
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Matej Moravč́ık

Evaluating public state space
abstractions in extensive form games

with an application in poker

Department of Applied Mathematics

Supervisor of the master thesis: Milan Hlad́ık

Study programme: Informatics

Specialization: Discrete models and algorithms

Prague 2014

I would like to thank my supervisor, Mgr. Milan Hlad́ık, Ph.D. He supported
me and provided helpful comments. He was also very understanding as for the
homework duties for his classes, especially when me and my roommate were
working late hours to make our agent for the competition before the submission
deadline.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Vyhodnotenie abstrakcíı určených pre hry s neúplnou informáciou
s využit́ım v pokeri

Autor: Matej Moravč́ık

Katedra: Katedra aplikované matematiky

Vedoućı diplomové práce: Mgr. Milan Hlad́ık, Ph.D, Katedra aplikované matem-
atiky

Abstrakt: Poznáme efekt́ıvne techniky na výpočet optimálnej stratégie pre hry v
rozš́ırenej forme. Niektoré problémy, napŕıklad poker, sú stále omnoho väčšie, ako
sú tieto techniky schopné zvládnuť. Riešeńım je vytvorǐt abstrakciu hry, ktorá
je menšia ako pôvodná hra. V tejto abstrakcii už dokážeme nájsť optimálnu
stratégiu. Túto stratégiu môžeme potom využǐt v originálnej hre. V tejto práci
opisujeme techniky, ktoré sa na tvorbu abstrakcíı aktuálne použ́ıvajú. Väčšina z
nich neberie osobite v úvahu informácie, ktoré sú viditělné pre všetkých hráčov
v hre. My sme na tento účel vyvinuli vlastnú techniku a otestovali sme ju v
pokeri. Naše experimentálne výsledky ukázali, že nová technika priniesla značné
zlepšenie oproti doteraz použ́ıvaným technikám.

Kĺıčová slova: Hry v rozš́ırenej forme, Poker, Abstrakcia hry, Nashovo equilibrium

Title: Evaluating public state space abstractions in extensive form games with
an application in poker

Author: Matej Moravč́ık

Department: Department of Applied Mathematics

Supervisor: Mgr. Milan Hlad́ık, Ph.D, Department of Applied Mathematics

Abstract: Efficient algorithms exist for finding optimal strategies in extensive-
form games. However human scale problems, such as poker, are typically so large
that computation of these strategies remain infeasible with current technology.
State space abstraction techniques allow us to derive a smaller abstract game, in
which an optimal strategy can be computed and then used in the real game. This
thesis introduces state of the art abstraction techniques. Most of these techniques
do not deal with public information. We present a new automatic public state
space abstraction technique. We examine the quality of this technique in the
domain of poker. Our experimental results show that the new technique brings
significant performance improvement.

Keywords: Extensive form games, State space abstraction, Public information,
Nash equilibrium, Automatic abstraction technique

Contents

Introduction 4
0.1 Extensive games with imperfect information as a research topic . 4
0.2 Computer poker . 4
0.3 The Annual Computer Poker Competition 5
0.4 Game abstraction . 5

0.4.1 Lossy and lossless abstractions 5
0.4.2 Action space abstraction 6
0.4.3 State space abstraction . 6
0.4.4 Public information . 6

0.5 Our goals . 7

1 Background 8
1.1 Texas Hold’em Poker . 8
1.2 Rules of No-limit Texas Hold’em Poker 8

1.2.1 Play of single hand . 8
1.3 Extensive game . 9

1.3.1 Poker example . 9
1.3.2 Constant sum games . 10

1.4 Strategy . 10
1.5 Perfect recall and imperfect recall 11
1.6 Solution techniques . 11

1.6.1 Best response . 11
1.7 Nash equilibrium . 12

1.7.1 Properties of Nash equilibrium in two player zero sum game 12
1.7.2 Computation of Nash equilibrium 13
1.7.3 Linear programming . 13
1.7.4 Epsilon-equilibrium . 13
1.7.5 Counterfactual regret minimization 13

1.8 Game Abstraction . 14
1.8.1 Strategy in the abstraction 14
1.8.2 State abstraction . 14
1.8.3 Action abstraction . 14
1.8.4 Lossless abstractions . 15
1.8.5 Lossy abstractions . 15
1.8.6 Perfect recall . 15
1.8.7 Imperfect recall . 15
1.8.8 Private and public information 15

1.9 No-limit Texas Holdem Poker example 16
1.9.1 Action abstraction in poker 16
1.9.2 Private state abstraction in poker 16
1.9.3 Public state abstraction in poker 16

1

2 Properties and evaluation of game abstraction 17
2.1 Existence of Nash equilibrium in abstract game 17

2.1.1 Perfect recall . 17
2.1.2 Imperfect recall . 17

2.2 Abstract strategy in real game . 17
2.2.1 Strategy development process 17
2.2.2 Abstraction pathology . 17
2.2.3 Over-fitting . 18
2.2.4 Empirical performance . 18

2.3 Abstraction evaluation . 18
2.3.1 One-on-One performance 18
2.3.2 Performance against best response 18
2.3.3 CFR-BR . 19

