ 0

x ≥ 0,

is the sequence-form LP for the gadget game. Same as in the LP from (E.7):

♠ A is the sequence-form payoff matrix

♠ x is a vector of 1’s sequence probabilities

♠ v is a vector of 2’s (negative) counterfactual best-response values

♠ E and F are the sequence constraint matrices

♠ e is the sequence constraint vector.

53

G.4 Discussion

The endgame solving improves agents’ play only empirically (Ganzfried and Sand-
holm 2015, Table 1). Theoretically, however, there is no guarantee of optimality:
even if the trunk strategy (and thus the starting distribution) is optimal, the com-
bined strategy can become drastically more exploitable. This undesired effect is
noticeable in the extensive form of RPS (Claim 3, Chapter F).

A worse exploitability arises when the opponent can “see a better option” and
aim for it. This notion of a better alternative can be summarized by a counterfac-
tual value, and Chapter H shows how to use these values to guarantee theoretical
bounds.

54

H. CFR-D and Decomposition

Everything that comes together falls apart. Everything. The
chair I’m sitting on. It was built, and so it will fall apart. I’m
gonna fall apart, probably before this chair. And you’re gonna
fall apart. The cells and organs and systems that make you you–
they came together, grew together, and so must fall apart. The
Buddha knew one thing science didn’t prove for millennia after
his death: Entropy increases. Things fall apart.

John Green, Looking for Alaska

Note

This chapter summarizes the approach, methods and results of the
authors Burch, Johanson, and Bowling 2014.

H.1 Motivation and Overview

The work of (Burch, Johanson, and Bowling 2014) describes a pioneering tech-
nique how to decompose subgames of imperfect-information games and solve them
independently, while preserving the optimality of the full-game solution. Many
benefits of subgame re-solving are inherited from perfect-information games:

♠ Run-time information (e.g., endgame actually reached during a real play)
can be exploited in a smarter way.

♠ Memory and disk limitations (either at run-time or while solving a game)
can be overcome by a time/space trade-off.

♠ A Nash equilibrium for a game larger than available storage may be com-
puted.

♠ If we only need to work with one subgame at a time, then significantly less
storage is required.

♠ It is not obligatory to store the complete strategy, which might be too large
to store. Instead, subgame strategies may be re-computed on demand, when
needed.

As for re-solving subgames in the imperfect-information setting, all previous
algorithms were limited to rather small domains, with the complete strategy that
can fit in available space. As a consequence, several appealing games still resist
to be solved, despite the intensive effort put in their research.

Note

This used to be the case for the two-player LHE, until the re-
cent, highly-celebrated breakthrough by the same research group
(Bowling et al. 2015).

55

H.2 Gadget Game

Dreams about the future are always filled with gadgets.

Neil deGrasse Tyson
Note

We will distinguish the states, strategies, utilities, etc., and their
translations to the gadget game by adding a tilde to corresponding
notations.

From now on for the rest of the thesis, we will be refining
the strategy for player 1 in a two-player zero-sum game with the
perfect recall.

Again, we start by creating a fine-grained abstraction for the subgame. The
original strategy for the subgame (from the coarse abstraction) is then translated
into the fine-grained abstraction as σS1 . The translated strategy is now used to

compute CBV
σS1

2 (I) for every information set I at the root of the subgame. These
values will be useful for the gadget construction to guarantee the safety of the
resulting strategy. See Figure H.1 for a sketch of the construction.

Figure H.1: A gadget game for re-solving subgames. The opponent chooses
in every state prior to the endgame either to (F)ollow the action into the endgame,
or to (T)erminate. His utility after the (T)erminal action is set to his CBR in that
state.

To construct the gadget, we add one chance node at the root of the game,
followed by additional nodes for player 2: one for every state at the root of the
subgame. At each of these nodes, 2 may either accept the corresponding CBV
calculated earlier, or play the subgame (to get to the corresponding state at the
root of the subgame).

The chance player distributes the player 2 into these states using the (nor-
malized) πσ−2 (how likely is the state given that 2 plays to reach it). Since the
game is zero-sum, this forces player 1 to play the subgame well enough, so that
the opponent’s value is no greater than the original CBV. Acting like that, 1’s
overall game utility will not deteriorate:

Theorem 4 (Burch, Johanson, and Bowling 2014, Theorem 1). Given a strategy
σ1, a subgame S, and a re-solved subgame strategy σS1 , let σ′1 = σ1,[S←σS1] be

the combination of σ1 and σS1 . If CBV σ′
2 (I) ≤ CBV σ

2 (I) for all subgame-root

information sets I ∈ IR(S)
2 , then u2(σ′1,CBR(σ′1)) ≤ u2(σ1,CBR(σ1)).

Proof. Consult the appendix of (Burch, Johanson, and Bowling 2014). �

56

H.3 Equivalent Linear Program

This time, the presented LP is not a straightforward sequential-form representa-
tion of the gadget construction. Although such a representation would be possi-
ble, it would not help to provide a desirable insight. Instead, we formulate an LP
that solves the same game (for player 1) while demonstrating the underlying
properties of the re-solving approach:

max
v,x

0

vI −m ≥ CBV σ1
2 (I), I ∈ IR(S)

2

Ex = e

F>v − A2
>x ≤ 0

x ≥ 0,

(H.1)

where IR(S)
2 denotes the root information sets and CBV σ

2 (I) is 2’s original coun-
terfactual best-response value in the information set I.

The sequence payoff matrices A2 and A (from (G.3)) are slightly different, to
reflect different strategies of the chance player in the gadget for endgame solving
(Figure G.1) and the gadget for re-solving subgames (Figure H.1).

The formulation uses the following fact: any strategy, where the opponent’s
CBV is not greater than the original one, is a solution to the game. This follows
from the construction of the gadget for re-solving games. Also compare with the
subgame of RPS example: a strategy “always play rock” increases opponent’s
CBV, thus giving him a chance to exploit us there, by playing paper.

It is worth remarking three important points:

(1) (H.1) is not optimizing any value (0 is a constant). Instead, the LP looks
for a feasible solution. Though theoretically equivalent, in this case it is
semantically different for the strategy.

