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Abbreviations

LP linear program
ILP interval linear program

Notation

Sets

R set of real numbers
Rn set of real n× 1 vectors
Rm×n set of real m× n matrices
IR set of intervals
IRn set of interval n× 1 vectors
IRm×n set of interval m× n matrices
2X power set of X
S(A, b, c) set of optimal values of an interval linear program
M(A, b) (weak) feasible set of an interval linear program

Reals

A a real matrix
b = (b1, . . . , bn)T a real vector
0 = (0, . . . , 0)T vector of zeros
e = (1, . . . , 1)T vector of ones
In n× n identity matrix
f(A, b, c) optimal value of a linear program

Intervals

A an interval matrix
A,A lower and upper bound of an interval matrix A
Ac central matrix of an interval matrix A
A∆ radial matrix of an interval matrix A
b an interval vector

b, b lower and upper bound of an interval vector b
bc central vector of an interval vector b
b∆ radial vector of an interval vector b
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Introduction

Motivation

In the year 1980, mathematician and computer scientist László Lovász wrote [28]:
“If one would take statistics about which mathematical problem is using up most
of the computer time in the world, then (not counting database handling prob-
lems like sorting and searching) the answer would probably be linear program-
ming. The problem is very simple and natural indeed: given a set of inequalities
(constraints)

aix ≤ bi, (i = 1, . . . ,m)

where each ai is a real n-vector, each bi is a real number and x = (x1, . . . , xn)T is
unknown, find the maximum of

cx = c1x1 + · · ·+ cnxn

subject to the above constraints.” Nowadays, more than 30 years later, linear
programming continues to be a growing mathematical area of immense practical
importance.

Unfortunately, real-world problems are often accompanied by various inaccu-
racies and measurement errors in the input data, which can impair the results
obtained by solving a linear program. The need for extending classical linear pro-
gramming to include tools for modelling uncertainty can be dated back to 1955,
as documented by the paper Linear programming under uncertainty published by
Dantzig [11].

There are several different approaches to handling uncertainty and inexact-
ness in mathematical modelling, such as stochastic programming, fuzzy set theory,
parametric programming or interval analysis, each bearing their own advantages
and disadvantages. In this thesis, we will adopt the approach of interval linear
programming, which can be viewed as a special case of multiparametric pro-
gramming with interval domains, to obtain rigorous results covering all possible
scenarios that can occur in a given realistic linear programming model. Instead
of working with estimated or rounded quantities, we consider data in the form of
intervals enclosing the exact real values. Interval linear programming has been
applied in solving various practical problems, e.g. portfolio selection [18, 26], re-
sources and environmental systems management [9], solid waste management [22]
or chemical engineering problems [39].

In linear programming, there are two main questions connected with a given
problem: calculating the optimal value of the objective function and finding one
or more optimal solutions, provided the given problem is feasible and bounded.
The first question has also been well-studied in the context of interval linear
programming, yielding formulas for computing the lower and upper bound on the
optimal value. The question of finding optimal solutions for a general interval
linear program is, however, more complicated, and there are still many open
problems related to it. In case of a classical linear program, the set of optimal
solutions is a convex polyhedron, namely a face of the feasible region. However,
the introduction of interval coefficients may cause the optimal set to become
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non-convex or even disconnected. This leads to the fact that determining the
set of optimal solutions is one of the most challenging problems in interval linear
programming.

Main goals

The goal of this thesis is to investigate the set of all possible optimal solutions to
a linear program with the input data being perturbed in given intervals. We are
interested in the geometric and topological properties of the optimal solution set,
such as closedness, boundedness, connectedness or convexity. Additionally, we
also study the effects of the transformations used in linear programming (rewriting
inequalities into equations and vice versa, introducing non-negative variables) on
the optimal set of an interval program.

Since it is in general difficult to determine the exact optimal solution set of an
interval linear program, finding a tight approximation or enclosure of the optimal
set is also desirable. We will review some of the known methods for computing
an approximation and examine other possible approaches to this problem.

Related works

A thorough overview of interval linear programming, as well as some other tech-
niques of dealing with uncertainty in linear programming, can be found in the
book Linear Optimization Problems with Inexact Data by Fiedler et al. [12].
Regarding interval optimization, the book discusses mainly feasibility of interval
linear systems and the problem of computing the optimal value range of interval
linear programs.

A broader summary of the current state of the art is presented in the article
Interval Linear Programming: A Survey by Hlad́ık [19]. The survey is focused
on three main topics: feasibility, boundedness and optimality. It also addresses
the question of characterizing the optimal solution set in a general interval linear
program, and in some special cases (basis stability, linear programs with interval
objective or right-hand side).

From an algorithmic point of view, we are interested in computing an ap-
proximation of the optimal solution set of an interval linear program. The first
algorithms designed to compute guaranteed bounds for optimal vertices and the
optimal value used an interval extension of the simplex method [4, 23, 30]. Some
methods use decomposition of the given interval program into submodels, such
as the best and the worst case method [2, 10] or the enhanced-interval linear
programming model [47]. In this thesis, we will review algorithms based on the
description of the optimal set using duality [20]. Another approach is to exploit
basis stability [21, 25], which significantly simplifies the problem of finding the
optimal solutions.

Structure of the thesis

One of the basic tools used in interval linear programming is interval arithmetic
and algebra. In Chapter 1, we extend the operations and objects known from
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real numbers to the case of intervals and introduce the necessary terminology of
interval computations. We also briefly discuss the complications to be aware of
when using interval arithmetic.

Chapter 2 summarizes the notions used in classical linear programming and
introduces their counterparts and extensions, which are used in interval linear
programming. Other approaches to dealing with uncertainty are also reviewed.

An overview of the theory of interval linear programming is presented in Chap-
ter 3. We begin by characterizing the feasible set of an interval program and state
the Oettli–Prager theorem and the Gerlach theorem, which provide a description
of the feasible set for systems of interval linear equations and inequalities, re-
spectively. We also investigate the interval variants of transformations commonly
used in linear programming. Further, we review the notion of duality and use the
principle of strong duality to derive a general description of the optimal solution
set in interval linear programming. The last section of the chapter focuses on
basis stability, which allows for a simplification of the description.

In Chapter 4, two existing methods for computing an outer approximation
of the optimal solution set are reviewed: the orthant decomposition method and
an iterative contractor. We also introduce another decomposition method, which
is based on complementary slackness in linear programming.

The main topic of the thesis, topological, metric and geometric properties of
the optimal solution set, are studied in Chapter 5 and Chapter 6. The properties
discussed are: closedness, boundedness, connectedness, convexity and polyhe-
drality. We review the previously known properties and derive some new results.
Apart from the general case, we study the class of interval linear programs with
a fixed coefficient matrix, which allows us to strengthen some of the statements.
We also show that in this special case, it is possible to transform equation con-
straints into inequalities and impose non-negativity.
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1 Interval computations

1.1 Real intervals

This section introduces the necessary terminology and notation that will be used
throughout the thesis. Since we will work with uncertainty represented by interval
data, let us begin by defining a real interval and extending familiar arithmetic
and set-theoretic operations to the set of intervals.

Definition 1.1. Given x, x ∈ R such that x ≤ x, we define a closed real interval
x = [x, x] as the set

{x ∈ R : x ≤ x ≤ x}.

The values x, x are called the lower bound and the upper bound of the interval x,
respectively.

Notation. Hereinafter, real intervals will be denoted by bold lowercase letters.
The set of all closed real intervals will be denoted by IR1.

Other types of intervals can be obtained by replacing the weak inequality in
the definition by a strict inequality (open or half-open intervals) or by changing
the underlying set (e.g. complex intervals). However, our work will focus mainly
on closed intervals over the set of real numbers. Unless specified otherwise, the
term “interval” will refer to the sets characterized by Definition 1.1.

Definition 1.2. An interval [x, x] with x = x is said to be degenerate.

Since a degenerate interval [x, x] only contains a single number, it is often
identified with the number x itself, therefore it holds that x = [x, x]. We will also
employ this convention throughout the thesis.

Definition 1.3. Let x = [x, x] be a real interval, then:

(a) the midpoint of x is defined as xc = 1
2
(x+ x),

(b) the radius of x is defined as x∆ = 1
2
(x− x),

(c) the width of x is defined as w(x) = x− x,

(d) the magnitude of x is defined as mag(x) = max{|x|, |x|}.

Using these terms, we can equivalently describe an interval x by its midpoint-
radius representation (as opposed to the endpoint representation introduced in
Definition 1.1) in the form

[xc − x∆, xc + x∆] = {x ∈ R : |x− xc| ≤ x∆}.

When using intervals to represent uncertainty, this is a natural approach to denote
an approximate value xc with an error of at most ±x∆.

1Some authors choose to include the empty set or unbounded intervals in IR, however, we
treat these cases separately.
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1.1.1 Interval arithmetic

The arithmetic of real numbers can be naturally generalized to intervals. For
a binary arithmetic operation ◦ ∈ {+,−, ·, /} defined on R, we can introduce the
corresponding interval operation as follows:

x ◦ y = {x ◦ y : x ∈ x, y ∈ y}.

This definition leads to explicit formulas for calculating the lower and upper
bounds of the sum, difference, product and quotient of two intervals:

x + y = [x+ y, x+ y],

x− y = [x− y, x− y],

x · y =
[
min

{
xy, xy, xy, xy

}
,max

{
xy, xy, xy, xy

}]
,

x / y = x · 1/y,where 1/y = [1/y, 1/y] and 0 /∈ y.

The formula for multiplication of two intervals can be further simplified by
testing the signs of the lower and upper bounds of given intervals. In most cases
it is possible to determine which of the four products will be the endpoints of the
resulting interval.

Interval division, as defined above, assumes that the interval in the denomi-
nator does not contain 0, i.e., it is either strictly positive or strictly negative. If
we need to allow division by an interval containing 0, we can employ the extended
interval arithmetic (see [32, pp. 109–115]). In this case, division by the degen-
erate interval [0, 0] returns the empty set, and unbounded intervals are used to
describe the result of division when 0 ∈ y.

We can observe that some properties of real arithmetic are also transferred
to intervals, as stated by Lemma 1.1 and Lemma 1.2. However, other properties,
such as the existence of inverse elements or the distributivity of multiplication
over addition are lost in the generalization.

Lemma 1.1. Let x,y, z ∈ IR, then the following properties of interval addition
and multiplication hold:

x + y = y + x, x · y = y · x, (commutativity)

(x + y) + z = x + (y + z), (x · y) · z = x · (y · z), (associativity)

x · (y + z) ⊆ x · y + x · z. (subdistributivity)

Lemma 1.2. For every x ∈ IR it holds that

[0, 0] + x = x, (additive identity)

[1, 1] · x = x. (multiplicative identity)

When interval arithmetic is implemented on a machine with limited precision,
outward rounding is used in order to guarantee the enclosure of the result obtained
in real interval arithmetic. During the computation, lower bound of the resulting
interval is rounded down to its machine-representable predecessor and the upper
bound is rounded up to its machine-representable successor. For more information
about machine interval arithmetic see [1, pp. 39–49].
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We can also introduce an interval generalization of other real-valued func-
tions. We will define such a generalization by a natural requirement that the
real function coincides with its interval counterpart for degenerate intervals (real
numbers).

Definition 1.4. Let f : Rn → R, the function [f ] : IRn → IR is an interval
extension of f , if it satisfies the property

[f ](x1, . . . , xn) = f(x1, . . . , xn)

for all x1, . . . , xn ∈ R.