3 Prior abstraction techniques 20
3.1 Bucketing . 20
3.2 Expected hand strength . 20
3.3 Expected hand strength squared 20

3.3.1 Percentile Bucketing . 20
3.4 Nested bucketing . 21
3.5 History bucketing . 21
3.6 Potential of the hand . 21
3.7 Abstraction as a clustering . 21

3.7.1 K-means clustering . 21
3.8 Potential aware abstraction . 22
3.9 Distribution aware abstraction . 22

3.9.1 Hand strength distribution 22
3.9.2 K-means bucketing . 22

3.10 Opponent cluster hand strength 22
3.11 Prior public state abstractions . 23

3.11.1 Abstraction using transition table 24
3.11.2 Current public state abstraction techniques 24

3.12 Empirical performance of abstract strategies 24
3.12.1 Perfect recall, imperfect recall and public state abstraction 25
3.12.2 Comparison of distribution aware and expectation aware

abstractions . 25
3.12.3 Comparison of potential aware and distribution aware ab-

stractions . 25
3.13 Abstractions used by state of the art players 25
3.14 State space abstraction used by our agent in 2013 ACPC competition 26

4 Our new public state space abstraction 27
4.1 Overview of our approach . 27

4.1.1 Distance measure . 27
4.1.2 Clustering technique . 27

4.2 Overview of clustering algorithms 27
4.2.1 K-means clustering . 27
4.2.2 K-medoids clustering . 28
4.2.3 Partitioning around medoids algorithm 28

2

4.3 Earth mover’s distance . 29
4.3.1 Formal definition . 29
4.3.2 Properties of EMD . 30

4.4 Distance between hand strength distributions 30
4.4.1 Computation of EMD between two hand strength distribu-

tions . 30
4.5 Distance between public states . 31

4.5.1 Computation of EMD . 31
4.6 Ground distance between hands 31

4.6.1 Distribution aware ground distance 32
4.6.2 Distribution history aware ground distance 32

4.7 Abstraction of the whole game . 32
4.7.1 Nested bucketing . 33

4.8 Summary of our approach . 33
4.9 State space abstraction used by our agent in 2014 ACPC competition 33
4.10 Implementation notes . 34

4.10.1 Representation of buckets 34

5 Experimental results 35
5.1 Game parameters . 35

5.1.1 Stack size . 35
5.1.2 Action abstraction . 35

5.2 Used state space abstractions . 35
5.2.1 Our new abstraction . 35
5.2.2 Old state of the art abstraction 36

5.3 Used Strategies . 36
5.4 Evaluation method . 36

5.4.1 Our new comparison algorithm 36
5.5 Measure of winnings . 37
5.6 Obtained Results . 37
5.7 Evaluation of Results . 37
5.8 ACPC 2014 . 37

Conclusion 38
5.9 New public state space abstraction technique 38
5.10 Experimental results . 38
5.11 Future work . 38

List of Tables 42

List of Abbreviations 43

Attachments 44

3

Introduction

0.1 Extensive games with imperfect information

as a research topic

Game theory models games such as chess or card games, as well as real life
scenarios from field of economics, political science, information security, and from
many other fields.

One of the main goals of artificial intelligence research are autonomous com-
puter agents capable of decision making in the real world environment such as
the ones we have already mentioned.

Historically, computer chess has been a traditional domain for evaluation of
artificial intelligence progress for many years. Big progress has been achieved in
this area, but deterministic games without hidden information, such as chess or
go, are often poor models for real world situations.

Many assumptions that are true in these games are rare in real world settings,
mainly an assumption of perfect information and deterministic nature of the
game.

There has been big progress in the area of imperfect information and stochastic
games in last few years. This field of research is gaining more and more attention
of artificial intelligence community.

0.2 Computer poker

Computer poker is a very good testbed for AI, designed to deal with imperfect
information. It models several properties that are common for the real world
problems:

• Imperfect information -in poker, a player does not know what card an op-
ponent holds. Prefect information is also rare in the real word problems.

• Stochastic events - in poker, cards are dealt randomly from the deck. Ran-
dom events are also very common in the real word problems.

• Quantification of winnings - in chess, player’s goal is just to win the game.
In contrast, a player always wants to win as much chips as possible in
poker. Expected value of the profit is also very important in the real world
problems, especially in those where money is involved.

There are also practical reasons, why computer poker is a good testbed:

• There is a number of strong computer players available to play against, and
there is also a number of skilled human experts. This allows us to evaluate
new game-play and opponent-modelling techniques.

• The game is too complex to be solved by brute force. Therefore, many
smart AI techniques have been developed for poker domain, and there is
still a lot of space for new ones.

4

• Computer chess programs can beat top human players by a large margin. In
contrast, computer poker agents have beaten human players only in heads-
up poker with limited bets [11]. Humans are considered to be stronger
players in all other commonly played types of poker. Therefore, there is
still a lot of room for improvement in computer poker.

0.3 The Annual Computer Poker Competition

In order to compare word best computer poker agents, the Annual Computer
Poker Competition (ACPC) [1] has run each year since 2006. The event
attracts amateur competitors, as well as academic researchers from countries all
around the world.