(2) The original, unrefined strategy is a feasible solution to (H.1).

(3) Points (1) and (2) might suggest the strategy may not improve. Empirical
evaluations show otherwise however: using a CFR algorithm to solve the gad-
get game, the performance of the refined strategy improves over the original
(Burch, Johanson, and Bowling 2014). Our experiments further confirm this
(Section I.6).

H.4 Discussion

The innovative aspect of (Burch, Johanson, and Bowling 2014) consists of two
main contributions:

(i) A technique to re-solve imperfect-information subgames, which is guaranteed
not to increase sub-optimality of the resulting full-game strategy. Owing to
summary information about a subgame strategy (namely the counterfactual
best-response values), the newly generated strategy is no more exploitable
than the original one.

57

(i) A new off-line solving algorithm called counterfactual regret decomposition
(CFR-D), capable of computing an error-bounded NE approximation. CFR-
D achieves this by decomposing and independently analyzing subgames.

By sacrificing computation time, the decomposition allows for sub-linear space
costs. For instance, two-player LHE with CFR-D can be solved in less than
16 GB, rather than more than 200 TB of disk space!

58

I. Subgame-Margin Maximization

I have discovered a truly marvellous proof of this, which this
margin is too narrow to contain.

Pierre de Fermat on Fermat’s Last Theorem
Note

This chapter summarizes our own paper (Moravč́ık et al. 2016).

I.1 Motivation and Overview

The outline of this chapter is:

(1) listing the steps used by our technique,

(2) using the problem of refining imperfect-information subgames to motivate
a value to be maximized,

(3) formalizing this value as the subgame margin,

(4) discuss and formalize its properties,

(5) formulate an LP optimizing the SM,

(6) describe a corresponding EFG construction: a max-margin gadget.

Our technique follows the steps of the subgame-refinement framework:

(i) create an abstraction for the game;

(ii) compute an equilibrium approximation within the abstraction,

(iii) play according to this strategy,

(iv) when the play reaches final stage of the game, create a fine-grained abstrac-
tion for the endgame,

(v) refine the strategy in the fine-grained abstraction,

(vi) use the resulting strategy in that subgame (creating a combined strategy).

Since all the steps except for (v) are identical to already described techniques, we
describe only step (v) in details.

I.2 Subgame Margin

Your margin is my opportunity.

Jeff Bezos

To address the potential increase in exploitability caused by an opponent altering
his behavior in the trunk, we ensure that there is no distribution of starting
states that would allow him to increase his CBV when confronted by subgame
refinement. The simplest way to ensure this is to decrease his CBV in all possible
starting states. We can put a lower bound on this improvement by measuring
the state with the smallest decrease in CBV. Our goal is to maximize this lower
bound. We refer to this values as the subgame margin (SM).

59

Definition 5 (subgame margin). Let σ1, σ′1 be a pair of player 1’s strategies
for subgame S. Then a subgame margin

SM1(σ1, σ
′
1, S) = min

I2∈IR(S)
2

(
CBV σ1

2 (I2)− CBV σ′1
2 (I2)

)
measures the “gap in decrease” between the old and the new counterfactual
best-response values, across all root information sets I2 ∈ IR(S)

2 .

Subgame margin has several useful properties. The exploitability is strongly
related to the value of the margin: if it is non-negative, the new combined strategy
is guaranteed to be no more exploitable than the original one. To prove it, we
will first re-state Theorem 4 using the following lemma:

Lemma 5. CBV
σ′1

2 (I2) ≤ CBV σ1
2 (I2) for all I2 ∈ IR(S)

2 iff SM1(σ1, σ
′
1, S) ≥ 0.

Proof. CBV
σ′1

2 (I2) ≤ CBV σ1
2 (I2) ⇐⇒ 0 ≤ CBV σ1

2 (I2) − CBV σ′1
2 (I2) ⇐⇒

0 ≤ min
I2∈IR(S)

2

(
CBV σ1

2 (I2)− CBV σ′1
2 (I2)

)
= SM1(σ1, σ

′
1, S) �

Corollary 3 (Theorem 4 via subgame margin). Given a strategy σ1, a subgame S,
and a re-solved subgame strategy σS1 , let σ′1 = σ1,[S←σS1] be the combination of σ1

and σS1 . If SM1(σ1, σ
′
1, S) ≥ 0, then u2(σ′1,CBR(σ′1)) ≤ u2(σ1,CBR(σ1)).

Moreover, given that the opponent’s best response reaches the subgame with
non-zero probability, the exploitability of our combined strategy is even reduced.
This improvement is at least proportional to the subgame margin:

Theorem 6 (improvement proportional to the subgame margin). With the S, σ1

and σ′1 from the Corollary, also assume there exists a best response σ∗2 = BR(σ′1)

such that π<σ
′
1,σ
∗
2>(I2) > 0 for some I2 ∈ IR(S)

2 . Then

u1(σ′1, CBR(σ′1))− u1(σ1, CBR(σ1)) ≥ π
σ′1
−2(I2) · SM1(σ1, σ

′
1, S).

Proof. Without loss of generality, we may assume

(a) σ∗2 = CBR2(σ′1), since we may arbitrarily change strategy in any information

set I that is unreachable under σ∗2 (i.e., where π
σ∗2
2 (I) = 0),

(b) π
σ∗2
2 (I2) = 1, since we can choose any action from a best-response support with

probability 1 (obvious by building a best-response recursively bottom-up).