1.1.2 Dependency problem

One of the main drawbacks of interval arithmetic is the so-called dependency
problem. When calculating the image of a real function over an interval domain,
the use of interval arithmetic can lead to overestimation of the result. This is
due to the fact that interval evaluation of an expression does not preserve the
dependency among multiple occurrences of a variable. As an illustration, consider
the following example.

Example. Given a real-valued function g(x) = x · x and an interval x = [−5, 5],
we would like to find the image of x under the function g. Substituting for x in
the function rule we obtain the result [−5, 5] · [−5, 5] = [−25, 25].

However, if we use a simplified expression in the form g(x) = x2 with a single
occurrence of the variable x and evaluate [−5, 5]2 = {x2 : x ∈ [−5, 5]}, we obtain
the exact image of x, which is the interval [0, 25]. The overestimation in the first
case appeared because we described the set {x · y : x ∈ [−5, 5], y ∈ [−5, 5]}, thus
losing the dependency between the two occurrences of x.

Due to the dependency problem, it is important to bear in mind that equiv-
alent transformations used in real arithmetic may not result in an equivalent
expression when working with intervals. The loss of dependency also causes the
non-existence of additive inverses in interval arithmetic: the equality x − x = 0
only holds for degenerate intervals. In general, we have

x− x = [x− x, x− x] = [−1, 1] · w(x).

1.1.3 Set operations

Since intervals are defined as sets of real numbers, we can also apply set operations
to them. Unfortunately, the resulting set is in general not an interval. This is
true even for basic operations such as intersection or union.

Definition 1.5. Let x,y ∈ IR, we define the intersection and union of x, y as

x ∩ y = {z ∈ R : z ∈ x ∧ z ∈ y},
x ∪ y = {z ∈ R : z ∈ x ∨ z ∈ y}.

However, if the intersection of x and y is non-empty, it can be equivalently
described as the interval

[
max{x, y},min{x, y}

]
. The union of any two disjoint

non-empty intervals is not an interval itself, it is therefore often more convenient
to work with an interval enclosing the union.
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Definition 1.6. Let x,y ∈ IR, we define the interval hull of x, y as

x ∪ y =
[
min{x, y},max{x, y}

]
.

1.2 Interval matrices

Intervals can also be used in matrix theory, thus providing a mathematical tool for
representing arrays of inexact data, e.g. in linear algebra or linear programming.
We will begin this section by reviewing the necessary notation from the classical
matrix theory and then extend it to the interval case.

Notation. The symbol Rm×n will be used to denote the set of all real m-by-n
matrices. For a matrix A ∈ Rm×n, we will denote by aij the coefficient of A in
the i-th row and j-th column. For a vector x = (x1, . . . , xn) the notation diag(x)
will stand for the diagonal matrix

x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 .

The inequality relations ≤, < on the set of real (interval) matrices, as well as
the absolute value |A|, are understood element-wise.

Definition 1.7. Given two matrices A,A ∈ Rm×n such that A ≤ A, we define
a real interval matrix A = [A,A] as the set {A ∈ Rm×n : A ≤ A ≤ A}. The
matrices A,A are called the lower bound and the upper bound of the interval
matrix A, respectively.

There exists an alternative definition of interval matrices: an interval matrix
can be viewed as a matrix, whose coefficients are intervals. A real matrix then
belongs to the interval matrix if each of its coefficients belongs to the correspond-
ing interval coefficient. Using the bounds introduced in Definition 1.7 we can
characterize the interval matrix A by its coefficients [aij, aij], where aij, aij are
the coefficients of the lower and upper bound of A, respectively.

Notation. Real interval matrices will be denoted by bold uppercase letters. The
set of all real interval m-by-n matrices will be denoted by the symbol IRm×n.
The coefficient of the interval matrix A in the i-th row and j-th column will be
denoted by aij.

In analogy to the case of one-dimensional intervals, we can also describe an in-
terval matrix using its central and radial matrix:

Definition 1.8. Let A = [A,A] ∈ IRm×n, then:

(a) the central matrix of A is defined as Ac = 1
2
(A+ A),

(b) the radial matrix of A is defined as A∆ = 1
2
(A− A).
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Furthermore, we can also naturally extend arithmetic operations on matrices
to the interval case, using the definitions introduced in Section 1.1.1. A special
case of an interval matrix is an interval vector, which is a matrix with the di-
mensions n × 1 for some n ∈ N. An interval vector can also be thought of as
the Cartesian product of n real intervals. Geometrically, we can represent in-
terval vectors as 2-dimensional rectangles, 3-dimensional rectangular cuboids or
so-called orthotopes in higher dimensions. Thanks to this representation, interval
vectors are also known as interval boxes.

x

x

y

y

z

z

Figure 1.1: An interval vector (box) in R3.

Notation. Since interval vectors can be viewed as a generalization of real in-
tervals into higher dimensions, we will denote them by bold lowercase letters.
Should any confusion arise, the distinction will be made by stating the dimension
of the element. The symbol IRn will be used instead of IRn×1 to denote the set
of all n-dimensional interval vectors.

Interval vectors play a crucial role in interval analysis: they allow us to extend
the notion of an interval hull introduced in Definition 1.6 to arbitrary bounded
sets, even in higher dimension:

Definition 1.9. Let a bounded set S ⊆ Rn be given. An interval vector x ∈ IRn

satisfying S ⊆ x is said to be an interval enclosure of the set S. The interval
hull of S is defined as the interval vector

�S =
⋂
{x ∈ IRn : S ⊆ x} .
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2 Linear programming under
uncertainty

2.1 Linear programming

Let us now review the basics of classical linear programming, which will be further
generalized to include uncertainty described by interval coefficients.

Definition 2.1. Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, a linear program is an opti-
mization problem in the form

minimize
x∈Rn

cTx

subject to Ax = b
x ≥ 0.

(LP)

A linear program (abbr. LP) is therefore the problem of minimizing a linear
function cTx (called the objective function) over a set described by linear con-
straints. It is easy to see that a maximization problem with a linear objective
and linear constraints can also be restated as a linear program in the form given
in Definition 2.1. We will further define some terms related to the solution set of
a linear program.

Definition 2.2. For A ∈ Rm×n, b ∈ Rm, the feasible set of the corresponding
linear program is the set

M(A, b) = {x ∈ Rn : Ax = b, x ≥ 0}.

A linear program is said to be feasible if M(A, b) 6= ∅, otherwise it is infeasible.
A point x ∈M(A, b) is called a feasible solution.

Notation. Note that Definition 2.1 can be equivalently restated with the feasible
set in various different forms. In this thesis, we will refer to one of the following
three basic types of (interval) linear programs:

(I) M(A, b) = {x ∈ Rn : Ax = b, x ≥ 0},

(II) M(A, b) = {x ∈ Rn : Ax ≤ b},

(III) M(A, b) = {x ∈ Rn : Ax ≤ b, x ≥ 0}.

In linear programming, we can define the feasible region of an LP using any of
these sets. However, such a transformation is not always possible in the case of in-
terval linear programs due to the dependency problem discussed in Section 1.1.2.
A distinction between these forms will thus be necessary. Transformations be-
tween linear programs (and their interval counterparts) of type (I), (II) and (III)
are further addressed in Section 3.2.

Definition 2.3. A halfspace in Rn is a set in the form

{x ∈ Rn : aTx ≤ b}

11



for some a ∈ Rn and b ∈ R. An intersection of finitely many halfspaces is called
a (convex) polyhedron. Further, we define a face of a polyhedron P as the set

{x ∈ P : aTx = b},

where a ∈ Rn, b ∈ R satisfy aTy ≤ b for all y ∈ P .

Using the description ofM(A, b) in form (II), we directly see that the feasible
set of a linear program is a polyhedron.

In linear programming, we are mainly interested in feasible solutions, which
yield the best (in our case minimal) value of the objective function. Definition 2.4
gives a formal description of such solutions.

Definition 2.4. A point x∗ ∈M(A, b) is called optimal, if for each y ∈M(A, b)
the inequality cTx∗ ≤ cTy holds.

Notation. We will denote by S(A, b, c) the set of all optimal solutions to (LP).
The optimal objective value will be denoted by

f(A, b, c) = inf
x∈M(A,b)

cTx.

It is easy to see that an optimal solution does not always exist, for example
if the given linear program is infeasible or if the objective function is unbounded
on the feasible set. For each linear program, one of the three cases occurs:

• f(A, b, c) =∞, then M(A, b) = ∅ and the problem is infeasible,

• f(A, b, c) = −∞, then the problem is said to be unbounded,

• f(A, b, c) is finite, then there exists an optimal solution x∗ with the objective
value f(A, b, c) = cTx∗.

Note that if c = 0, then the objective value for each feasible solution is also 0,
and the linear program is reduced to a linear system.

The set of optimal solutions to a linear program is always a convex polyhedron,
which is convenient when we formulate its description. Moreover, the optimal set
possesses the following property (see also Figure 2.1):

Theorem 2.1 ([15, p. 15]). The set of all optimal solutions S(A, b, c) to a linear
program forms a face of the polyhedron M(A, b).

cTx

S(A, b, c)

M(A, b)

Figure 2.1: The set of all optimal solutions to a linear program.
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A crucial part in the theory of linear programming is based on the notion
of duality. Duality develops a relationship between optimal solutions of a given
linear program and the optimal solutions of another program, and allows for
an advantageous description of the optimal set. We postpone the overview of
definitions and results related to the theory of duality in linear programming
to Section 3.3, where we also present applications of duality in interval linear
programming.

2.2 Linear programming with interval data

We now proceed to generalize Definition 2.1 to include problems with inexact
coefficients. For this purpose, we will utilize interval arithmetic and algebra
introduced in Chapter 1. Other approaches for working with inexact data in
linear programs will be briefly reviewed in Section 2.3.

Definition 2.5. Given A ∈ IRm×n, b ∈ IRm, c ∈ IRn, an interval linear program
is a family of linear programs

minimize
x∈Rn

cTx

subject to x ∈M(A, b).

with coefficients satisfying A ∈ A, b ∈ b, c ∈ c and the feasible set M(A, b) in
one of the forms (I), (II) or (III). A particular linear program in such family is
called a scenario.

If a scenario is uniquely determined by a subset of the coefficients, e.g. when
some of the coefficients are fixed real values, we will also use the word “scenario”
to refer to such subset.

Notation. We will also write an interval linear program (abbreviated by ILP1)
defined by the triplet (A, b, c) as

minimize
x∈Rn

cTx

subject to x ∈M(A, b).

Based on the form of the feasible setM(A, b), we will refer to an ILP as a problem
of type (I), (II) or (III).

Definition 2.6. An interval linear program is said to be strongly feasible, if it is
feasible for each scenario. It is said to be weakly feasible, if there exists at least
one feasible scenario.

For a characterization of strong and weak feasibility2 in interval linear sys-
tems see [43]. Similarly, we can generalize other definitions of properties used in
linear programming to ILPs, such as boundedness of the objective or existence
of optimal solutions. An overview of results in this area can be found in [19].
Furthermore, the following chapters will be devoted to describing the properties
of the optimal solution set in an ILP.

1Depending on the context, the abbreviation “ILP” is also commonly used to denote integer
linear programs.

2Note that in [43], the term “feasibility” is reserved for non-negative solutions and the term
“solvability” is used instead.
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Notation. We will denote by S(A, b, c) the set of optimal solutions to an ILP
over all scenarios, i.e.,

S(A, b, c) =
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Definition 2.7. A solution x ∈ S(A, b, c) is called weakly optimal.

Unless stated otherwise, we use the word “optimal” to refer to weakly optimal
solutions. Unlike the set of all optimal solutions of a linear program, the set
S(A, b, c) of an ILP is, in general, not a polyhedron. This is illustrated by the
following problem:

Example. Consider the interval linear program

minimize [0, 1]x1 + x2

subject to x1 + x2 ≥ 2,
x1 ≥ 0,
x2 ≥ 1.