Currently, in 2014, 34 agents from 20 teams were submitted to the competi-
tion, and four types of poker games were played: Heads-Up Limit Texas Hold’em,
Heads-Up No-Limit Texas Hold’em, 3-player Limit Texas Hold’em and 3-player
Kuhn.

Most agents were submitted to Heads-Up No-Limit competition. This com-
petition is also the most interesting one from the point of game abstraction, and
we have focused on it.

As a result of techniques introduced by this thesis, we created our agent for
2014 competition.

0.4 Game abstraction

New game solution techniques, capable of finding optimal strategies in large
games, were introduced in recent years [27, 7].

However, real human scale problems are often several magnitudes larger that
problems solvable with state of the art techniques. For example, No-limit Texas
Hold’em Poker, played at ACPC competition has approximately 6.3×10164 game
states [12]. It is very unlikely that it will ever be possible to solve such a big
games directly.

The technique of game abstraction was introduced to deal with large games.
Firstly, new smaller abstract game is created. Then some solution technique is
used to find good strategy in this new game. Finally, there have to be translation
techniques to translate information from real game to the abstract game, and to
translate action made in the abstract game back to the original game.

Game abstraction should have strategical properties as similar with the orig-
inal game as possible.

In two players zero sum games, such as No-limit Texas Hold’em Poker played
at ACPC, solution techniques are good explored, and the main difference of the
top agents performance is caused by different quality of the game abstractions.

0.4.1 Lossy and lossless abstractions

In an ideal case, we can create an abstract game with a property that any optimal
strategy in this game corresponds to optimal strategy in original, unabstracted

5

game. This type of abstraction is called losseless. With this approach Rhode
Island Hold’em Poker - large, but still artificial game, was solved [8].

Loosless game abstractions are still too large for most human scale problems.
Therefore, lossy abstractions are used. Strategy in these abstractions can have
different performance as the equivalent strategy in the original game. When
we are creating such an abstraction, our main goal should be to minimize this
difference.

0.4.2 Action space abstraction

To create small abstract game from game with many possible player actions, we
can use the action space abstraction. In this type of abstraction, players are
allowed to play only subset of the actions available in the original game.

For example, in abstracted No-limit Texas Hold’em Poker, players are allowed
to choose only from few distinct bet sizes instead of betting any legal amount of
chips.

0.4.3 State space abstraction

Another approach how to create a game abstraction is to force players to play in
the same way when the information about the game state differs only slightly.

For example, in Texas Hold’em Poker abstraction, a player wold not be allowed
to distinguish between A♠A♥ and K♠K♥, he would be forced to play both
combinations in the same way.

For smaller games, like a limit versions of poker, state space abstraction is
often sufficient. For large games with many possible actions, like a No-limit Texas
Hold’em Poker, combination of the state space and action space abstraction has
to be used.

0.4.4 Public information

Every information about the game state is available only to certain subset of
players. Information available only to one player is called private information,
information available to all players public information.

In Texas Hold’em Poker, information about player’s hand is private, and in-
formation about cards dealt on the board is public.

Traditional computer poker agents used abstractions that capture only infor-
mation about player’s hand, and did not deal with information about board cards
[11, 7].

Current state of the art agents use abstractions capable to capture also infor-
mation about the board cards [1]. Some of the public state space abstractions
have to be used for this purpose.

These public state space abstractions were handcrafted by human experts
what brings several drawbacks:

• Quality of abstraction is very dependent on quality and judgment of human
expert. Therefore, this approach is very domain specific.

6

• Creating any new abstraction take a lot of effort. This makes changing the
size of the abstraction very problematic.

• Modern clustering algorithms can handle much more data than human
brain. Therefore, we believe it its possible to create higher quality ab-
stractions for complex games automatically.

0.5 Our goals

Our main goal was to create an algorithm for automatic public state space ab-
straction. Then, we used this algorithm as one of the key components for the
whole game abstraction.

Domain of No-limit Texas Hold’em Poker was used to evaluate our new ap-
proach. We compared it’s performance with older abstraction techniques.

Finally, we used our new abstraction for the ACPC 2014 competitor, Nyx
2014.

7

1. Background

1.1 Texas Hold’em Poker

Poker games are a large family of card games, involving betting. The winner of
the game is determined by his card combination. No-limit Texas Hold’em
Poker is the most often played version of poker worldwide. We focused on two
player version of this game. This version is also played at the ACPC competition.

1.2 Rules of No-limit Texas Hold’em Poker

Single play of poker game with single deal of cards to players is called hand.
Poker match typically consists of a large number of hands. For example, one
match consists of 3000 hands at ACPC competition, and multiple matches are
played to determine the winner.

At the beginning of the hand, each player has some amount of chips called
stack. To bet some amount in poker means to move chips from player stack to
pile of chips in the middle of the table called the pot.

1.2.1 Play of single hand

Start of the hand

Before the hand starts, the players have to post mandatory bets called blinds.
In two player version of poker, the player on the dealer position posts the small
blind and the other player posts the big blind. After that, each player obtains
two cards from standard 52-card deck. These cards are known only to the player
who is holding them, and they are called the private hand.