First, we show that if p(I) = 2 and I lies on a path from ∅ (the root of the whole
game) to I2, then

CBV
σ′1

2 (I) ≤ CBV σ1
2 (I)− πσ

′
1
−2(I → I2) · SM1(σ1, σ

′
1, S). (I.1)

60

We prove (I.1) by induction on the length of the I → I2 path (measured in the
count of 2’s information sets). For the base case I = I2, the claim holds

by π
σ′1
−2(I2 → I2) = 1 and the definition of the subgame margin:

SM1(σ1, σ
′
1, S) = min

I′∈IR(S)
2

(
CBV σ1

2 (I ′)− CBV σ′1
2 (I ′)

)
≤ CBV σ1

2 (I2)− CBV σ′1
2 (I2)

For the inductive step, let I 6= I2 be an information set from ∅→ I2 path, let

I ′ be 2’s next information set after I on this path, implying π
<σ′1,σ

∗
2>

2 (I → I ′) = 1,

and let the action a ∈ A(I) lead to I2, implying π
σ∗2
2 (I, a) = 1. We can thus re-

expresses the CBV in I as

CBV
σ′1

2 (I) = v
<σ′1,σ

∗
2>

2 (I, a) . . .

by the definition of the counterfactual value and π
<σ′1,σ

∗
2>

2 (I → I ′) = 1 we get

. . . = π<σ
′
1,σ
∗
2>(I → I ′) · v<σ

′
1,σ
∗
2>

2 (I ′) = π<σ
′
1,σ
∗
2>(I → I ′) · CBV σ′1

2 (I ′) . . .

by inductive hypothesis we bound

. . . ≤ π<σ
′
1,σ
∗
2>(I → I ′) ·

(
CBV

σ′1
2 (I ′)− πσ

′
1
−2(I ′ → I2) · SM1(σ1, σ

′
1, S)

)
= π<σ

′
1,σ
∗
2>(I → I ′) · CBV σ′1

2 (I ′)

− π<σ′1,σ∗2>(I → I ′) · πσ
′
1
−2(I ′ → I2) · SM1(σ1, σ

′
1, S) . . .

again by the definition of the counterfactual value we re-write back

. . . = v
<σ1,CBR(σ1)>
2 (I, a)− π<σ′1,σ∗2>(I → I ′) · πσ

′
1
−2(I ′ → I2) · SM1(σ1, σ

′
1, S) . . .

and by π
<σ′1,σ

∗
2>

2 (I → I ′) = 1 we conclude

. . . = v
<σ1,CBR(σ1)>
2 (I, a)− πσ

′
1
−2(I → I ′) π

σ′1
−2(I ′ → I2) SM1(σ1, σ

′
1, S)

= v
<σ1,CBR(σ1)>
2 (I, a)− πσ

′
1
−2(I → I2) SM1(σ1, σ

′
1, S)

≤
(

max
a′∈A(I)

v
<σ1,CBR(σ1)>
2 (I, a′)

)
− πσ

′
1
−2(I → I2) SM1(σ1, σ

′
1, S)

= CBV σ1
2 (I)− πσ

′
1
−2(I → I2) SM1(σ1, σ

′
1, S).

If p(∅) = 2, then in a zero-sum game we have u1(σ′1, CBR(σ′1)) = −CBV σ′1
2 (∅)

and u1(σ1, CBR(σ1)) = −CBV σ1
2 (∅). Hence, applying (I.1) to the root

π
σ′1
−2(I2) · SM1(σ1, σ

′
1, S) ≤ CBV σ1

2 (∅)− CBV σ′1
2 (∅)

= u1(σ′1, CBR(σ′1))− u1(σ1, CBR(σ1))

proves the theorem. If p(∅) 6= 2, then we can simply add a new state for player 2
at the beginning of the game, where 2 has one single action leading to ∅. �

61

Though this lower bound might seem artificial at first, it has promising prop-
erties for the subgame refinement. Since we refine the strategy once we reach
the subgame, either we face 2’s best response that reaches S, or he has made
a mistake earlier in the game.

Furthermore, the probability of player 1 reaching a subgame is proportional

to π
σ′1
−2(I2). As this term (and by extension, the bound) grows, the probability

of reaching that subgame increases. In conclusion, we are more likely to reach
a subgame with a larger bound.

I.3 Linear Program

To formulate the subgame-margin maximization as an LP, we easily modify (H.1):

max
v,x

m

vI −m ≥ CBV σ1
2 (I), I ∈ IR(S)

2

Ex = e

F>v − A>2 x ≤ 0

x ≥ 0,

(I.2)

where m is a scalar corresponding to the subgame margin that we aim to maxi-
mize. It serves as “a gap” between all values vI and the given constants CBV σ

2 (I),
and we wish to make this gap as large as possible.

The similarities between (I.2) and (H.1) make it easier to see our improvement:
the LP (H.1) only guarantees a non-negative margin, whereas we maximize it.
Although the optimization formulation is almost identical to the re-solving, our
gadget construction is different.

I.4 Equivalent Gadget Game

A new gadget that lasts only five minutes is worth more than
an immortal work that bores everyone.

Francis Picabia

One way to find the refined strategy is to solve the corresponding linear program
(LP). However, algorithms that are tailor-made for EFGs often outperform the
optimization approach (Bošanský 2013). These algorithms often permit the use
of domain-specific tricks to provide further performance gains (Johanson et al.
2012). Thus, formulating our optimization problem (I.2) as an EFG will mean
that we can compute larger subgame abstractions using the available comput-
ing resources. Essentially, the construction of a gadget game equivalent to the
LP (I.2) will allow us to compute larger subgames—more than it would be pos-
sible with just the plain LP.

All states in the original subgame are directly copied into the resulting gadget
game. We create the gadget game by making two alterations to the original
subgame:

62

(i) we shift player 2’s utilities using the CBV2 (to initialize all 2’s values to zero)

(ii) we add a rooting node d̃ for 2, followed by chance nodes cI1 , cI2 , cI3 , . . .
at the top of the subgame (to allow the opponent to pick any starting state,
relating the game values to the margin)

d̃

S

cĨ1 cĨ2 cĨ3

ũ2(z̃) = kĨ · u2(z)− CBV σ
2 (I)

Figure I.1: Our max-margin gadget. When 1’s original strategy is used, the
terminal nodes’ offsets enforce the opponent to have a zero utility in a BR.

The following is a description of the steps (see also Figure I.1 that visualizes
the gadget).

1. We establish a common baseline. For comparing changes in the performance
of 2’s root information sets, they need a common starting point: the original
strategy σ = (σ1, σ2) with its subgame portion σS1 .

For every I ∈ IR(S)
2 we subtract the opponent’s original counterfactual

best-response value, setting the utility at each terminal node z ∈ Z(I) to
ũ2(z̃) := kĨ · u2(z) − CBV σ

2 (I) (see Section I.5 for detailed explanation).
We must not forget to update ũ1(z̃) = −ũ2(z̃) either, as we need the game
to remain zero-sum. Conditioned on the original strategy σS1 , the shifting
gives an expected value of 0 to opponent’s starting states.