(1)

The optimal solution set for the scenario determined by the objective function
0x1 + x2 is the ray (1 + t, 1) with t ≥ 0. For the scenario 1x1 + x2, we have the
optimal set

M(A, b) ∩ {(x1, x2) ∈ R2 : x1 + x2 = 2}.
For any other scenario αx1 + x2 with 0 < α < 1, there is a unique optimal
solution in the vertex (1, 1). Obviously, this set is non-convex (see Figure 2.2)
and therefore not a polyhedron.

x2

x1

1 2

1

2

S(A, b, c)

M(A, b)

Figure 2.2: The feasible set (gray) and the set of optimal solutions (thick
black) of ILP (1).

Notation. We will denote by f, f the lower and the upper bound on the optimal
objective value of an interval linear program, respectively. For an ILP defined by
the triplet (A, b, c) we have

f(A, b, c) = inf {f(A, b, c) : A ∈ A, b ∈ b, c ∈ c},
f(A, b, c) = sup {f(A, b, c) : A ∈ A, b ∈ b, c ∈ c}.

Even though the set of optimal values does not always form an interval, we are
often interested in the best and the worst possible value of the objective function,
which is optimal for some scenario. The problem of computing the range of the
optimal value [f(A, b, c), f(A, b, c)] is well-studied, and is one of the main topics
adressed in interval linear programming, see [19, 42].
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2.3 Other approaches to handling uncertainty

For the sake of completeness, we also briefly present other approaches to handling
inexact or uncertain data in (linear) optimization.

One of the fields dealing with optimization problems affected by uncertainty
is robust optimization [5]. The main idea of robust optimization is to consid-
er solutions, which are feasible for any scenario of the given problem and thus
are immune to perturbations in the data. Instead of solving a family of linear
programs with interval coefficients, we can formulate a single optimization prob-
lem (called the robust counterpart) and compute a stable solution, which is also
optimal in some sense.

Another popular approach to optimization under uncertainty is represented
by stochastic programming [7]. The stochastic approach is useful for problems, in
which the probabilistic distribution of the uncertain data is either available from
the statistical data or can be estimated. While in interval linear programming
we assume that the values are distributed uniformly, in some cases more complex
distributions can help better capture the nature of uncertainty in the problem.

Fuzzy optimization [37] is an approach, which uses the theory of fuzzy sets to
model ambiguity and vagueness present in the problem formulation. By employ-
ing membership functions, a generalization of characteristic functions for classical
sets, we are able to describe the degree to which an element belongs to a fuzzy
set. Such a membership function can then be used to characterize the constraints
and also the objective function of an optimization problem.

In the following chapters, we will focus solely on uncertainty modelled by
interval linear programs. Unlike robust optimization, our interest is the union of
all optimal solution sets over all possible scenarios of a given problem. There are
no further assumptions on the probability distribution of the given data. The
inexactness is represented crisply by the lower and upper bounds on the interval
coefficients.
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3 Interval linear programming

3.1 Feasible set

We have already encountered the question of weak and strong feasibility of an in-
terval linear program in Section 2.2. In this thesis, we will further address only
weak feasibility and related weakly feasible solutions. Later, we will employ the
results presented in this section to derive a description of the set of all optimal
solutions.

Definition 3.1. Given A ∈ IRm×n, b ∈ IRm, the interval linear system Ax = b
is a family of linear systems {Ax = b : A ∈ A, b ∈ b}. A vector x ∈ Rn is a weak
solution to the interval linear system Ax = b if there exist A ∈ A, b ∈ b such
that Ax = b.

We can formulate a similar definition for the feasible set of a system of linear
interval inequalities Ax ≤ b. The following two theorems provide a characteriza-
tion of weak solutions in interval linear systems. Theorem 3.1, which was proved
in 1964 by Oettli and Prager, is one of the most important tools concerning the
description of weak solutions. Theorem 3.2 is due to Gerlach (1981) and gives an
analogous description of the solution set for systems of interval linear inequalities.

Theorem 3.1 (Oettli and Prager [35]). Let A ∈ IRm×n, b ∈ IRm be given.
A vector x ∈ Rn is a weak solution to the system Ax = b if and only if it satisfies

|Acx− bc| ≤ A∆|x|+ b∆.

Theorem 3.2 (Gerlach [14]). Let A ∈ IRm×n, b ∈ IRm be given. A vector x ∈ Rn

is a weak solution to the system Ax ≤ b if and only if it satisfies

Acx ≤ A∆|x|+ b.

These theorems also show the basic geometric properties of the feasible set of
an interval system: it can be non-convex, but it becomes a convex polyhedron if
we restrict the signs of the variables.

Example (Inspired by [8]). Consider the interval linear system

[−1, 1]x1 + x2 = 0,

[−1, 1]x2 = 1,

x1 = [−3, 3].

(2)

By applying the Oettli–Prager theorem, we obtain a description of the feasible
set by inequalities∣∣∣∣∣∣

0 1
0 0
1 0

(x1

x2

)
−

0
1
0

∣∣∣∣∣∣ ≤
1 0

0 1
0 0

(|x1|
|x2|

)
+

0
0
3

 ,

or equivalently |x2| ≤ |x1|, 1 ≤ |x2| and |x1| ≤ 3. The feasible set, which is clearly
non-convex, is illustrated in Figure 3.1.
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x2

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Figure 3.1: The feasible set of interval system (2).

The characterizations of weak feasible sets given by Theorem 3.1 and Theo-
rem 3.2 imply that a system of interval linear equations or inequalities can be
solved by decomposition into an exponential number of linear problems, as illus-
trated by Theorem 3.3. In general, there is no known polynomial-time algorithm
to solve these problems, since both of them are NP-hard.

Theorem 3.3 ([43, p. 57]). A vector x ∈ Rn is a weak solution to the interval
system Ax ≤ b if and only if it solves the linear system

(Ac − A∆ diag(p))x ≤ b

for some p ∈ {±1}n.

However, the situation is quite different for systems with non-negative vari-
ables, for which polynomial-time methods are available.

Theorem 3.4 ([43, p. 49]). A vector x ∈ Rn is a weak solution to the interval
system Ax = b, x ≥ 0 if and only if it solves the linear system

Ax ≤ b,−Ax ≤ −b, x ≥ 0.

Theorem 3.5 ([43, p. 58]). A vector x ∈ Rn is a weak solution to the interval
system Ax ≤ b, x ≥ 0 if and only if it solves the linear system

Ax ≤ b, x ≥ 0.

3.2 Transformations

As already mentioned, an ILP may not have an equivalent representation in
all of the forms (I), (II) and (III), due to the dependency problem described
in Section 1.1.2. We will now discuss the basic transformations used in linear
programming in the context of ILP.

Clearly, we can still rewrite a maximization problem into a minimization prob-
lem by taking the negative of the objective function. Similarly, the multiplication
of a constraint by −1 can be used to reverse the inequality relation.
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We postpone the results on the transformations of interval linear programs
with a fixed coefficient matrix to Section 6.1.3. Note that in this special case,
some of the transformations, which are not possible in the general case, become
valid, in the sense that they preserve the optimal set.

3.2.1 Equations to inequalities

Let us consider an interval linear equation aTx = b. Following the technique
used in linear programming, we would replace the equation by two inequalities:
aTx ≤ b and aTx ≥ b. As we can see, this transformation has introduced two
occurrences of the interval coefficients a, b, which are in the latter formulation
independent.

Example. Consider the following interval linear program:

maximize x1

subject to [0, 1]x1 − x2 = 0,
x2 ≤ 1,

x1, x2 ≥ 0.

(3)

The set of all optimal solutions of problem (3) comprises the values x1 ∈ [1,∞)
and x2 = 1. Splitting the equation into two inequality constraints, we obtain the
program

maximize x1

subject to [0, 1]x1 − x2 ≤ 0,
[0, 1]x1 − x2 ≥ 0,

x2 ≤ 1,
x1, x2 ≥ 0.

(4)

Let us now look at the scenario with inequalities 1x1−x2 ≤ 0 and 0x1−x2 ≥ 0. It
is obvious that the only feasible solution (and therefore also the optimal solution)
is the vector (0, 0). This shows that problem (4) is, indeed, a relaxation of the
original problem.

However, if we are only interested in the set of all feasible solutions to an in-
terval system, this type of transformation may still be usable. By applying Theo-
rem 3.1 to the equation aTx = b, we obtain the following description of the weak
solution set:

acx− bc ≤ a∆|x|+ b∆,

−acx+ bc ≤ a∆|x|+ b∆.

If we compare this description to the one obtained by applying Theorem 3.2 to
the two inequalities aTx ≤ b,aTx ≥ b:

aTc x ≤ aT∆|x|+ b,

−aTc x ≤ aT∆|x| − b,

we can see that both descriptions are identical. Therefore, it is possible to use
this type of transformation when studying the weak feasible set, although it
changes the structure of the interval system. This type of transformation was
also addressed in [27].

18



3.2.2 Inequalities to equations

The transformation of an inequality constraint into an equation by adding slack
variables does not break any dependencies, and can therefore be used in the same
manner as in linear programming. A system of interval linear inequalities in the
form Ax ≤ b can be equivalently restated (with respect to the set of weak feasible
solutions) as the interval system with non-negativity constraints

Ax+ Iy = b,

y ≥ 0.

3.2.3 Non-negative variables

In linear programming, an often used trick is to replace an unrestricted variable
x ∈ R by the difference of two non-negative variables x+, x−, thus introducing
the substitution x = x+−x−. However, this substitution is not always possible in
interval linear programming, since we would choose the values from the interval
coefficients of x+ and x− independently. The following example provides a better
insight into the nature of dependency in this context and shows that this type of
transformation can change the feasible set of an interval system.

Example. Consider the interval system

[1, 2]x ≤ 0, (5)

and its transformation

[1, 2]x+ − [1, 2]x− ≤ 0,

x+, x− ≥ 0.
(6)

The point x+ = 2, x− = 1 solves system (6) for the scenario (1, 2), since it holds
that 1 · 2− 2 · 1 = 0. Yet, it is easy to see that x = x+ − x− = 1 does not belong
to the solution set of the original system (5).

3.3 Duality

Recall that the optimal solution set S(A, b, c) of an ILP is the union of all optimal
solutions over all possible scenarios. We will now review an important notion used
in linear programming: the principle of duality. Together with Theorem 3.1 and
Theorem 3.2, giving the characterization of the solution sets in interval linear
systems, we will use duality to derive a characterization and an approximation
of the set S(A, b, c). This approach was also presented in [19]. Let us begin by
defining the dual counterpart of a linear program.

Definition 3.2. Given a linear programming problem in the form (LP) (called
primal), we define the dual problem as the linear program

maximize
y∈Rm

bTy

subject to ATy ≤ c.
(LPd)
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Similarly, we can define a dual interval linear program to an ILP. For example,
a dual to an ILP of type (I) is the problem

maximize
y∈Rm

bTy

subject to ATy ≤ c.

The following theorems summarize the relationship between the primal and
the dual problem and show the importance of duality in linear programming. The
proofs of Theorem 3.6 and Theorem 3.7 can be found in [42].

Theorem 3.6 (Weak duality). Let x ∈ Rn, y ∈ Rm be feasible solutions of the
primal and dual problem, respectively. Then the inequality cTx ≥ bTy holds.

Theorem 3.7 (Strong duality). Consider a linear program (LP) along with its
dual (LPd) and let x ∈ Rn, y ∈ Rm be feasible solutions to the respective problems.
Then (x, y) is a pair of primal and dual optimal solutions if and only if

cTx = bTy,

and also, if and only if
xT (c− ATy) = 0.