Betting rounds

A hand consists of four betting rounds. At the begging of each betting round,
except the first one, cards visible for all players are dealt from the deck. Three
cards are dealt for the second betting round and one card for the third and the
fourth. These cards are called the board cards.

Players alternate in their actions until the betting round ends. They can
place bet if there was not previous bet during actual round, they can raise the
opponent bet if the bet is not larger than their stack, they can call the opponent
bet, or they can give up and fold their hand.

The player on the button plays first on the first round, the order is then
switched on later rounds.

Betting round continues until at least one of the players folds, or until both
players call opponent bet.

End of the game

When one player folds, hand ends and the other player wins all chips in the pot.
If neither player folds his cards until the end of the fourth betting round, there

8

is the showdown.
Players can use all five cards dealt on the table and combine them with two

private cards to make the best possible five card combination called the hand .
Player with stronger hand wins the pot. When both players have combinations

with equal strength, there is a tie, and the pot is split equally between them.
The goal of the game is to win as much chips as possible. Lost chips are

removed from stacks at the end of the hand in common settings, but at ACPC
stacks remain the same during the whole match.

1.3 Extensive game

Traditional representation of a game in game theory is the normal form, where
players act simultaneously. This assumption does not hold for most of the games
played by humans, such as chess, go or poker. Better model for games with
sequential moves is the extensive game. It models single game play like a
sequence of chance and players’ actions called history. The whole game is a set
of all possible histories.

Formally, an extensive form game consists of[19, p. 200]:

• A finite set N (the set of players).

• A finite set H of sequences. Each member of H is a history, each com-
ponent of a history is an action. The empty sequence is in H, and every
prefix of a history is also a history ((h, a) ∈ H =⇒ (h ∈ H)). h v h′

denotes that h is a prefix of h′. Z ⊆ H are the terminal histories (they are
not a prefix of any other history).

• The set of actions available after every non-terminal history A(h) = {a :
(h, a) ∈ H}.
• A function p that assigns to each non-terminal history an acting player

(member of N ∪ c, where c stands for chance).

• A function fc that associates with every history for which p(h) = c a prob-
ability measure on A(h). Each such probability measure is independent of
every other such measure.

• For each player i ∈ N , a partition Ii of h ∈ H : p(h) = i. Ii is the infor-
mation partition of player i. A set Ii ∈ Ii is an information set of
player i.

• For each player i ∈ N an utility function ui : Z → R.

Standard information partition of the game is to have each information set for a
player containing only histories which he cannot differ by events in the game that
are known to him. During the game, a player knows only information set, he is
currently in, and not particular history within the information set. Therefore, he
has to play in the same way, no matter history he is currently in.

1.3.1 Poker example

In poker, history is determined by betting sequence, the cards dealt to the players
and the board cards.

9

Information set for the player consists of all histories distinct only in oppo-
nent’s private cards. All histories in the player’s information set share betting
sequence and his hole cards.

Actions available to a player in his information set are all legal betting actions
determined by betting sequence that leads to the set. These can be to fold, to
call, or to bet/raise any legal amount.

Terminal histories are those, where the game ends, that means one player
folds or there is a showdown. Utility for a player in some terminal history is the
amount of chips won after a game play determined by this history.

1.3.2 Constant sum games

Game is constant sum, when for each terminal history, sum of utilities of
all players in this history is some constant c, i.e for all h ∈ Z holds equation∑n

i=1 ui(h) = c.
The zero sum game is a special case of constant sum game, when c = 0.

When we slightly modify the constant sum game by defining new utility function
u
′
i with property that u

′
i = ui − c/N we will obtain zero sum game. Most games

played by humans, like chess, roshambo or poker, are zero sum games.

1.4 Strategy

Strategy of a player defines how he acts in his turn. In perfect information
games like chess, player should make decision in order to take best possible single
action. In contrast, when there is an imperfect information involved, a player
could reveal additional information to the opponent by choosing the same action
every time he is in the same history, thus his play would not be optimal any more.
Good example of this phenomenon is a game of roshambo. If, for example, one
player always plays rock, another player can take advantage of this additional
information and always wins by playing paper. Therefore, players have to choose
actions stochastically according to some probability distribution.

The behavior strategy of a player is defined as set of such distributions, where
one distribution belongs to each his information set. The strategy profile of the
game is a vector of strategies for all players.

Formally:

• A strategy for player i, σi, is a function that maps I ∈ Ii to a probability
distribution over A(I) and πσ(I, a) is the probability of action a. Σi denotes
the set of all strategies of player i.

• A strategy profile is a vector of strategies of all players, σ = (σ1, σ2, . . . , σ|N |).
Σ denotes the set of all strategy profiles.

• We denote πσ(h) as the probability of history h occurring given the strategy
profile σ.

• Let πσi (h) be the contribution of player i to that probability. Then we can
decompose πσ(h) as

10

πσ(h) =
∏
i∈N∪c

πσi (h)

• Let π−i(h) be the product of all players’ contribution (including chance),
except that of player i.

• Define σ|I→a to be the same strategy profile as σ, except that a player
always plays the action a in the information set I.

• Define ui(σ) to be the expected utility for player i, given the strategic profile
σ.