2. Player 2 is permitted to choose his belief at the start of the subgame,
while 1 retains his belief from the original strategy at the starting point
of the subgame. Since 2 is aiming to maximize ũ2, he will always select
the information set with the lowest margin. The minimax nature of the
zero-sum game motivates player 1 to find a strategy maximizing this value
of the lowest margin.

We create an additional decision node d̃ for player 2. Every action cor-
responds to choosing an initial information set I ∈ IR(S)

2 . However, since
an action can lead only to a single tree node rather than a whole informa-
tion set, we may not connect this action to state d̃ directly. Instead, each
action leads to a new chance node cĨ , where the chance distributes histo-
ries h̃ ∈ Ĩ based on the probability πσ−2(h) and the normalization factor
kĨ =

∑
h∈I π

σ
−2(h) (again, see Section I.5).

63

I.5 Gadget-Game Counterfactual Values

As soon as the opponent picks which cĨ to enter (i.e., with which cards to enter
the subgame), the chance player deals cards to us. The corresponding probability

(of being in state h̃ ∈ Ĩ) is πc(cĨ , cĨ · h̃) =
πσ−2(h)

kĨ
where normalization factor

kĨ =
∑

h∈I π
σ
−2(h) ensures that probabilities sum to 1 (i.e.,

∑
h̃∈Ĩ πc(cĨ , cĨ ·h̃) = 1).

The terminal utilities need to be adjusted for it. First, they are multiplied by
the related normalization factor to cancel the effects of the normalization. Then
they are shifted by the counterfactual values:

ũ2(z̃) := kĨ · u2(z)− CBV σ
2 (I) (I.3)

The following lemma states that the construction shifts counterfactual values
by the given (original) counterfactual values:

Lemma 7. Let σ̃ be a subgame strategy profile and σ′ = σ[S←σ̃] its extension to

the original game. Then the gadget-game counterfactual value of I ∈ IR(S)
2 is

ṽσ̃2 (Ĩ) = vσ
′

2 (I)− CBV σ
2 (I).

Proof. A strategy profile σ′ defines probability distributions at each game state,
and thus we get∑

z∈Z(I)

πσ
′

−2(z) · πσ′2 (z[I], z) =
∑
h∈I

πσ
′

−2(h) =
∑
h∈I

πσ−2(h) = kĨ (I.4)

where the first equality is a recursive summation of probabilities to 1, by induction
on height.

Therefore, we can re-write the counterfactual value in the gadget game as

ṽσ̃2 (Ĩ) =
∑
z∈Z(I)

πσ̃−2(d̃, z̃) · πσ̃2 (z̃[Ĩ], z̃) · ũ2(z̃)

=
∑
z∈Z(I)

πσ̃−2(d̃, z̃[Ĩ]) · πσ̃−2(z̃[Ĩ], z̃) · πσ̃2 (z̃[Ĩ], z̃) · ũ2(z̃)

=
∑
z∈Z(I)

πσ−2(z[I])

kĨ
· πσ̃−2(z[I], z) · πσ̃2 (z[I], z) · ũ2(z̃)

=
∑
z∈Z(I)

πσ−2(z[I])

kĨ
· πσ̃(z[I], z) · ũ2(z̃)

(I.3)
=
∑
z∈Z(I)

πσ−2(z[I])

kĨ
· πσ′(z[I], z) · (kĨ · u2(z)− CBV σ

2 (I))

= vσ
′

2 (I)−
∑
z∈Z(I)

πσ−2(z[I])

kĨ
· πσ′(z[I], z) · CBV σ

2 (I)

= vσ
′

2 (I)−
∑
z∈Z(I)

πσ
′
−2(z) · πσ′2 (z[I], z)

kĨ
· CBV σ

2 (I)

= vσ
′

2 (I)− CBV σ
2 (I) ·

∑
z∈Z(I) π

σ′
−2(z) · πσ′2 (z[I], z)

kĨ
(I.4)
= vσ

′

2 (I)− CBV σ
2 (I). �

64

Hence, the gadget-game counterfactual values are shifted by right offsets and
Lemma 7 therefore gives into context the gadget game and SM maximization:
gadget-game counterfactual values at IR(S)

2 correspond to margins. Thus, solving
the gadget translates to maximizing the minimum of margins, i.e., maximizing
the subgame margin.

Corollary 4. A strategy for the max-margin gadget is a Nash equilibrium if
and only if it is a solution to the LP (I.2).

I.6 Experimental Results

If you find that you’re spending almost all your time on the-
ory, start turning some attention to practical things; it will im-
prove your theories. If you find that you’re spending almost all
your time on practice, start turning some attention to theoretical
things; it will improve your practice.

Donald Knuth

In this section, we evaluate endgame solving (Chapter G), subgame re-solving
(Chapter H) and max-margin subgame refinement (this chapter) on the safe-
refinement task for a large-scale game. We use an improved version of the Nyx
agent, the second strongest participant at the 2014 Annual Computer Poker Com-
petition (No-Limit Texas Hold’em Total Bankroll)1 as the baseline strategy to be
re-fined in subgames.

All three of the subgame refinement techniques tested here used the same
abstractions and trunk strategy. Following (Ganzfried and Sandholm 2015), we
begin the subgame at start of the last round (the river). Although we used card
abstraction to compute the original trunk strategy (Johanson et al. 2013; Schmid
et al. 2015), the fine-grained abstraction for the endgame is calculated without the
need for card abstraction. This is an improvement over the original implementa-
tion of (Ganzfried and Sandholm 2015), where both the trunk strategy and the
refined subgame used card abstraction. This is a result of the improved efficiency
of the CFR+ algorithm (and the domain-specific speedups it enables), whereas
the endgame solving of (Ganzfried and Sandholm 2015) used linear programming
to compute the strategy.