Using the principle of duality, we can show that for each linear program, one
of the following situations occurs:

• (LP) is infeasible and (LPd) is unbounded,

• (LP) is unbounded and (LPd) is infeasible,

• both problems are infeasible,

• both problems are feasible and have optimal solutions with the same optimal
objective value.

Let us now use the weak and strong duality properties to derive a description
of the optimal solution set of a linear program by means of a system of linear
equations and inequalities.

Corollary 3.8. Let x ∈ Rn, y ∈ Rm be given. Then x is an optimal solution to
the primal problem (LP) and y is an optimal solution to the dual problem (LPd)
if and only if they solve the system

cTx = bTy,

Ax = b, x ≥ 0,

ATy ≤ c.

(7)

We will now use the theory of duality in linear programming to derive a char-
acterization of the optimal solution set of an interval linear program, without
any further assumptions about the structure or properties of the problem. As
we have seen, duality can be used to transform the problem of finding the set
of optimal solutions to a linear program into a linear feasibility problem. Using
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Corollary 3.8, we employ a similar technique for finding the optimal solution set
of an ILP.

Let us now consider an ILP of type (I), i.e.,

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0.

The optimal solutions to every linear program in this family can be characterized
as x-solutions to system (7). By formulating an interval counterpart of this
system, we introduce an overestimation of the optimal solution set due to the
dependency problem. Therefore, the optimal set S(A, b, c) is a subset of the set
of x-solutions to the interval system

cTx = bTy, Ax = b, x ≥ 0, ATy ≤ c.

Using Theorem 3.1 and Theorem 3.2, it is possible to rewrite this system as

|cTc x− bTc y| ≤ cT∆|x|+ bT∆|y|,
|Acx− bc| ≤ A∆|x|+ b∆, x ≥ 0,

ATc y − AT∆|y| ≤ c.

We can further simplify the description by employing the fact that x is non-
negative, therefore we have |x| = x. The inequality |Acx − bc| ≤ A∆x + b∆ can
then be restated as

−A∆x− b∆ ≤ Acx− bc ≤ A∆x+ b∆,

which is by definition of the central and radial matrix equivalent to −Ax ≤ −b
and Ax ≤ b. Similarly, we can split the objective value constraint into two
inequalities, which yields the following characterization:

cTc x− bTc y ≤ cT∆x+ bT∆|y|,
cTc x− bTc y ≥ −cT∆x− bT∆|y|,
Ax ≤ b,−Ax ≤ −b, x ≥ 0,

ATc y − AT∆|y| ≤ c.

(8)

We can also formulate a similar characterization for an ILP of type (II), based
on the following primal–dual system:

cTx = bTy, Ax ≤ b, ATy = c, y ≤ 0.

The resulting system is

cTc x− bTc y ≤ cT∆|x| − bT∆y,
cTc x− bTc y ≥ −cT∆|x|+ bT∆y,

Acx− A∆|x| ≤ b,

A
T
y ≤ c,−ATy ≤ −c, y ≤ 0.

21



For an ILP of type (III), we have the interval system

cTx = bTy, Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0

and the simplified reformulation

cTx− bTy ≤ 0,−cTx+ bTy ≤ 0,

Ax ≤ b, x ≥ 0,

A
T
y ≤ c, y ≤ 0.

(9)

Notice that system (9) consists of linear constraints only. This is thanks to the
sign restrictions x ≥ 0 and y ≤ 0, which allowed us to express the absolute
values. If we were able to impose such a restriction on the free variables in the
previous cases, we would also obtain a purely linear system. This idea leads to
a decomposition method for dealing with the non-linearity caused by the absolute
values, which is further discussed in Section 4.1.

3.4 Basis stability

The set of all optimal solutions of an interval linear program may be difficult to
describe exactly, in general. However, under some additional assumptions, we
may be able to obtain a simple explicit description. In this section, we consider
a class of ILPs having a stable basis, which is optimal for every scenario.

In the following definitions, we consider an (interval) linear program of type (I).
First, we review the definition of a basis used in conventional linear programming
and the conditions for its optimality.

Definition 3.3. A matrix A ∈ Rn×n is called non-singular, if there exist a matrix
B ∈ Rn×n such that AB = BA = In. Otherwise, the matrix A is singular.
An interval matrix A ∈ IRn×n is called regular, if each A ∈ A is non-singular. If
there exists a singular matrix A ∈ A, then A is said to be singular.

Notation. Given a matrix A ∈ IRm×n and a set B ⊆ {1, . . . , n}, we denote by
the symbol AB the restriction of A to the columns indexed by elements of the
set B.

Definition 3.4. Let a linear program be given by the triplet (A, b, c). The
index set B ⊆ {1, . . . , n} is said to be a basis, if the matrix AB is non-singular.
Furthermore, B is called feasible, if A−1

B b ≥ 0 holds and it is called optimal, if it
is feasible and for N = {1, . . . , n}\B we have

cTN − cTBA−1
B AN ≥ 0.

A basic solution (xB, xN) with xB = A−1
B b and xN = 0 is called non-degenerate,

if xB > 0 holds.

The feasibility condition implies that the basic solution defined as xB = A−1
B b,

xN = 0 is feasible and, moreover, the optimality condition ensures that such
a solution is also optimal. Theorem 3.9, which is also commonly referred to as
“the fundamental theorem of linear programming”, emphasizes the importance
of basic solutions in linear programming. It also provides the idea behind the
simplex method, which is one of the main algorithms used for solving linear
programs.
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Theorem 3.9 ([29, p. 21]). Let a linear program be given in the form (LP),
where A ∈ Rm×n has full row rank m. Then, the following properties hold:

a) if there is a feasible solution, then there also exists a basic feasible solution,

b) if there is an optimal solution, then there also exists a basic optimal solution.

Let us now extend the definition of a basis to the interval case, by introducing
the related concept of basis stability.

Definition 3.5. Let a basis B ⊆ {1, . . . , n} be given. An ILP is said to be
B-stable, if B is an optimal basis for each scenario of the ILP. Furthermore, it
is called non-degenerate B-stable, if each scenario has a non-degenerate optimal
basic solution x with the basis B, and it is called unique B-stable if it is B-stable
and the optimal solution in each scenario is unique.

Basis stability is an important notion in interval linear programming, since
it allows for a simplification of many fundamental problems. When assuming
a stronger type of stability, so-called unique B-stability, we obtain an exact de-
scription of the optimal solution set by a system of linear inequalities. If we
consider a unique B-stable ILP with a basis B, then the set of optimal solutions
is the set of feasible solutions to the interval system

ABx = b,

xB ≥ 0, xN = 0.

Theorem 3.10 ([19]). Let an ILP of type (I) be given by the triplet (A, b, c).
If there exists a basis B, such that the ILP is unique B-stable, then the optimal
solution set S(A, b, c) can be described by the linear system

ABxB ≤ b, ABxB ≥ b,

xB ≥ 0, xN = 0.
(10)

If the ILP is B-stable, then each solution in the set described by (10) is optimal
for some scenario, and conversely, each scenario has at least one optimal solution
contained in this set.

In order to exploit the characterization of the optimal solution set under basis
stability given by Theorem 3.10, we need to be able to test the existence of
a stable basis for a given problem. Unfortunately, the problem of checking basis
stability is co-NP-hard, and it can take exponential time to perform such a test.
However, there exist methods which work well on large subclasses of interval
linear programs, see for example [21].

Let an index set B ⊆ {1, . . . , n} be given. By Definition 3.4 and Definition 3.5,
the problem of testing B-stability comprises three subproblems:

• testing non-singularity of the restricted matrix AB,

• verifying feasibility of the basis, i.e. A−1
B b ≥ 0,

• verifying optimality of the basis, i.e. cTN − cTBA−1
B AN ≥ 0,
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for each A ∈ A, b ∈ b, c ∈ c. While testing regularity of an interval matrix AB

is also a co-NP-hard problem [36], it is well-studied, and many characteriza-
tions of regularity are known (see [44] for an exhaustive list of characterizations).
Furthermore, there are also some sufficient conditions, which may be efficiently
tested [38]. For conditions on feasibility and optimality of the basis, see [21].

Conditions for testing stronger types of basis stability were also studied. The-
orem 3.11 states a characterization of (unique) non-degenerate B-stability pro-
posed by Rohn [40] by checking the property for a finite subset of scenarios of
the given problem. Additionally, some sufficient conditions were also derived by
Końıčková [25].

Theorem 3.11 (Rohn [40]). Given an ILP of type (I) and a basis B ⊆ {1, . . . , n},
the ILP is (unique) non-degenerate B-stable if the property holds for every sce-
nario in the form

minimize
x∈Rn

(cc + diag(q)c∆)Tx

subject to (Ac − diag(p)A∆ diag(q))x = bc + diag(p)b∆,
x ≥ 0,

where p ∈ {±1}m and q ∈ {±1}n with qj = 1 for each j /∈ B.
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4 Approximating the optimal set

4.1 Orthant decomposition

Since computing the exact set of optimal solutions of an ILP may be difficult,
we can also search for a tight approximation in the form of an interval hull
or enclosure. This can be achieved by adapting standard linear programming
algorithms to involve interval arithmetic [23], but there also exist other techniques
developed for the purposes of ILP [2, 47].

In this chapter, we present some approximation methods based on the primal–
dual description introduced in Section 3.3. For simplicity, let us assume that the
optimal solution set is bounded. The first method employs the idea of decompos-
ing the non-linear description of S(A, b, c) into several linear programs, in order
to obtain the interval hull of the primal–dual system.

Definition 4.1. Let s ∈ {±1}n, an orthant defined by s is the set

{x ∈ Rn : diag(s)x ≥ 0}.

The vector s is called the signature of the orthant.

Let us consider an ILP of type (I). We proceed by restricting the character-
ization obtained in system (8) to a single orthant, yielding a system of linear
inequalities. For an orthant with the signature s, we substitute diag(s)y for |y|
and add the constraint diag(s)y ≥ 0. We obtain the following system:

cTc x− bTc y ≤ cT∆x+ bT∆ diag(s)y,

cTc x− bTc y ≥ −cT∆x− bT∆ diag(s)y,

Ax ≤ b,−Ax ≤ −b, x ≥ 0,

ATc y − AT∆ diag(s)y ≤ c,

diag(s)y ≥ 0.

(11)

To systematically generate all possible signatures, we can use Algorithm 1, in
which any two successively generated vectors differ by exactly one entry. A proof
of correctness of the algorithm can be found in [43].

Algorithm 1 Generating {±1}n

z ← (0, . . . , 0) ∈ Rn, y ← (1, . . . , 1) ∈ Rn, Y ← {y}
while z 6= (1, . . . , 1) do

k ← min{i : zi = 0}
for all i ∈ {1, . . . , k − 1} do

zi ← 0

zk ← 1, yk ← −yk
Y ← Y ∪ {y}

return Y

As presented so far, the method provides an approximation of the optimal set
by means of a union of convex polyhedra. In order to find an interval enclosure of
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the optimal set, we can compute the interval hull of the union of the feasible sets
from (11). This can be achieved by solving 2n linear programs with objective
functions minimizexi and maximizexi for each i ∈ {1, . . . , n} and finding the
overall minimal and maximal values for each variable. For an ILP of type (I) this
amounts to computing 2n linear programs for each of the 2m orthants, for an ILP
of type (II) we have 2n · 2n linear programs.