1.5 Perfect recall and imperfect recall

If a game satisfies the perfect recall , it guarantees that players neither forget
any information revealed to them, nor the order in which the information was
revealed. Otherwise we say that a game has imperfect recall.

Perfect recall is more natural model for games like poker, and has nice the-
oretical properties like an existence of optimal strategy. However, most of the
state of the art abstractions in poker use imperfect recall, which allows much
more compact game representation.

1.6 Solution techniques

Goal of the solution techniques is to find some good game strategy. There are
basically two different approaches. One option is to model an opponent strategy
and then use the best response to this strategy. The other approach is to try to
find some approximation of the game theoretic optimal strategy.

1.6.1 Best response

If we know strategy of all opponents exactly, we can easily compute the best
counter strategy. However, this is not typical setting for most of games. Instead,
we can try to model opponent strategy according to actions he takes, and compute
counter strategy to this model.

This approach is still problematic when we play large extensive games such as
poker. Firstly, we usually have to play some strategy until the model is created,
and we do not want to loose too much during this period. The other issue is
that very large number of observations is needed to create an accurate model of
opponents. Best response technique is very sensitive to model inaccuracy.

To counter these problems, multiple techniques, such as restricted Nash
response [18], data biased response [15] or implicit agent modelling [3],
were introduced.

Although these new techniques exhibit good results in the limit poker com-
petitions, this does not hold for no-limit competitions, and top agents in these
competitions try to play approximate Nash equilibrium strategy.

11

1.7 Nash equilibrium

Strategy profile, in which no player can improve by changing his strategy, i.e
each player plays best response to other players’ strategies, is called the Nash
equilibrium. Formally:

A Nash equilibrium is a strategy profile σ such that for any player i ∈ N ,

ui(σ) ≥ max
σ∗i ∈Σi

ui((σ
∗
i , σ−i))

It has been proved by Nash, that every finite game in normal form has such
a strategy profile [19]. This theorem holds also for extensive games with perfect
recall, and there is often more than one equilibrium.

1.7.1 Properties of Nash equilibrium in two player zero
sum game

Nash equilibrium approximations are most often used in two players zero-sum
games. Equilibrium profile has some nice properties in these games:

• Equilibria form a convex set, i.e any convex combination of two equilibria
is also an equilibrium.

• If players i plays optimally, i.e his strategy σi is a part of some equilibrium
strategy profile σ, and there is another equilibrium strategy profile σ

′
, then

also (σi, σ
′
−i) is the Nash equilibrium of the game. That means the player’s

strategy is optimal regardless to the opponent’s strategy.

This is very important property. When we want to find optimal strategy for
some player, it is sufficient to compute any Nash equilibrium of the game
and then pick player’s strategy from that profile.

• Utility of first player’s players optimal strategy is the same constant in any
equilibrium profile. That means if we have two Nash equilibira σ, σ

′
, then

u1(σ) = u1(σ
′
) = v and consequently u2(σ) = u2(σ

′
) = −v, where v is some

constant called game value.

Moreover, if player strategy σ1 is optimal (there is some σ2 with property
that (σ1, σ2) is an equilibrium), the player 1 has a guarantee, that he will
obtain at least game value against any opponent’s strategy. Any optimal
strategy of player 2 also ensures that player 1 does not win more that game
value with any strategy.

Therefore, the first player can ensure that he will win at least game value,
and the other player can ensure that he won’t win more, and vice versa.
Thus playing an equilibrium strategy is rational choice for both players.

• We can find equilibrium strategic profile in polynomial time.

These properties do not hold for the general sum games, or for the games with
more than two players. However, our main area of interest is Heads-Up No-limit
Texas Hold’em Poker, which is an instance of two players zero sum game.

12

1.7.2 Computation of Nash equilibrium

Generally, computation of the Nash Equilibrium belongs to class of problems
called PPAD-complete, and it is believed that there is no polynomial time algo-
rithm for this class [20], but there are polynomial algorithms for two players zero
sum case.

1.7.3 Linear programming

One way how to compute optimal strategy for extensive game is by linear pro-
gramming. Firstly, new representation of the game called sequence form is cre-
ated. Sequence form represents game and players’ strategies as a set of linear
equations. Then, the linear program is created and we can find Nash equilibrium
by solving this program.

If we use some efficient solution technique, such as the interior point method,
we can obtain solution in polynomial time. It is easy to convert the result back
to the extensive form.

Both, the linear program and the sequence form representation of game, need
memory linear to the count of possible histories. This could seem efficient, but
for large games such as poker, this bound is still too big.

We can exploit the fact, that the count of the information sets if often much
smaller than the count of possible histories. There are strong approximation
algorithms that use only memory linear to the count of information sets in the
game.

1.7.4 Epsilon-equilibrium

If the strategy profile is a Nash equilibrium, no player can improve his utility by
changing his strategy. In epsilon equilibrium, no player can improve his utility
for more than some small constant ε.