The original strategy uses action abstraction with up to 16 actions in an infor-
mation set. While this number is relatively large compared to other participating
agents, it is still well below the best-known upper bound on the optimal strat-
egy’s support size (Schmid, Moravč́ık, and Hlad́ık 2014). The action abstraction
used for the original Nyx strategy has the imperfect recall, whereas the refined
subgame uses the perfect recall. We use the same actions in the refined subgame
as in the original strategy.

1http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-
results

65

http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-results
http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-results

We refine only the subgames that has less than 1000 betting sequences (after
creating the fine-grained abstraction). This is simply to speed up the experiments.
The original agent’s strategy is preserved in the trunk of the game for both
player 1 and player 2. Once gameplay reaches the subgame (the river), we refine
1’s strategy using each of the three techniques. We have run 10000 iterations
of the CFR+ algorithm in the corresponding gadget games, with exponential
weighting to update the average strategies (Tammelin et al. 2015). Each technique
was used to refine ≈ 2000 subgames. Figure I.2 displays the average margins for
the evaluated techniques.

The max-margin technique produces the optimal value, much greater than
ones produced by subgame re-solving or endgame solving (which has even negative
subgame margins).

Figure I.2: CFR+ iterations versus SM of refined strategies(in milli big blinds per
game). One big blind corresponds to 100 chips.

Here follows the list of 95%-confidence intervals after 10000 iterations:

endgame solving (−518.5 ± 49.19). The considerably negative margin values
for the endgame solving suggest that the produced strategy may indeed be
much more exploitable.

subgame re-solving (8.79 ± 2.45). The positive margin for re-solving demon-
strates that in spite of no explicit construction forcing the margin to be
positive, it does increase in practice. Notice however that the margin is far
below the optimal level.

max-margin (101.49 ± 7.09). This technique produces a significantly larger
subgame margin than the previous methods. The size of the margin suggests
the original strategy is potentially rather exploitable. Nevertheless, our
technique can substantially decrease the exploitability (see Corollary 3 and
Theorem 6).

66

J. Ideas for Future Work

The worst thing that can happen in a democracy—as well as in
an individual’s life—is to become cynical about the future and
lose hope.

Hillary Clinton

One may try to study other aspects of endgames. Some recommendations as
inspiration for future work may include

♠ other endgame-specific concepts like subgame margin

♠ dynamical adjustment of computation upon entering the ending phase

♠ solving several endgames in parallel, without interdependence

♠ a Poker version of Chess endgame tablebases, which poker agents may use
in simpler ending situations to play perfectly

J.1 Margins via Multi-Objective Optimization

Raise your quality standards as high as you can live with, avoid
wasting your time on routine problems, and always try to work
as closely as possible at the boundary of your abilities. Do this,
because it is the only way of discovering how that boundary
should be moved forward.

Edsger Dijkstra

One especially noteworthy research topic is the study of margins (i.e., declines
of CBVs). The subgame margin is their min-aggregation. Tempting idea is to
look into alternative aggregations. Consider a multi-criteria analogy to subgame
margin maximization (I.2):

max
v,x

m

vI −mI ≥ CBV σ1
2 (I), I ∈ IR(S)

2

Ex = e

F>v − A>2 x ≤ 0

x ≥ 0.

(J.1)

Now mI corresponds to one specific margin mI := CBV σ1
2 (I)− CBV σ′1

2 (I), and
m := (mI)I∈IR(S)

2
is a vector of all such margins. Evidently, this vector linear

program (VLP) is a task of multi-objective optimization (Ehrgott 2006; Grygarová
1996).

Notice that (I.2) is just a special case of the vector objective function, by the
scalarization

max
v,x

min
I∈IR(S)

2

mI .

67

The choice of minimum function stems from the nature of the opponent, who
makes his best to exploit us and hence aims for minimal decrease in CBVs.

Undoubtedly, one can also try other methods to deal with multi-objective
functions:

♠ other scalarizations, e.g., weighted sum of margins

♠ (Pareto) efficient solutions

♠ data envelopment analysis (DEA): http://www.deazone.com/

♠ evolutionary multi-objective optimization (EMO), which uses evolutionary
algorithms: https://www.cs.cinvestav.mx/∼EVOCINV/

It might be compelling as well as intriguing to understand their meaning in the
language of extensive-form games, and perhaps even find their corresponding
gadget games.

68

http://www.deazone.com/
https://www.cs.cinvestav.mx/~EVOCINV/

Conclusion

Everything that civilisation has to offer is a product of human
intelligence; we cannot predict what we might achieve when this
intelligence is magnified by the tools that AI may provide, but the
eradication of war, disease, and poverty would be high on anyone’s
list. Success in creating AI would be the biggest event in human
history. Unfortunately, it might also be the last.

Stephen Hawking

Perfect-information endgames can be solved by backward induction, where solu-
tions to subgames are propagated up the game tree. For the imperfect informa-
tion, on the other hand, endgames need to be adjusted in order to account for
information sets. This gives rise to a new definition of an (imperfect-information)
subgame. As such, the definition does not directly allow to apply the same pro-
cedure as in perfect-information endgames: under even the simplest conditions
of the Rock-Paper-Scissors game, a näıve endgame re-solution fails to form a Nash
equilibrium.

This occurs because the opponent can change his behavior prior to the end-
game. Such an exploitation power can be captured by a counterfactual value:
a hypothetical “what-if” value summarizing opponent’s improvement, if he had
changed his prior trunk strategy.

We used counterfactual values to define our own notion of subgame margin:
a gap between the original and the new counterfactual best-response values. We
related the SM to the exploitability against a best response, and we proved the
overall improvement rising from endgame improvement is proportional to the SM.

Maximizing SM is thus highly advisable. That can be achieved either by
solving a variant of a sequence-form linear program, or by applying an iterative
learning algorithm to a gadget game, an equivalent ad-hoc extensive-form game.
The latter approach offers greater benefits in terms of exploiting domain-specific
knowledge and employing powerful learning algorithms such as CFR, MCCFR or
the modern CFR+ that we chose to solve our max-margin gadget.