4.2 Iterative contractor

The orthant decomposition is based on an exponential characterization of the
optimal set. However, sometimes it may be desirable to sacrifice preciseness of
the approximation in order to reduce the computation time needed. In this sec-
tion, we present a polynomial-time iterative algorithm for computing an interval
enclosure of S(A, b, c) by Hlad́ık [20], based on a linearization of the primal–dual
description. We will focus on computing the optimal set for an ILP of type (I),
however, the method can easily be adapted for a problem of type (II) as well.

Recall the description of the optimal solution set for an ILP of type (I) by
system (8):

|cTc x− bTc y| ≤ cT∆x+ bT∆|y|,
Ax ≤ b,−Ax ≤ −b, x ≥ 0,

ATc y − AT∆|y| ≤ c.

To replace the term |y| in the constraints by a linear approximation, we will use
a theorem by Beaumont providing an upper bound on the absolute value (for
an illustration of the theorem, see Figure 4.1).

Theorem 4.1 (Beaumont [3]). Let y = [y, y] ∈ IR with y < y. Then for every
y ∈ y it holds that

|y| ≤ αy + β, (12)

where

α =
|y| − |y|
y − y

, β =
y|y| − y|y|
y − y

.

Moreover, if y ≥ 0 or y ≤ 0, then (12) holds as equation.

y y

αy + β

0

Figure 4.1: Illustration of Beaumont’s theorem.

Since we have AT∆|y| ≥ 0 and bT∆|y| ≥ 0, replacing the absolute value by
an upper bound yields a relaxation of the constraints. For a vector y ∈ y with
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y ∈ IRm, we define the coefficients αi, βi for i ∈ {1, . . . ,m} as follows:

αi =


|yi| − |yi|
yi − yi

if y
i
< yi,

sgn(yi) if y
i

= yi,

(13)

βi =


yi|yi| − yi|yi|

yi − yi
if y

i
< yi,

0 if y
i

= yi.

Let α = (α1, . . . , αm)T and β = (β1, . . . , βm)T be coefficient vectors defined
by (13). Using Theorem 4.1, we can rewrite the absolute value of the dual variable
in the constraints as

|cTc x− bTc y| ≤ cT∆x+ bT∆diag(α)y + bT∆β, (14)

(ATc − AT∆diag(α))y ≤ c+ AT∆β. (15)

Furthermore, we can split the absolute value in (14) into two linear inequali-
ties. It is possible to further simplify the system, by using the definition of central
and radial vectors, which yields the following:

cTx+ (−bTc − bT∆diag(α))y ≤ bT∆β,

−cTx+ (bTc − bT∆diag(α))y ≤ bT∆β.

We have thus obtained a linearized version of the original system (8). Summariz-
ing the results, an enclosure of the optimal solution set can be computed as the
interval hull of the linear system

cTx+ (−bTc − bT∆diag(α))y ≤ bT∆β,

− cTx+ (bTc − bT∆diag(α))y ≤ bT∆β,

Ax ≤ b,−Ax ≤ −b, x ≥ 0,

(ATc − AT∆diag(α))y ≤ c+ AT∆β.

(16)

For the initialization of an iterative algorithm, we need to provide an interval
enclosure (x0,y0) of system (8). Since x is a non-negative variable, we can use
for the initial enclosure an interval box in the form

x0 = ([0, K], . . . , [0, K])T ,

y0 = ([−K,K], . . . , [−K,K])T ,

for a sufficiently large K � 0. The choice of an appropriate constant K is further
discussed in [20].

Using the initial enclosure, we can calculate the coefficient vectors α, β and
compute the interval hull of system (16). If this step yields a significant contrac-
tion of the enclosure, we can iterate the procedure and calculate new coefficients
to obtain an even tighter enclosure (see Algorithm 2).
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Algorithm 2 Optimal solution set contractor

(x0,y0)← an initial interval enclosure of (8)
i← 0
repeat

α, β ← coefficients defined in (13) for yi

i← i+ 1
(xi,yi)← interval hull of (16)

until improvement is non-significant
return xi

4.3 Decomposition by complementarity

In this section, we discuss the idea of approximating the optimal solution set
using a decomposition method based on the complementarity constraint in the
primal–dual description. This approach also provides an exact description of the
optimal set for a special class of interval linear programs with a fixed coefficient
matrix.

Again, we consider an ILP of type (I). By Theorem 3.7, we can formulate the
following parametric description of the optimal solution set:

Ax = b, x ≥ 0,

ATy ≤ c,

xT (c− ATy) = 0,

A ∈ A, b ∈ b, c ∈ c,

which can also be viewed as a non-linear system, with the variables A, b and c
constrained by the respective lower and upper bounds (this idea is also further
developed in the proof of Theorem 6.1). Using non-negativity of the variable x
and the inequality c−ATy ≥ 0, we can see that the constraint xT (c−ATy) = 0 is
satisfied if and only if xi = 0 or (c−ATy)i = 0 holds for each i ∈ {1, . . . , n}. This
implies that for a fixed subset I ⊆ {1, . . . , n} with xi = 0 for i ∈ I, we only need
to consider the primal and dual feasibility conditions with the remaining equa-
tion constraints from the complementarity condition to obtain the corresponding
subset of optimal solutions. In other words, we need to solve the 2n problems in
the form

Ax = b,

xi = 0, for i ∈ I,
xj ≥ 0, for j /∈ I,
(ATy)i ≤ ci, for i ∈ I,
(ATy)j = cj, for j /∈ I,
A ∈ A, b ∈ b, c ∈ c.

(17)

Consider now a special case of ILP, in which the entries of the matrix A are
only degenerate intervals. In this case, we can fix the value of the variable A, thus
reducing system (17) to a linear problem. Therefore, we can obtain the exact
optimal set of a linear program with interval objective and right-hand side by
solving 2n linear subproblems. Similarly, we can also compute the exact interval
hull of the optimal solution set.
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Figure 4.2: The optimal set of ILP (18) (thick black) and its approxima-
tion obtained by orthant decomposition (dark gray).

Example. Consider the ILP

minimize x1

subject to x1 − x2 = [−1, 1],
x1 ≥ 0, x2 ≥ 0.

(18)

When using orthant decomposition presented in Section 4.1, we approximate the
optimal solution set of (18) by the union of feasible sets of linear systems in the
form

x1 ≤ sy, x1 ≥ −sy,
x1 − x2 ≤ 1, −x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0,

y ≤ 1, −y ≤ 0,

sy ≥ 0,

with s ∈ {−1, 1}. For the choice s = −1, we have y = 0 and the feasible set of
x-solutions is formed by all pairs (x1, x2) with x1 = 0 and x2 ∈ [0, 1]. In the case
of s = 1, we obtain the set described by x1 ∈ [0, 1], x2 ≥ 0 and x1 − x2 ∈ [−1, 1].
Due to the dependency problem, this set also contains solutions, which are not
optimal for the original ILP (see Figure 4.2). Even if we only consider the interval
enclosure of the optimal set generated by orthant decomposition to the exact
interval hull, it is still an overestimation of the exact interval hull.

Let us now consider the general case. For an ILP with an interval coefficient
matrix A, the system (17) remains non-linear. In order to simplify the problem,
we can formulate an interval relaxation of the system by breaking the dependen-
cies between multiple occurrences of the variable A. Moreover, since we have
fixed the value of some of the primal variables to 0, the corresponding columns
of the system Ax = b are also equal to 0 independent of the coefficient value.
Therefore, the only relaxed dependencies are present for indices j /∈ I.

Furthermore, let us examine the constraints

(ATy)i ≤ ci, for i ∈ I,
(ATy)j = cj, for j /∈ I.

(19)

Since we are only interested in the optimal solution set, which is formed by
the projection of the feasible set onto the primal variables, we only need to test
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weak feasibility of system (19). If there are no feasible solutions, then the interval
relaxation is also strongly infeasible. Otherwise, we can fix a feasible scenario and
solve the remaining primal constraints.

Unfortunately, testing weak feasibility is also difficult due to the fact that the
variables in system (19) are unrestricted. However, we can again employ the linear
approximation introduced in Theorem 4.1, thus creating another relaxation. This
leads to a general method for approximating the optimal solution set of an ILP,
which is exponential in the number of variables. Nevertheless, it may provide
a tighter enclosure than the orthant decomposition method.
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5 Properties of the optimal set

5.1 Closedness

In this chapter, we study some topological, metric and geometric properties of
the optimal solution set S(A, b, c). The theoretical results are accompanied by
examples of interval programs, which illustrate the sources of complexity in the
problem of finding a description of the optimal set. Some stronger results, which
are only proved for special classes of interval linear programs, are presented in
Chapter 6. Hereinafter, we consider the space Rn equipped with the Euclidean
distance

d(x, s) =

√√√√ n∑
i=1

(xi − si)2.

The first studied property is closedness. There are several equivalent ways of
characterizing a closed set. One of the commonly used definitions characterizes
closed sets by introducing the complementary notion of an open set.

Definition 5.1. A set M ⊆ Rn is said to be open, if for every x ∈M there exists
a real number ε > 0, such that every y ∈ Rn satisfying d(x, y) < ε belongs to M .
A set M ⊆ Rn is said to be closed, if the complement of M is an open set.

Note that the properties of being open and closed are not mutually exclusive,
i.e., a set may be both open and closed (such as the empty set). Moreover, a set
may be neither open nor closed. Let us first motivate this study by an example
of a problem showing that if we allow unbounded intervals, obtaining an optimal
set that is not closed is, indeed, possible.

Example. Consider the optimization problem

maximize x
subject to [1,∞)x ≤ 1.

If we fix a scenario αx ≤ 1 with α ∈ [1,∞), the optimal solution of the corre-
sponding linear program will be x = 1

α
. Therefore, the optimal solution set of the

problem is the half-open interval (0, 1], which is not a closed set.

Before we proceed to formulating a theorem about closedness of S(A, b, c)
under additional assumptions, we state some properties of continuous functions,
which will be needed for the proof. The proofs of the following lemmas, as well
as a detailed introduction to topology, can be found in [34].

Lemma 5.1. Let a function f : Rn → Rm be defined by the equation

f(x) = (fi(x))mi=1,

where fi : Rn → R. Then the function f is continuous if and only if each
component function fi is continuous.

Lemma 5.2. Let X, Y be topological spaces and let f : X → Y be given. The
function f is continuous if and only if for every closed set M ⊆ Y , the preimage
f−1(M) is closed in X.
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Lemma 5.3. Let X, Y be topological spaces and assume Y is compact. Consider
the projection πX : X × Y → X. If M ⊆ X × Y is a closed set, then πX(M) is
a closed subset of X.

For the forthcoming statement of Theorem 5.4, assume we have an ILP of
type (I):

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0,

(ILPp)

and its interval dual:
maximize

y∈Rm
bTy

subject to ATy ≤ c.
(ILPd)

The proof of the theorem can easily be adapted for other types of ILPs as well.
However, it remains an open question, whether it is possible to weaken or even
drop the assumption on the boundedness of the dual optimal set and state the
theorem in general.

Theorem 5.4. Assume the set of optimal solutions of (ILPd) is bounded. Then
the set of optimal solutions of (ILPp) is closed.

Proof. Using strong duality presented in Theorem 3.7, we can characterize the
set of all optimal solutions of (ILPp) by the following parametric linear system:

cTx = bTy,

Ax = b, x ≥ 0,

ATy ≤ c,

A ∈ A, b ∈ b, c ∈ c.

We can also view this system as a non-linear system by replacing the parame-
ters with new variables, without affecting the x-projection of the set of feasible
solutions. Applying this approach, we obtain the system

cTx = bTy,

Ax = b, x ≥ 0,

ATy ≤ c,

A ≤ A ≤ A, b ≤ b ≤ b, c ≤ c ≤ c.