Formally:
The strategy profile σ∗ is an ε-equilibrium iff the following inequality holds:
ui(σ

∗
i , σ

∗
−i) ≥ ui(σ

∗
i , σ−i)− ε ∀i, ∀σ−i

1.7.5 Counterfactual regret minimization

The Counterfactual Regret Minimization (CFR) is an iterative algorithm
used to find an ε-equilibrium in the player zero sum games[27]. It computes
strategy for both players in each iteration. Average of these strategies converges
to a Nash equilibrium. Convergence rate of the algorithm is O(1/

√
T), where T

is count of the iterations.
The main advantage of this algorithm is that it has low memory requirements.

It needs only memory linear to the count of the information sets.
Recently, many variants of this technique have been developed . Some of them

use sampling to avoid of traversal entire game tree [6], other can also exploit
structure of the game [14]. In 2013 ACPC competition, all top participants of
No-limit competition used some version of counterfactual regret minimization
algorithm.

13

1.8 Game Abstraction

Although we introduced strong game solving techniques, such as those described
above, most poker games are still way too large to be solved directly by those
techniques. For example, Heads-Up No-limit Texas Hold’em Poker, played at
2013 ACPC had 6.31× 10164 game states and 6.37× 10161 information sets [12].
Even all storage capacity on the world would not be sufficient to store the whole
strategy for such game.

Therefore, some sort of a game abstraction is needed. To do that, we can
merge different information sets together, restrict players to play only certain
actions, or do combinations of these two approaches. More formally, a game
abstraction is defined as follows [25]:

An abstraction for player i is a pair αi = 〈αIi , αAi 〉, where:

• αIi is partitioning of Hi, set of all histories where player i acts. It defines
set of abstract information sets that must be coarser than Ii.

• αAi is a function on histories, that determines actions legal in the abstrac-
tion. It must satisfy αAi (h) ⊆ A(h) and αAi (h) = αAi (h

′
) for all histories h

and h
′

in the same abstract information set. We will call this the abstract
action set.

The null abstraction for player i, is φi = 〈Ii, A〉. An abstraction α is a set
of abstraction αi for all players i ∈ N . The abstract game, Γα, is the extensive
game obtained from the original game, Γ, by replacing the set of possible actions
A(h) with αAi (h), when P (h) = i, and replacing the information partition Ii with
αIi , foll all i ∈ N .

1.8.1 Strategy in the abstraction

Strategy in an abstract game is defined in the same way as a strategy for an
original game, but it is allowed to assign non-zero probability only to actions
from abstract action set, and it must have same probability distribution in all
histories from the same abstract information set.

1.8.2 State abstraction

If |αIi | < |Ii|, i.e some information sets form the original game are merged, then
the resulted abstraction is called a state abstraction. In large games with many
information sets, like Texas Hold’em Poker, some form of state abstraction usually
must be performed to keep the memory size required for game representation
manageable.

1.8.3 Action abstraction

If |αAi (h)| < A(h) for some h, then the resulted abstraction is called action
abstraction. In games with small count of actions, like limit poker games,
there is often no action abstraction performed, but this is not possible in games
with large number of actions like no-limit poker games. In these games, some
combination of action abstraction and state abstraction is usually used.

14

1.8.4 Lossless abstractions

The abstraction of a game is lossless iff any strategy optimal in the abstraction is
optimal also in the original game. Lossless abstractions exploit game isomorphism
and merge isomorphic information sets together. For that purpose, optimal algo-
rithm GameShrink, which can use all isomorphisms automatically, was developed
[8]. Although this algorithm achieved some notable results in small artificial ver-
sion of poker [8], lossless abstractions are still way too large to be used in many
human scale games, like Texas Hold’em Poker.

1.8.5 Lossy abstractions

If an abstractions is lossy there is no restriction which information sets could be
merged and which actions will be allowed for players to play. Consequently, there
is no any guarantee that a strategy optimal in the abstraction will also perform
well in the original game.

Because we have no restrictions on merging information sets or on restricting
players’ actions, we can create abstraction of any desired size, and therefore fit
memory and time requirements of available computational resources. All recent
Texas Hold’em Poker agents use lossy abstraction.

1.8.6 Perfect recall

If abstraction satisfies the prefect recall condition, i.e. players neither forget
any information revealed to them, nor the order in which the information was
revealed, this abstraction is called perfect recall abstraction. Early poker
agents used only this type of abstraction.

1.8.7 Imperfect recall

In imperfect recall abstractions, players are allowed to forget information
revealed to them. We can create imperfect recall abstractions also from original
game with perfect recall.

If there is imperfect recall in abstraction, many theoretical guarantees, like
existence of a Nash equilibrium, are lost. Moreover, many game solving algo-
rithms, such as linear programming are not well defined for such game. On the
other hand, in practice imperfect recall abstractions often perform better than
perfect recall abstractions of the same size [26].

All top agents used some sort of imperfect recall abstraction in 2013 ACPC
No-limit Texas hold’em competition[1].

1.8.8 Private and public information

If information about the game state is public, it is known to all players. Private
information is known only to one player.

The private state space abstraction groups together information sets with
similar private information. The public state space abstraction groups to-
gether sets with similar public information.

15

Traditionally, poker abstractions merged all information sets with similar pri-
vate information, and differences in public information were ignored.

Despite of very good performance of public state space abstraction, only very
limited attention has been devoted to it.