Finally, we experimentally compared the three contemporary approaches to
solving endgames:

(i) endgame solving (Ganzfried and Sandholm 2015)

(ii) CFR-D and decomposition (Burch, Johanson, and Bowling 2014)

(iii) our subgame-margin maximization (Moravč́ık et al. 2016)

The results of the experiments showed that (i) even produced a worse SM, leading
to more exploitable subgame strategies; and although the SM of (ii) increased over
time, the improvement was not significant, as the method guarantees only the
same (or comparable) quality, not the best one. Since our (iii) was specially de-
signed to maximize SMs, it re-created the most robust (i.e., the least exploitable)
subgame strategy. We thus offer a superior solution to treating subgames.

69

Bibliography

Alburt et al.: Just the Facts!: Winning Endgame Knowledge in One
Volume

L. Alburt and N. Krogius. Just the Facts!: Winning Endgame Knowledge in One
Volume. Comprehensive chess course series. Chess Information and Research Cen-
ter, 1999. isbn: 9781889323060.

Bellman: On the Application of Dynamic Programing to the Determi-
nation of Optimal Play in Chess and Checkers

Richard Bellman. “On the Application of Dynamic Programing to the Determi-
nation of Optimal Play in Chess and Checkers”. In: Proceedings of the National
Academy of Sciences of the United States of America 53.2 (1965), p. 244.

Berlekamp et al.: Winning Ways for Your Mathematical Plays: Games
in Particular

E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathe-
matical Plays: Games in Particular. Vol. 2. Acad. Pr., 1983. isbn: 9780120911523.

Bourzutschky: 7-man Endgames with Pawns

Marc Bourzutschky. 7-man Endgames with Pawns. 2006. url: http://kirill-
kryukov.com/chess/discussion-board/viewtopic.php?t=805 (visited on
06/24/2016).

Bowling et al.: Heads-Up Limit Hold’em Poker is Solved

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. “Heads-
Up Limit Hold’em Poker is Solved”. In: Science 347.6218 (2015), pp. 145–149.
url: http://poker.cs.ualberta.ca/15science.html.

Bošanský: Solving Extensive-Form Games with Double-Oracle Meth-
ods

Branislav Bošanský. “Solving Extensive-Form Games with Double-Oracle Meth-
ods”. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-Agent Systems. International Foundation for Autonomous Agents and
Multiagent Systems. 2013, pp. 1423–1424.

Burch et al.: Solving Imperfect Information Games Using Decomposi-
tion

N. Burch, M. Johanson, and M. Bowling. “Solving Imperfect Information Games
Using Decomposition”. In: Proceedings of the Twenty-Eighth Conference on Ar-
tificial Intelligence (2014).

70

http://kirill-kryukov.com/chess/discussion-board/viewtopic.php?t=805
http://kirill-kryukov.com/chess/discussion-board/viewtopic.php?t=805
http://poker.cs.ualberta.ca/15science.html

Conway: On Numbers and Games

John Horton Conway. “On Numbers and Games”. In: London Mathematical So-
ciety Monographs 6 (1976).

Ehrgott: Multicriteria optimization

Matthias Ehrgott. Multicriteria optimization. Springer Science & Business Media,
2006.

Enderton: The Golem Go program

Herbert D. Enderton. “The Golem Go program”. In: Carnegie Mellon University
(1991).

Fine: The Middle Game in Chess

Reuben Fine. The Middle Game in Chess. D. McKay Co., 1952.

Flear: Practical Endgame Play - Beyond the Basics: The Definitive
Guide to the Endgames That Really Matter

G. Flear. Practical Endgame Play - Beyond the Basics: The Definitive Guide
to the Endgames That Really Matter. Everyman Chess. Everyman Chess, 2007.
isbn: 9781857445558.

Fraenkel et al.: Computing a Perfect Strategy for n×n Chess Requires
Time Exponential in n

Aviezri S. Fraenkel and David Lichtenstein. “Computing a Perfect Strategy for
n × n Chess Requires Time Exponential in n”. In: International Colloquium on
Automata, Languages, and Programming. Springer. 1981, pp. 278–293.

Ganzfried et al.: Endgame Solving in Large Imperfect-Information Ga-
mes

Sam Ganzfried and Tuomas Sandholm. “Endgame Solving in Large Imperfect-In-
formation Games”. In: Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems. International Foundation for Autono-
mous Agents and Multiagent Systems. 2015, pp. 37–45.

Grygarová: Základy Vı́cekriteriálńıho Programováńı

Libuše Grygarová. Základy Vı́cekriteriálńıho Programováńı. 1st ed. Charles Uni-
versity, 1996.

Haworth: Discarding Like Pieces

G. McC. Haworth. “Discarding Like Pieces”. In: ICGA JOURNAL 24.3 (2001),
pp. 161–161.

71

Herik et al.: A 6-Men-Endgame Database: KRP(a2)KBP(a3)

H. Jaap Herik, Israel Samuel Herschberg, and Najib Nakad. “A 6-Men-Endgame
Database: KRP(a2)KBP(a3)”. In: ICCA JOURNAL 10.4 (1987), pp. 163–180.

Hoda et al.: Smoothing Techniques for Computing Nash Equilibria
of Sequential Games

Samid Hoda, Andrew Gilpin, Javier Pena, and Tuomas Sandholm. “Smoothing
Techniques for Computing Nash Equilibria of Sequential Games”. In: Mathemat-
ics of Operations Research 35.2 (2010), pp. 494–512.

Johanson: Measuring the Size of Large No-Limit Poker Games

Michael Johanson. “Measuring the Size of Large No-Limit Poker Games”. In:
arXiv preprint arXiv:1302.7008 (2013).

Johanson et al.: Efficient Nash Equilibrium Approximation through
Monte Carlo Counterfactual Regret Minimization

Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael
Bowling. “Efficient Nash Equilibrium Approximation through Monte Carlo Coun-
terfactual Regret Minimization”. In: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems. Vol. 2. International
Foundation for Autonomous Agents and Multiagent Systems. 2012, pp. 837–846.

Johanson et al.: Evaluating State-Space Abstractions in Extensive-
Form Games

Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. “Evalu-
ating State-Space Abstractions in Extensive-Form Games”. In: Proceedings of the
2013 International Conference on Autonomous Agents and Multi-Agent Systems.
International Foundation for Autonomous Agents and Multiagent Systems. 2013,
pp. 271–278.