(20)

We will now prove that each of the constraints in (20) describes a closed set.
Since the feasible set M of system (20) is a finite intersection of the sets defined
by the individual constraints, this argument will also yield its closedness. Let us
consider the function g(A, x, b) := Ax − b. All components of g are polynomials
of the form

n∑
k=1

Aikxk − bi

for i ∈ {1, . . . ,m} and therefore continuous functions. By Lemma 5.1, the func-
tion g is also continuous. The set of all triplets (A, x, b) satisfying Ax = b, or
equivalently Ax − b = 0, can also be viewed as the preimage of {0} under g.
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Using Lemma 5.2 and the fact that the set {0} is closed, we can also infer the
closedness of the set

{(A, x, b) ∈ Rm×n+n+m : Ax = b},

and of the set of all quintuples (A, b, c, x, y) satisfying Ax = b. By a similar
argument, we can also prove closedness of the sets defined by the constraints
ATy ≤ c and cTx = bTy. It is easy to see that the remaining inequality constraints
in (20) also define closed sets, so the feasible set M is closed.

The set of all dual optimal solutions is bounded by assumption, and thus we
can restrict the space of dual variables y to a compact subset Y of Rm (e.g. an
interval envelope). Consider the set M as a subset of the space

Z := A× b× c× Rn × Y

and let πx : Z → Rn denote the projection into the space of primal variables x.
Since A,b, c and Y are compact, their product is also compact and πx is a closed
map by Lemma 5.3. Therefore, the set πx(M) = S(A, b, c) is also closed.

Clearly, Theorem 5.4 holds under the assumption that the dual feasible set is
bounded. Other sufficient conditions for boundedness of the optimal set will be
presented in Section 5.2.

5.2 Boundedness

This section is devoted to another important set property called boundedness.
Boundedness is a property related to the “size” of a set, bounded sets are therefore
usually defined in the context of metric spaces. Let us formalize this notion for
sets in Rn equipped with the Euclidean metric.

Definition 5.2. A set M ⊆ Rn is said to be bounded, if there exists a point
s ∈ Rn and a real number r > 0, such that every x ∈M satisfies d(x, s) < r.

Since the optimal solution set of a classical linear program may be unbounded,
the set S(A, b, c) may be unbounded as well. However, it is also possible for an
ILP to have an unbounded optimal solution set, even if the optimal set of each
scenario is bounded.

Example. Consider the following ILP:

maximize x
subject to [0, 1]x ≤ 1.

(21)

For the scenario 0x ≤ 1, the feasible solution set is R, the corresponding lin-
ear program is unbounded and thus it has no optimal solutions. For any other
scenario, we have a constraint in the form x ≤ 1

α
for some α ∈ (0, 1] and the

corresponding linear program has a unique optimal solution x = 1
α

. Even though
each scenario has a bounded (possibly empty) set of optimal solutions, the united
optimal solution set is the unbounded interval [1,∞).
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Note that ILP (21) in the example above is not strongly optimal, i.e. not
all scenarios have non-empty optimal set. The unboundedness of S(A, b, c) in
the example is caused by unboundedness of the objective function in a partic-
ular scenario. The following characterization of a bounded optimal solution set
using duality was formulated by Mostafaee, Hlad́ık and Černý [33], based on the
results on continuity of some set-valued functions in linear programming proved
by Wets [46]. Again, we consider an interval program in the form (ILPp) and its
dual program (ILPd).

Theorem 5.5 ([33, 46]). Assume that for every A ∈ A, b ∈ b, c ∈ c the following
holds:

{x ∈ Rn : Ax = 0, x ≥ 0, cTx ≤ 0} = {0}, (22)

{y ∈ Rm : ATy ≤ 0, bTy ≥ 0} = {0}. (23)

Then f(A, b, c) is continuous on A×b×c and the optimal solution set S(A, b, c)
is bounded.

It is easy to see that the characterization of boundedness of optimal solution
sets given by Theorem 5.5 is not complete. Therefore, an ILP with a bounded
optimal set does not necessarily satisfy conditions (22) and (23), as illustrated by
the following example.

Example. Consider the ILP

minimize −x
subject to [0, 1]x = 0,

x ≥ 0.

The scenario with constraint 0x = 0 is unbounded, therefore it does not have
any optimal solutions. For any other scenario, the constraint reads αx = 0 with
α 6= 0, and the optimal solution is x = 0. Clearly, the optimal solution set {0} is
bounded. However, condition (22) is violated for the scenario A = 0:

{x ∈ Rn : 0x = 0, x ≥ 0,−1x ≤ 0} = [0,∞).

For an ILP of type (III), we have obtained an interval enclosure of the optimal
solution set by using duality, which comprises only linear constraints. Based
on this approximation, we can state a sufficient condition of boundedness of
the optimal solution set. For other types of ILPs, we can formulate a similar
condition by orthant decomposition. However, such test would require solving
an exponential number of linear systems. In this case, it is possible to weaken
and simplify the condition by using the linearization technique introduced in
Section 4.2.

Theorem 5.6. Let an ILP of type (III) be given by the triplet (A, b, c). Assume
that the set of feasible x-solutions to the linear system

cTx− bTy ≤ 0,−cTx+ bTy ≤ 0,

Ax ≤ b, x ≥ 0,

A
T
y ≤ c, y ≤ 0,

is bounded. Then the optimal solution set S(A, b, c) of the corresponding ILP is
also bounded.
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Let us now study the complexity of testing boundedness of the optimal so-
lution set to an interval linear program. Theorem 5.7 establishes a relationship
between boundedness of the feasible set of an interval system and non-singularity
of the coefficient matrix. Recall that an interval matrix A is non-singular if every
real matrix A ∈ A is non-singular, otherwise it is singular.

Theorem 5.7 ([41]). Let A ∈ IRn×n contain at least one non-singular matrix
and denote by M(A, b) the feasible set of the interval system Ax = b. Then the
following assertions are equivalent:

a) A is non-singular,

b) M(A, b) is bounded for some b ∈ IRn,

c) M(A, b) is bounded for each b ∈ IRn.

Before we proceed, let us review a complexity result, which is often used to
establish NP-hardness of decision problems related to interval linear systems.

Definition 5.3. A symmetric matrix A ∈ Rn×n is said to be positive definite if
the inequality xTAx > 0 holds for every x ∈ Rn\{0}.

Lemma 5.8 ([43, p. 39]). Let e = (1, . . . , 1)T . The problem of checking whether
the system of inequalities

−e ≤ Ax ≤ e,

eT |x| ≥ 1,
(24)

has a feasible solution is NP-hard on the set of non-negative positive definite
rational matrices.

We continue with a complexity result for inequality-constrained interval linear
programs of type (II). The proof exploits the fact that a feasibility problem can
be formulated as an optimization problem with a constant objective function,
thus, the result also holds for testing boundedness of the feasible set of interval
systems.

Theorem 5.9. The problem of checking boundedness of the optimal set S(A, b, c)
for an ILP of type (II) is co-NP-hard.

Proof. From the proof of [43, Theorem 2.33], we have that system (24) has a fea-
sible solution for a given matrix A ∈ Rn×n if and only if the interval matrix
A = [A− eeT , A+ eeT ] is singular. This result implies that testing regularity of
interval matrices is a co-NP-hard problem.

Further, let A be a non-negative positive definite rational matrix. By the
properties of positive definite matrices, A is non-singular. Therefore, the interval
matrix A = [A−eeT , A+eeT ] contains a non-singular matrix, namely the central
matrix Ac = A. This allows us to use the characterization of non-singularity of
an interval matrix stated in Theorem 5.7.

Let us choose b = 0. Then, A is regular if and only if the feasible set of the
system Ax = 0 is bounded. Using the results of Section 3.2, we can split the
equation constraint into Ax ≤ 0,Ax ≥ 0, while preserving the same feasible set.
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Therefore, the interval matrix A is singular if and only if the optimal solution
set of the interval linear program

minimize 0Tx
subject to Ax ≤ 0,

−Ax ≤ 0,
(25)

is unbounded, implying that testing boundedness of the optimal set for an ILP
of type (II) is co-NP-hard.

5.3 Connectedness and convexity

In this section, we study the conditions under which an interval linear program
has a convex, or at least connected optimal solution set. To characterize the
property of connectedness, we can use one of the following definitions:

Definition 5.4. A set M ⊆ Rn is said to be connected, if for each pair of sets
X, Y ⊆ Rn with M = X ∪ Y and X ∩ Y = ∅, which are open in the subset
topology induced on M , it holds that X = ∅ or Y = ∅.

Definition 5.5. A set M ⊆ Rn is said to be path-connected, if for every x, y ∈M
there exists a continuous function f : [0, 1]→M with f(0) = x and f(1) = y.

Even though there are many examples, for which Definition 5.4 and Defini-
tion 5.5 coincide, only one implication holds in general.

Lemma 5.10 ([34, p. 153]). Every path-connected set is connected.

Convexity is a strengthening of the (path-)connectedness property. Recall
that a set is convex, if for every pair of points from the set, the line segment
joining the points is also contained within the set.

Definition 5.6. A set M ⊆ Rn is said to be convex, if for every x, y ∈ M and
every λ ∈ [0, 1] it holds that λx+ (1− λ)y ∈M .

Since the feasible set of an interval linear program may be disconnected, this
is also true for the optimal solution set. However, even if the feasible set is
connected, it is still possible for the optimal set to be disconnected.

Example. Consider the ILP

maximize x2

subject to [−1, 1]x1 + x2 ≤ 0
x2 ≤ 1.

(26)

For the scenario involving the constraint 0x1 +x2 ≤ 0, the set of optimal solutions
is formed by the line x2 = 0. Further, consider a scenario with the constraint
αx1 + x2 ≤ 0 for α 6= 0. If we take the union of all optimal sets for α > 0, we
obtain the ray (−1− t, 1) with t ≥ 0. For α < 0, we have the united optimal set
(1 + t, 1) with t ≥ 0. The overall optimal solution set of the interval program,
which is formed by the union of the two rays and the line, is (path-)disconnected
(see Figure 5.1).
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Figure 5.1: The union of all feasible sets (gray) and the set of all optimal
solutions (thick black) of ILP (26).

We have already encountered a sufficient condition for convexity of the opti-
mal solution set for an ILP of type (I) in Section 3.4, where basis stability was
introduced. Theorem 3.10 states that if there exists a basis B, for which the
given interval program is unique B-stable, then the optimal set can be described
by a linear system. Therefore, it forms a convex polyhedron. Let us now show
that if the problem is B-stable, but not necessarily unique B-stable, then the
optimal solution set is path-connected.

Theorem 5.11. Let an ILP of type (I) be given by the triplet (A, b, c). If there
exists a basis B ⊆ {1, . . . , n}, for which the problem is B-stable, then the optimal
solution set S(A, b, c) is path-connected.

Proof. Let B be a basis, which is optimal for each scenario of the ILP and let
S(B) denote the set of all optimal basic solutions with the basis B. Furthermore,
let x1, x2 ∈ S(A, b, c) be arbitrary solutions optimal for some scenarios (A1, b1, c1)
and (A2, b2, c2), respectively.