Recently, on 2013 ACPC no-limit competition, all strongest agents, except
ours, used some form of public state abstraction[1].

Most of the agents use public state space abstraction handcrafted by human
experts.

1.9 No-limit Texas Holdem Poker example

1.9.1 Action abstraction in poker

In No-limit Texas Holdem Poker, we can perform action abstraction by restricting
allowed bets to only few possible chip counts. Early agents had abstractions with
very limited types of possible bets. For example, only pot sized bet and all-in
bet were allowed [23].

1.9.2 Private state abstraction in poker

In poker, private state abstraction considers strategic properties of the private
hand hold by a player. For example, a player can be forced to play strong starting
combinations, such as a pair of aces and a pair of kings, in the same way in the
abstraction.

1.9.3 Public state abstraction in poker

Public state abstraction considers properties of board cards. For example, public
flop card combinations 3♠3♥3♦ and 4♠4♣4♥ would be considered to be the
same combination in the abstraction.

16

2. Properties and evaluation of
game abstraction

2.1 Existence of Nash equilibrium in abstract

game

2.1.1 Perfect recall

If abstracted game is a perfect recall game, all conditions for Nash theorem are
satisfied and there exits at least one. But, unless the abstraction is lossless, there
is not any guarantee that this strategy would perform well also in the original
game.

2.1.2 Imperfect recall

For imperfect recall abstractions, there is no guarantee that some Nash equilib-
rium exits. Even worse, some of the algorithms for finding an optimal strategy
are ill-defined and they do not give us any strategy at all.

Fortunately, we can use some sampling variants of counterfactual regret min-
imization algorithm. Strategies obtained by this algorithm does not have to con-
verge to a Nash equilibrium (since there could be none), but in practice, resulting
strategy is usually some ε-equilibrium with sufficiently low value of ε.

2.2 Abstract strategy in real game

2.2.1 Strategy development process

Most human scale problems, such as no-limit poker, need some sort of game
abstraction to become solvable. Therefore, first step in development of a strategy
is to create an abstraction.

Then, some game solving algorithm, like CFR, is used to obtain an ε-equilibrium
for the abstraction. It is typically impossible to hold the whole strategy for orig-
inal game in memory, but we must be still able to play in it.

When it is player’s turn, information set from original game has to be translat-
ed to information set in abstracted game. Then, an action is chosen according to
probability distribution of our abstract strategy. The last step is to translate the
action chosen in abstract game into action played in real game. This technique
is called the game translation.

2.2.2 Abstraction pathology

Intuitively, strategy from bigger abstraction, that merges fewer information sets
together, should perform better in original game that strategy from smaller ab-
straction. However, this is not always the case, even if the bigger abstraction
is refinement of the smaller one. Counter examples have been shown in small
artificial games [25], and most recently also in asymmetric poker abstractions [2].

17

2.2.3 Over-fitting

When we use iterative algorithm like CFR, the strategy obtained by this algorithm
converges to Nash equilibrium in abstract game. But, this is not the case of
performance of strategy in original game. Empirically, strategy is improving only
during some number of iterations, and after that, performance of the strategy
starts to decrease slightly. This phenomenon is called over-fitting.

2.2.4 Empirical performance

Abstraction pathology occurs very rarely, and bigger abstractions have the ten-
dency to be better [17]. When all players use some game abstraction, over-fitting
is not such a big problem, because the strategy has a tendency to improve itself
in abstracted game.

It is possible to deal with both problems by using special version of the CFR
algorithm called CFR-BR, which will be described later in this chapter.

2.3 Abstraction evaluation

Because there are many ways how to create abstractions, it is natural to try to
find the best one. There are several ways how to compare abstraction techniques.

2.3.1 One-on-One performance

The simplest, and the most natural way of comparing two abstractions is to
find optimal strategies in each of them and then just to let resulting agents play
against each other in the original game.

Statistically significant amount of games has to be played to obtain meaningful
results. In poker, several millions games are usually required.

We used this method for our experiments.

2.3.2 Performance against best response

Another option is to find an optimal strategy in the abstraction and then compute
it’s performance against the best response in the original game. This approach
has two drawbacks.

First problem is that the computation of the best response can be intractable
in the original game. Recently, new algorithm exploiting game structure was
introduced [16]. We can compute the best response in domain of Limit Texas
Hold’em Poker with this algorithm, but domain of No-limit Texas Hold’em Poker
is still intractable with current technology.

The other drawback is that different abstract game equilibria can have a wide
range of exploitability in the original game [25]. Therefore, obtained results are
dependent of used solution technique, and this approach is very unreliable.

18

2.3.3 CFR-BR

The CFR-BR, is a variant of CFR algorithm capable of finding strategies in the
abstraction that has minimal exploitability in the original game [13].

In order to evaluate the game abstraction, we will find strategy within this
abstraction using CFR-BR and then we will compute it’s performance against
the best response in the original game.

This approach has been used successfully for evaluation of Limit Texas Hold’em
Poker abstractions[13]. However, No-limit Texas Hold’em Poker is still too lager
for this technique.

Luckily, One-to-One performance of two abstractions gives us results very
similar to this technique, in poker [13].