Karpov: Disney’s Chess Guide

Anatoly Karpov. Disney’s Chess Guide. Batsford, 1997. isbn: 9780713483352.

Koller et al.: Fast Algorithms for Finding Randomized Strategies in
Game Trees

Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. “Fast Algorithms
for Finding Randomized Strategies in Game Trees”. In: Proceedings of the Twen-
ty-Sixth Annual ACM Symposium on Theory of Computing. ACM. 1994, pp. 750–
759.

Krabbé: Stiller’s Monsters or Perfection in Chess

Tim Krabbé. Stiller’s Monsters or Perfection in Chess. 2014. url: https://
timkr.home.xs4all.nl/chess/perfect.htm (visited on 06/24/2016).

72

https://timkr.home.xs4all.nl/chess/perfect.htm
https://timkr.home.xs4all.nl/chess/perfect.htm

Levy et al.: How Computers Play Chess

D. N. L. Levy and M. Newborn. How Computers Play Chess. Ishi Press, 2009.
isbn: 9784871878012.

Lomonosov Tablebases: 8 Longest 7-Man Checkmates

Lomonosov Tablebases. 8 Longest 7-Man Checkmates. 2014. url: http://ldis-
sw.cs.msu.ru/articles/Top8DTM_eng (visited on 06/24/2016).

Minev: A Practical Guide to Rook Endgames

Nikolay Minev. A Practical Guide to Rook Endgames. Russell Enterprises, 2004.

Moravč́ık et al.: Refining Subgames in Large Imperfect Information
Games

Matěj Moravč́ık, Martin Schmid, Karel Ha, Milan Hlad́ık, and Stephen J. Gau-
krodger. “Refining Subgames in Large Imperfect Information Games”. In: Thir-
tieth AAAI Conference on Artificial Intelligence. 2016.

Muller: EGTB Generator

H. G. Muller. EGTB Generator. 2006. url: http://home.hccnet.nl/h.g.
muller/EGTB.html (visited on 06/24/2016).

Müller: Computer Go as a Sum of Local Games: an Application of
Combinatorial Game Theory

Martin Müller. “Computer Go as a Sum of Local Games: an Application of Com-
binatorial Game Theory”. PhD thesis. TU Graz, 1995.

Nisan et al.: Algorithmic Game Theory

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. New York, NY, USA: Cambridge University Press, 2007. isbn:
0521872820.

Nunn: Secrets of Pawnless Endings

J. Nunn. Secrets of Pawnless Endings. Gambit, 2002. isbn: 9781901983654.

Osborne et al.: A Course in Game Theory

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

Portisch et al.: Six Hundred Endings

L. Portisch and B. Sárközy. Six Hundred Endings. Pergamon Press, 1981.

73

http://ldis-sw.cs.msu.ru/articles/Top8DTM_eng
http://ldis-sw.cs.msu.ru/articles/Top8DTM_eng
http://home.hccnet.nl/h.g.muller/EGTB.html
http://home.hccnet.nl/h.g.muller/EGTB.html

Schaeffer et al.: Checkers is Solved

Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve Sutphen. “Checkers is Solved”. In:
Science 317.5844 (2007), pp. 1518–1522.

Schmid et al.: Bounding the Support Size in Extensive Form Games
with Imperfect Information

Martin Schmid, Matěj Moravč́ık, and Milan Hlad́ık. “Bounding the Support Size
in Extensive Form Games with Imperfect Information”. In: Twenty-Eighth AAAI
Conference on Artificial Intelligence. 2014.

Schmid et al.: Automatic Public State Space Abstraction in Imperfect
Information Games

Martin Schmid, Matěj Moravč́ık, Milan Hlad́ık, and Stephen J. Gaukrodger. “Au-
tomatic Public State Space Abstraction in Imperfect Information Games”. In:
Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

Schraudolph et al.: Temporal Difference Learning of Position Evalua-
tion in the Game of Go

Nicol N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski. “Temporal Differ-
ence Learning of Position Evaluation in the Game of Go”. In: Advances in Neural
Information Processing Systems (1994), pp. 817–817.

Selten: An Oligopoly Model with Demand Inertia

Reinhard Selten. An Oligopoly Model with Demand Inertia. Center for Research
in Management Science, University of California, 1968.

Shukaku: How Many Moves is it Possible to Read?

Takagawa Shukaku. “How Many Moves is it Possible to Read?” In: Go World 41
(1985). The Ishi Press, Inc., pp. 30–33.

Silver et al.: Mastering the Game of Go with Deep Neural Networks
and Tree Search

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. “Mastering the Game of Go with Deep Neural Networks
and Tree Search”. In: Nature 529.7587 (2016), pp. 484–489.

Speelman: Endgame Preparation: Advanced Analysis of Important Ar-
eas

Jonathan Speelman. Endgame Preparation: Advanced Analysis of Important Ar-
eas. BT Batsford, 1981.

74

Stoutamire: Machine Learning, Game Play, and Go

David Stoutamire. “Machine Learning, Game Play, and Go”. In: Case Western
Reserve University, Tech. Rep (1991), pp. 91–128.

Tammelin et al.: Solving Heads-Up Limit Texas Hold’em

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. “Solving
Heads-Up Limit Texas Hold’em”. In: Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence. 2015.

Von Neumann et al.: Theory of Games and Economic Behavior

John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Be-
havior. https://archive.org/details/theoryofgamesand030098mbp. Prince-
ton University Press, 1953.

Wikipedia: Endgame tablebase — Wikipedia, The Free Encyclopedia

Wikipedia. Endgame tablebase — Wikipedia, The Free Encyclopedia. http://
en . wikipedia . org / w / index . php ? title = Endgame % 20tablebase & oldid =

730651496. [Online; accessed 26-July-2016]. 2016.

Wilcox: Computer Go - The Reitman-Wilcox Program

Bruce Wilcox. “Computer Go - The Reitman-Wilcox Program”. In: American Go
Journal 14 (1979), pp. 23–41.

Zinkevich et al.: Regret Minimization in Games with Incomplete In-
formation

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
“Regret Minimization in Games with Incomplete Information”. In: Advances
in Neural Information Processing Systems. 2007, pp. 1729–1736.