Since the problem is B-stable, there exist basic solutions xB1 , x
B
2 ∈ S(B),

which are optimal for the scenarios (A1, b1, c1) and (A2, b2, c2). From the theory
of linear programming, we know that the optimal solution set of a fixed scenario
is convex, and therefore also path-connected. Thus, there exists a continuous
mapping (path) p1 : [0, 1]→ Rn with p1(0) = x1 and p1(1) = xB1 and also a path p2

connecting xB2 to x2. By Theorem 3.10, the set S(B) is convex, which implies that
there also exists a path pB connecting xB1 to xB2 . Using transitivity of the path-
connectedness relation, we obtain a path p3 from p3(0) = x1 to p3(1) = x2.
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6 Special cases

6.1 Interval objective and right-hand side

In many practical applications, uncertainty only affects the objective function
coefficients or the right-hand side vector of a linear programming model. These
include, for example, various transportation problems [24, 45] or minimum-cost
flow problems [16]. We will now examine this class of interval linear programs
and strenghten some of the results we have obtained for general problems. Fol-
lowing the topics of the previous chapter, we focus mainly on the properties of
the optimal solution set. For more details about computing optimal solutions
and testing basis stability in these special cases, see [19, pp. 107 – 110] and ref-
erences therein. Similar types of problems have also been studied in the context
of (multi-)parametric programming [13].

Let us begin by studying the optimal solution set for a class of interval linear
programs with intervals occurring only in the objective function and the right-
hand-side vector. In other words, we consider an interval linear program with
a fixed real coefficient matrix:

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0.

(27)

6.1.1 Polyhedrality and closedness

The optimal solution set of (27) may still be more complex than the one of
a classical linear program, but we can prove some additional properties to those
which hold for a general interval linear program. Although the optimal set can
be non-convex, we now have the following result:

Theorem 6.1. The set of optimal solutions of interval linear program (27) is
a union of at most 2n convex polyhedra.

Proof. According to Theorem 3.7, we can describe the optimal solution set of
interval program (27) by the parametric linear system

Ax = b, x ≥ 0,

ATy ≤ c,

xT (c− ATy) = 0,

b ∈ b, c ∈ c.

Further, we replace the parameters b and c by variables with given lower and
upper bounds. Note that this transformation does not change the set of feasible
solution vectors x and y. We obtain the following non-linear system:

Ax = b, x ≥ 0,

ATy ≤ c,

xT (c− ATy) = 0,

b ≤ b ≤ b, c ≤ c ≤ c.
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To deal with the non-linearity in the constraints, we introduce an auxiliary vari-
able z = c− ATy, which leads to the characterization

Ax = b, x ≥ 0,

z = c− ATy, z ≥ 0,

xT z = 0,

b ≤ b ≤ b, c ≤ c ≤ c.

(28)

Since A is a fixed real matrix, the only non-linear constraint left is xT z = 0.
Taking into account the non-negativity conditions on x and z, the constraint can
be equivalently restated as

∀i ∈ {1, . . . , n} : xi = 0 ∨ zi = 0.

This restatement leads to 2n linear programs obtained by replacing xT z = 0 with
a collection of constraints xi = 0 or zi = 0 for each index i. Therefore, the feasible
set of (28) is a union of 2n convex polyhedra. The projection πx : R2m+3n → Rn,
which maps solutions of (28) onto the x-variable, preserves convexity and poly-
hedrality. Thus, the set of optimal solutions of (27) is also a union of 2n convex
polyhedra.

Corollary 6.2. The set of optimal solutions of interval linear program

minimize
x∈Rn

cTx

subject to Ax ≤ b,
(29)

is a union of at most 2m convex polyhedra.

From Theorem 6.1, we can see that the optimal set of (27) has a finite num-
ber of vertices, since it is a finite union of convex polyhedra. Thus, it forms
a (generally non-convex) polyhedral set. Moreover, it also implies closedness of
the optimal set.

Corollary 6.3. The optimal solution set of (27) is closed.

Proof. By Theorem 6.1, the optimal solution set is a finite union of closed sets,
therefore, it is also closed.

6.1.2 Connectedness and boundedness

Let us now examine connectedness of the optimal set of ILP (27). To do this,
we will use some properties of the optimal set function. First, we can consider
the notation SA(b, c) = S(A, b, c) as a function of the parameters b and c, since
the coefficient matrix A is fixed. The value of SA(b, c) is then the optimal solu-
tion set of the corresponding linear program. The following definition provides
a formalization of such set-valued functions.

Definition 6.1. A function f from a set X ⊆ Rm into the power set of Y ⊆ Rn

is called a multifunction. Moreover, f(x) 6= ∅ for every x ∈ X, then f is said to
be a correspondence.1

1The terms “multifunction”, “set-valued function” or “correspondence” are sometimes used
interchangeably.
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To prove connectedness, we will employ continuity of SA(b, c). Definition 6.2
extends the continuity property known from single-valued functions to multifunc-
tions by introducing the notion of lower and upper hemicontinuity.

Definition 6.2. A correspondence f : X → 2Y is called upper hemicontinu-
ous at x ∈ X , if for every open neighborhood U of f(x) there exists an open
neighborhood V of x such that f(z) ⊆ U holds for all z ∈ V .

The correspondence f is lower hemicontinuous at x, if for every open set M
in Y such that M ∩ f(x) 6= ∅, there exists an open neighborhood V of x such
that M ∩ f(z) 6= ∅ holds for all z ∈ V .

The correspondence f is called continuous at x, if it is lower and upper hemi-
continuous at x.

We say that f is lower/upper hemicontinuous or continuous (on X), if the
corresponding property holds for every x ∈ X. For classical single-valued func-
tions, the notion of continuity is commonly used to prove that some topological
properties of the preimage are preserved under a given mapping. Lemma 6.4 pro-
vides a generalization of two results relating continuity to topological properties
of sets, in the context of multifunctions.

Lemma 6.4 ([17]).

(a) The image of a compact set under an upper hemicontinuous compact-valued
correspondence is compact.

(b) The image of a connected set under an upper hemicontinuous (or a lower
hemicontinuous) connected-valued correspondence is connected.

Since we are interested in the optimal solution set, not all possible scenarios
in a given ILP need to be considered. For some values in the given intervals, the
corresponding linear program can be unbounded or infeasible, and these do not
contribute any solutions to the optimal set. Using the theory of duality in linear
programming, we can describe the relevant scenarios by such parameters b ∈ b
and c ∈ c, for which both the primal and the dual linear program are feasible.
Let us define the following sets:

B = {b ∈ Rm : Ax = b, x ≥ 0 for some x ∈ Rn},
C = {c ∈ Rn : ATy ≤ c for some y ∈ Rm}.

Given two parameter vectors b ∈ b and c ∈ c, the corresponding scenario of (27)
has an optimal solution if and only if (b, c) ∈ B × C. Therefore, the optimal
solution set can be obtained as an image of the set B × C restricted to the giv-
en interval box b × c under the multifunction SA(b, c). To derive some results
concerning the optimal set, we will also need some properties of the preimage
(B ∩ b)× (C ∩ c), namely its closedness and connectedness.

Lemma 6.5. The set (B ∩ b)× (C ∩ c) is a closed convex set.

Proof. From the theory of parametric programming (see e.g. [13, p. 179]), we
know that the sets B and C are closed convex sets. Furthermore, the interval
vectors b and c are closed and convex, too. As finite intersections and Cartesian
products preserve these properties, the resulting set (B∩b)×(C∩c) is also closed
and convex.
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Continuity properties of the optimal value function and optimal solution sets
of linear programs, in which the right-hand side vector or the objective function
coefficients are subjected to data perturbations, were studied by Böhm [6] and
Meyer [31]. Some of these results will serve as a basis for deriving the topological
properties of the optimal set of an ILP.

Theorem 6.6 (Meyer [31]). The correspondence SA from B×C to the power set
of Rn is upper hemicontinuous on B × C.

Now, we can proceed with the proof of connectedness of the optimal solution
set in the special case with a fixed coefficient matrix. This property does not
hold for interval linear programs in general, perturbations in the coefficients of
matrix A are therefore the cause of possible disconnected optimal sets.

Corollary 6.7. The optimal solution set of (27) is connected.

Proof. We will use the observation, that the optimal solution set S(A, b, c) can
be equivalently described as⋃

{SA(b, c) : b ∈ B ∩ b, c ∈ C ∩ c}.

According to Theorem 6.6, the correspondence SA(b, c) is upper hemicontinuous
on B × C. For fixed vectors b, c, the value SA(b, c) is the optimal set of a lin-
ear program, which is convex, and therefore also connected. The optimal set
correspondence thus satisfies the assumptions of Lemma 6.4, part (b).

Lemma 6.5 implies that the set (B ∩ b) × (C ∩ c) is connected. Hence, the
image of the set (B ∩ b)× (C ∩ c), i.e. the optimal solution set, is also connected.

It is easy to see that the optimal set may still be unbounded, even for this
special case. However, we can formulate a strengthening of Theorem 5.5, which
characterizes boundedness of S(A, b, c) using boundedness of the optimal sets
of individual scenarios. As it was shown in Section 5.2, the property stated in
Corollary 6.8 does not hold for general ILPs either.

Corollary 6.8. The optimal solution set S(A, b, c) of (27) is bounded if and only
if for each b ∈ b and c ∈ c the optimal solution set S(A, b, c) of the corresponding
linear program is bounded.

Proof. Obviously, if S(A, b, c) is bounded, then the set S(A, b, c) is also bounded
for each b ∈ b, c ∈ c.

Conversely, assume that each S(A, b, c) is bounded. Since S(A, b, c) is the
optimal set of a linear program, it is also closed, and thus compact. Therefore,
the correspondence SA is compact-valued.

By Lemma 6.5, the set (B∩b)× (C∩c) is closed. Moreover, it is also bounded
by the interval boxes b and c. Hence, it is compact, and we can apply Lemma 6.4,
part (a), to show that the image of (B ∩ b) × (C ∩ c) under the correspondence
SA is compact. Specifically, we have shown that the optimal set S(A, b, c) is
bounded.
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6.1.3 Transformations

We can also strengthen some results concerning the transformations of problems
of different types, which were discussed in Section 3.2. Thus far, we have assumed
that the ILP is given in formulation (27). This is an equality-constrained problem
(with non-negative variables) of type (I), i.e.

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0.

We follow by showing that ILP (27) can be transformed to an ILP of type (III)
in the form

minimize
x∈Rn

cTx

subject to Ax ≤ b,
−Ax ≤ −b,

x ≥ 0,

(30)

with the same set of optimal solutions (see Theorem 6.9). Trivially, this also al-
lows for a transformation from an ILP of type (I) to type (II), since we can include
the non-negativity condition as a constraint. Recall that such transformation was
not possible for an ILP with an interval coefficient matrix. Note that, due to the
dependency problem, the transformation may also generate new infeasible linear
programs. Thus, the two ILPs are not entirely equivalent.

Theorem 6.9. Let S(A, b, c) and S(A′, b′, c) be the optimal solution sets of the
programs (27) and (30), respectively. Then, the equality S(A, b, c) = S(A′, b′, c)
holds.

Proof. Clearly, any linear program contained in (27) is also contained in (30),
therefore S(A, b, c) ⊆ S(A′, b′, c) holds. Conversely, let x′ ∈ S(A′, b′, c), then
there exist b1, b2 ∈ b and c ∈ c such that x′ is optimal for the scenario

minimize cTx
subject to Ax ≤ b1,

−Ax ≤ −b2,
x ≥ 0.

(31)

Since b2 ≤ Ax′ ≤ b1, there exists a vector b3 ∈ [b2, b1] ⊆ b with Ax′ = b3. We
claim that x′ ∈ S(A, b, c), because it is optimal for the scenario

minimize cTx
subject to Ax = b3,

x ≥ 0.
(32)

Suppose for the sake of contradiction that there exists x∗ with Ax∗ = b3, x
∗ ≥ 0

and cTx∗ < cTx′. By the choice of b3, the vector x∗ is feasible for scenario (31).
Since the objective function is the same for both programs, this yields a contra-
diction with the assumption that x′ is optimal for scenario (31).