Čermák et al.: Practical Performance of Refinements of Nash Equilibria
in Extensive-Form Zero-Sum Games

Jǐŕı Čermák, Branislav Bošanský, and Viliam Lisý. “Practical Performance of Re-
finements of Nash Equilibria in Extensive-Form Zero-Sum Games”. In: ECAI.
2014.

75

https://archive.org/details/theoryofgamesand030098mbp
http://en.wikipedia.org/w/index.php?title=Endgame%20tablebase&oldid=730651496
http://en.wikipedia.org/w/index.php?title=Endgame%20tablebase&oldid=730651496
http://en.wikipedia.org/w/index.php?title=Endgame%20tablebase&oldid=730651496

List of Figures

1 Matching Pennies . 6
2 Prisoner’s Dilemma . 6
3 ISP Routing Game . 7
4 Traffic Light . 7
5 Battle of Sexes . 8
6 The rule of liberty . 9
7 The Ko rule . 9

A.1 Game tree of (1,2)-Nim with 1 heap of 5 stones 12
A.2 Subgame induced by node 22 . 15

B.1 Non-symmetric positions for k 20
B.2 KRP(a2)-KBP(a3) . 22
B.3 Black to move wins in 154 moves. 23
B.4 119 moves to pawn’s first move 23
B.5 KRBN-KQN: White mates in 545. 24
B.6 The longest 7-man checkmate . 24
B.7 Mate in 544: g8 = N . 25

C.1 An immortal wall enabling an exact analysis during late endgame 27
C.2 Local game tree with evaluation of terminal nodes 31

D.1 The scheme of MCTS . 36
D.2 A shallow neural network with 3 layers 36
D.3 Comparison between policy and value network 37
D.4 Training the neural networks of AlphaGo: the pipeline and the ar-

chitecture . 38
D.5 Tournament with other programs and Fan Hui 39

E.1 An imperfect-information game tree with information sets 43
E.2 The strategic-form pay-off matrices 44
E.3 The sequence-form pay-off matrices 44

F.1 Extensive form of RPS . 49
F.2 An (imperfect-information) subgame S of RPS 50

G.1 A gadget game for endgame solving 53

H.1 A gadget game for re-solving subgames 56

I.1 Our max-margin gadget . 63
I.2 CFR+ iterations versus SM of refined strategies 66

76

List of Tables

1 Ranks in Go . 9

C.1 Possible database variants of local games 32
C.2 Reduction of search space by transposition table 33

77

List of Abbreviations

AI artificial intelligence. 5, 26

ANN artificial neural network. 36, 37

BR best response. 13, 14, 16, 43, 49–51, 60, 62, 63, 69

CBR counterfactual best response. 43, 56

CBV counterfactual best-response value. 44, 47, 53, 56, 57, 60, 61, 63, 67–69

CFR counterfactual regret minimization. 47, 48, 57, 65, 66, 69, 76

CFR-D counterfactual regret decomposition. 51, 58, 69

CGT combinatorial game theory. 3, 5, 10, 18, 26–29, 34

CNN convolutional neural network. 3, 37, 38

DEA data envelopment analysis. 68

DNN deep neural network. 37

DTM depth to mate. 21

EFG extensive-form game. 3, 4, 12, 43, 44, 47, 59, 62, 68, 69

EMO evolutionary multi-objective optimization. 68

ISP Internet Service Provider. 7, 76

LHE Limit Texas Hold’em. 5, 52, 55, 58

LP linear program. 44–48, 51–53, 57, 59, 62, 65, 69

MCCFR Monte Carlo counterfactual regret minimization. 47, 69

MCTS Monte Carlo tree search. 36, 38, 76

NE Nash equilibrium. 14, 17, 47, 48, 55, 58, 65, 69

NFG normal-form game. 4, 7

NLHE No-Limit Texas Hold’em. 5, 52, 65

NQE Not Quite an Endgame. 19

RPS Rock-Paper-Scissors. 3, 4, 6, 14, 49–51, 54, 57, 69, 76

SM subgame margin. 3, 59, 60, 65–67, 69, 76

VLP vector linear program. 67

78

	Introduction
	Preliminaries
	Game Theory
	Examples of Games
	The Game of Go
	Combinatorial Game Theory

	I Perfect Endgames of Perfect-Information Games
	Setting the Scene for Perfect Information
	Extensive Form for Perfect-Information
	Subgames
	Working Examples

	Chess Endgames
	What are Endgames in Chess?
	Endgame Tablebases
	Applications of Tablebases

	Go Endgames Using Ad-Hoc Mathematics
	Why Focus on Go Endgames?
	Partitioning into (Sub)games and Playing The Game-Sum
	Combinatorial Game Theory for the Game of Go
	Board Partition and Subgame Dependencies
	Local Search and Evaluation in the Endgame
	Storing Search Results into Database
	Pattern Learning
	Contributions of Combinatorial Game Theory to Go Endgames

	Go Endgames Using Neural Networks
	Game-Tree Search
	Neural networks
	Training Pipeline of Neural Networks
	Main Algorithm of AlphaGo
	Playing Strength

	II Imperfectness of Imperfect-Information Endgames
	Setting the Scene for Imperfect Information
	Extensive Form for Imperfect-Information
	Sequence Form
	Solving Games with Linear Programming
	Solving Games with Learning Algorithms
	Subgames Revisited

	Shortcomings of the Imperfect Information for Subgames
	An Intricate Example
	Naïve Re-solving of Rock-Paper-Scissors
	A New Hope for Subgames with Imperfect Information

	Endgame Solving
	Motivation and Overview
	Gadget Game
	Equivalent Linear Program
	Discussion

	CFR-D and Decomposition
	Motivation and Overview
	Gadget Game
	Equivalent Linear Program
	Discussion

	Subgame-Margin Maximization
	Motivation and Overview
	Subgame Margin
	Linear Program
	Equivalent Gadget Game
	Gadget-Game Counterfactual Values
	Experimental Results

	Ideas for Future Work
	Margins via Multi-Objective Optimization

	Conclusion
	List of Figures
	List of Tables
	List of Abbreviations