Furthermore, we show that the transformation of free variables to non-negative
variables by substitution is also applicable for an ILP with a fixed coefficient
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matrix. The substitution does not violate any dependencies in the constraints,
but it splits the objective coefficients into two independent interval vectors, which
may seem to create a dependency problem.

Let an ILP be given in the form of type (II) as

minimize
x∈Rn

cTx

subject to Ax ≤ b,
(33)

and consider its transformation into an ILP of type (III) in the form

minimize
x∈Rn

cTx+ − cTx−

subject to Ax+ − Ax− ≤ b,
x+, x− ≥ 0.

(34)

We will prove that the two ILPs have equivalent optimal sets in the sense that
for each optimal solution x of ILP (33) there exist non-negative vectors x+, x−

with x = x+ − x−, which form an optimal solution of (34) and vice versa.

Theorem 6.10. Let S(A, b, c) and S(A±, b, c±) denote the optimal solution sets
of ILP (33) and (34), respectively. The following two properties hold:

a) If x ∈ S(A, b, c), then there exists (x+, x−) ∈ S(A±, b, c±) with x = x+−x−.

b) Conversely, if (x+, x−) ∈ S(A±, b, c±), then x+ − x− ∈ S(A, b, c).

Proof.

a) Let x0 ∈ S(A, b, c) be an optimal solution of (33) for a scenario determined
by objective vector c ∈ c and right-hand side b ∈ b. We define the vector
x+

0 = max(0, x0) and x−0 = −min(0, x0), where the operations max and
min are understood element-wise. Clearly, x+

0 and x−0 are non-negative and
the equality x0 = x+

0 − x−0 holds. Furthermore, the feasible set of (34) for
any scenario with right-hand-side vector b is equivalent to the feasible set
of program (33) with the same right-hand side: Since we have

Ax+ − Ax− = A(x+ − x−),

if (x+, x−) is a feasible solution of (34) for a vector b, then A(x+− x−) ≤ b
holds and x+−x− is a feasible solution of (33). Conversely, let x be a feasible
solution of (33) for some b. Then we can find non-negative vectors x+, x−

with x = x+ − x− and the inequality Ax+ − Ax− ≤ b also holds.

By a similar reasoning, if we consider the objective (c,−c), we also have
cTx+ − cTx− = cT (x+ − x−). This implies that the transformed problem is
equivalent to the original scenario (A, b, c) and (x+

0 , x
−
0 ) is thus an optimal

solution of (34).

b) On the other hand, let (x+
0 , x

−
0 ) ∈ S(A±, b, c±) be optimal for some b ∈ b

and c1, c2 ∈ c. Using duality in linear programming, there exists a dual
feasible vector y0, which satisfies the following system:

cT1 x
+
0 − cT2 x−0 = bTy,

Ax+
0 − Ax−0 ≤ b, x+

0 ≥ 0, x−0 ≥ 0,

ATy ≤ c1, −ATy ≤ −c2, y ≤ 0.

(35)
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Let us define an objective vector c3 := ATy0. Since c2 ≤ ATy0 ≤ c1 and
c1, c2 ∈ c, we also have c3 ∈ c. We will now show that the vector x+

0 − x−0
is optimal for the scenario determined by right-hand side b and objective
vector c3, or equivalently, that x+

0 − x−0 and y0 satisfy the system

cT3 x = bTy, Ax ≤ b, ATy = c3, y ≤ 0.

Namely, it remains to show that the equality cT3 (x+
0 − x−0 ) = bTy0 holds.

From system (35) we know that bTy0 = cT1 x
+
0 −cT2 x−0 . The complementarity

condition (see Theorem 3.7) implies that for each i ∈ {1, . . . , n} we have

(x+
0 )i = 0 ∨ (c1 − ATy0)i = 0, and

(x−0 )i = 0 ∨ (ATy0 − c2)i = 0.

Therefore, if (x+
0 )i > 0 and (x−0 )i > 0 for some index i, then the corre-

sponding entries of c1 and c2 are equal, (c1)i = (c2)i and also (c1)i = (c3)i
by definition of c3. It follows that (c3)i(x

+
0 − x−0 )i = (c1)i(x

+
0 )i − (c2)i(x

−
0 )i.

Further assume that (x+
0 )i = 0 and (x−0 )i > 0 (the symmetric case with

(x+
0 )i > 0 and (x−0 )i = 0 can be treated analogically). Then, complemen-

tarity implies (c3)i = (c2)i and since (x+
0 )i = 0, we obtain the equality

(c3)i(x
+
0 − x−0 )i = (c2)i(x

+
0 − x−0 )i = (c1)i(x

+
0 )i − (c2)i(x

−
0 )i.

For the last case, suppose we have (x+
0 )i = 0 and (x−0 )i = 0. Trivially, the

expressions (c3)i(x
+
0 − x−0 )i and (c1)i(x

+
0 )i − (c2)i(x

−
0 )i are both equal to 0.

We have thus proved that cT3 (x+
0 − x−0 ) = cT1 x

+
0 − cT2 x−0 , and therefore also

cT3 (x+
0 −x−0 ) = bTy0. Using strong duality, the vector x+

0 −x−0 is an optimal
solution of (33) for the scenario with b and c3.

Type (I):
Ax = b, x ≥ 0

Type (II):
Ax ≤ b

Type (III):
Ax ≤ b, x ≥ 0
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Section
3.2

Theorem 6.10

trivial

Figure 6.1: An overview of applicable transformations for an ILP with
a fixed coefficient matrix.

Together with the cases addressed in Section 3.2, we have proved that all
presented transformations preserve the optimal solution set for an ILP with a fixed
coefficient matrix. This is a significant difference from the general case, in which
the only possible transformation (apart from the trivial ones) was the introduction
of slack variables in order to convert inequalities into equations. For an overview
of the results relevant to each of the transformations, see Figure 6.1.
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6.2 Interval objective function

We will now consider a class of programs, where interval coefficients occur only in
the objective function. In this case, the feasible set is described by a linear system,
and the description can therefore be transformed from equations to inequalities
and conversely, e.g. into the form

minimize
x∈Rn

cTx

subject to Ax ≤ b,
x ≥ 0.

(36)

Note that if 0 ∈ c, then the optimal solution set of (36) is identical to its feasible
setM(A, b), which forms a convex polyhedron. In general, the optimal set of the
ILP possesses the following properties:

Theorem 6.11. The optimal solution set S(A, b, c) of interval program (36) is
formed by a union of convex polyhedra, which are faces of the feasible setM(A, b).

Proof. Let c ∈ c be fixed. From the theory of linear programming, we know
that the optimal solution set of the corresponding LP forms a face of the feasible
polyhedron M(A, b). Because the feasible polyhedron is fixed, the optimal set
S(A, b, c) is simply the union of such faces over all c ∈ c.

As problem (36) is a special case of ILP (27), we can obtain a characterization
of boundedness of the optimal set from Corollary 6.8. However, in this setting,
we can also formulate a significantly simplified proof:

Corollary 6.12. The set S(A, b, c) is bounded if and only if for each c ∈ c the
optimal set S(A, b, c) of the corresponding linear program is bounded.

Proof. Assume there exists c ∈ c, such that the set S(A, b, c) is unbounded. Then,
since S(A, b, c) ⊆ S(A, b, c), the latter is also unbounded.

On the other hand, let S(A, b, c) be bounded for every c ∈ c. By Theorem 6.11,
the optimal solution set S(A, b, c) of the ILP is then a finite union of bounded
sets, therefore also a bounded set.

6.3 Interval right-hand side

Let us now continue with the class of interval linear programs, where intervals
only occur in the right-hand-side vector b, i.e.

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0.

(37)

In this case, the (weak) feasible set is also a convex polyhedron, since we can
rewrite the constraint Ax = b as two inequalities b ≤ Ax ≤ b, thus obtaining
a linear system.

The first result presented in this section is a reformulation of Corollary 6.8
concerning boundedness of the optimal set. For this special case, the following
equivalent characterization holds:

45



Theorem 6.13. The optimal set S(A, b, c) of ILP (37) is bounded if and only
if there exists some b ∈ b such that the optimal set S(A, b, c) is non-empty and
bounded or S(A, b, c) = ∅ for each b ∈ b.

Proof. We prove that if S(A, b, c) is non-empty and bounded for some b ∈ b,
then the optimal set is bounded for every b ∈ b. The statement then follows by
applying Corollary 6.8.

Let b0 ∈ b be such that S(A, b0, c) is non-empty and bounded. For contra-
diction, assume that there exists b1 ∈ b, for which the optimal set S(A, b1, c) is
unbounded. Then there is a point x1 ∈ S(A, b1, c) and a direction d ∈ Rn with
x1 + td ∈ S(A, b1, c) for each t ≥ 0. Since

Ax1 = b1 = Ax1 + tAd

holds, we obtain the equality tAd = 0. Similarly, using optimality of the solutions,
we have cTx1 = cTx1 + tcTd, and therefore cTd = 0.

Choose x0 ∈ S(A, b0, c) arbitrarily and consider x0 + td with t ≥ 0. We have
Ax0 + tAd = b0 and cTx0 + tcTd = cTx0 for every choice of t ≥ 0. Therefore, the
set S(A, b0, c) is also unbounded, which is a contradiction.

We have seen that even a linear program with an interval objective function
can still have a non-convex optimal set. Unfortunately, this is also true for linear
programs with interval right-hand sides.

Example. Consider the following ILP:

minimize x1

subject to x1 − x2 = [−1, 1],
x1, x2 ≥ 0.

(38)

Let a scenario of (38) be determined by the constraint x1−x2 = α for α ∈ [−1, 1].
If α ≤ 0, then the corresponding linear program has a unique optimal solution
with x1 = 0 and x2 = −α. For α > 0, there is a unique optimal solution (α, 0).
Therefore, the optimal solution set of the ILP is (0, [0, 1]) ∪ ([0, 1], 0), which is
non-convex (see Figure 6.2).

x2

x1
0

b = −1 b = 1

Figure 6.2: The feasible set (gray) and the set of optimal solutions (thick
black) of ILP (38).
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Conclusion

We have studied various properties of the weak optimal solution set of an interval
linear program. Some new sufficient conditions on closedness, boundedness and
connectedness of the optimal set were presented in Chapter 5, which also includes
a review of the known results on this topic. For a special class of ILPs with
a fixed coefficient matrix, we have proved that the optimal set is polyhedral
and connected (see Theorem 6.1 and Corollary 6.7). Regarding the theoretical
complexity of testing the properties, we have proved in Theorem 5.9 that the
problem of checking boundedness of the optimal set is co-NP-hard for inequality-
constrained interval programs. We have also studied transformations between
different types of ILPs, in order to apply the obtained results to a wider set of
problems. In Section 6.1.3, we have shown that all the standard transformations
are valid for problems with a fixed coefficient matrix, in the sense that they
preserve the set of optimal solutions.

Another topic addressed in the thesis was the problem of approximating or
enclosing the optimal solution set. In Section 4.1 and Section 4.2, have reviewed
two methods for generating an approximation using the theory of duality in linear
programming, namely the orthant decomposition and the interval contractor by
Hlad́ık. Furthermore, the theoretical results have led to another decomposition
method based on complementary slackness, which is presented in Section 4.3.
This method can be used to find the exact optimal solution set for problems with
a fixed coefficient matrix, but is suitable mainly for smaller problems due to the
exponential time complexity.

The main open questions which arose during the work on this thesis are relat-
ed to closedness and polyhedrality of the optimal set in the general case. Further
research shall therefore be devoted to strengthening the results obtained in this
area. From an algorithmic point of view, methods providing a tighter approxi-
mation, which preserves at least some of the properties of the exact optimal set,
are desirable.
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