19

3. Prior abstraction techniques

Arguably, Texas Hold’em Poker is the most studied testbed for game abstraction.
We will describe state space abstraction techniques, that have been used and
evaluated in this domain. Most of them take only the private information about
game state into account.

3.1 Bucketing

Bucketing is a technique for state space reductions used in the card games. It
will partition possible card combinations to certain fixed number of buckets.
Only strategically similar cards should be in the same bucket. There are many
ways, how to compute the similarity distance between the cards.

3.2 Expected hand strength

Probably the first measure of cards similarity was based on the concept of ”strength”
of the cards. The expected hand strength (E[HS]) is defined as a probability
of winning against random opponent hand [27]. For example, probability of win-
ning against random hand during first round is 0.8520 for A♠ A♣, and 0.8240
for K♥K♠. So, these hands will be very likely merged into the same bucket.

3.3 Expected hand strength squared

Expected hand strength squared (E[HS2]) is another, slightly different ver-
sion of the hand strength measure [27]. When we want to compute E[HS], we
firstly compute probability that our hand wins against random opponent hand
for each possible combination of the river board cards. E[HS] is then just an
arithmetic mean of these probabilities. To compute E[HS2], we use a mean of
squares of these probabilities instead.

The main idea behind this measure is to better capture the potential of the
hand to improve on the futre rounds of the game. In practice, abstractions created
by E[HS2] perform better than those created by E[HS] [27].

3.3.1 Percentile Bucketing

The Percentile bucketing is an approach used to divide hands into buckets
using E[HS] or E[HS2] measure. Firstly, the strength for each hand is computed.
Then, hands are sorted according to their strength. When we want to divide
hands to N buckets, we assign bottom 100/N percent of hands to the first bucket,
the next 100/N percent of hands to the second bucket and so on.

20

3.4 Nested bucketing

Nested bucketing uses multiple levels of bucketing. Firstly, all card combina-
tions are dived into top level buckets. Then, combinations from every top level
bucket are divided into several lower level buckets. The final bucket for the hand
is determined by vector of bucket numbers, one for each level. Typically, two
levels are used.

In the first application of this technique, E[HS2] bucketing was used for the
top level and E[HS] for the bottom one [27].

3.5 History bucketing

The bucket sequence is the sequence of buckets that the player’s card combi-
nation was placed into history. If we want to ensure perfect recall of abstraction,
we can use the history bucketing, where only card combinations with the same
bucket sequence from previous rounds are allowed to be in the same bucket.

3.6 Potential of the hand

When a hand is considered to be weak, i.e. it has low probability of winning,
it can have different potential to improve itself and to become a strong hand on
the future rounds of the game. Hands that have weak expectation of winning ini-
tially, but can improve to hands with very high expectation are called drawing
hands. When we use expectation based bucketing, such as E[HS] with percentile
bucketing, these hands are grouped together with hands that have also low prob-
ability of winning, but can not improve on later rounds. It was shown that the
difference in potential is strategically important [9].

3.7 Abstraction as a clustering

Once we have distance function between the hands, we can automatically divide
hands into buckets using some clustering algorithm. These algorithms try to
divide elements (hands) into clusters (buckets), in such a way that the distances
between the elements form one cluster are minimized. This problem is proved to
be NP-complete, but good heuristic algorithms exist.

3.7.1 K-means clustering

K-means clustering aims to partition elements into clusters, in a way that each
element belongs to one cluster. The number of clusters is some fixed constants
k, which have to be specified before the algorithm starts. Each element belongs
to a cluster with the nearest mean. The mean is computed as a mean value of
all elements of the cluster. Because this problem is NP-complete, this algorithm
finds only local optima. Multiple runs of algorithm are used to obtain better
result.

21

3.8 Potential aware abstraction

To address problem with capturing potential of the hand, potential aware ab-
straction was introduced [9]. In this type of abstraction, multi-pass clustering
is used. Firstly, hands on the last round are divided with k-means algorithm
according to E[HS], distance. Then, for one round before the final, histograms
showing probability of transitioning to the next round buckets are created for
each hand. Distance between the hands is defined as L2 distance between these
histograms. Using this distance, hands are again clustered with k-means algo-
rithm. To create state abstraction for the whole game, we will proceed this way
until we complete bucketing for the first round of the game. First version of this
approach used perfect recall. Recently, new version of potential aware bucketing,
which uses imperfect recall and earth movers distance between histograms,
was introduced [5].

Earth mover’s distance measures the ”minimum work” we need to change one
histogram into another. We will describe this distance in more detail, in the next
chapter.

3.9 Distribution aware abstraction

3.9.1 Hand strength distribution

The E[HS] value o is the mean of all possible E[HS] values that a hand can have
on the last round of the game. We can see that we lose a lot of information by
forgetting these values and using only a mean instead.

Better representation of the hand is the hand strength distribution. It is
defined as a histogram created from all possible E[HS] values that a hand can
have during the last round of the game.

It represents the probability that a hand will have certain E[HS] for values
from [0,1] interv.al. For an example of the hand strength distribution see figure
3.1;

3.9.2 K-means bucketing

In order to use hand strength distribution for bucketing, we can define distance
between two hands as an earth mover’s distance between their hand strength dis-
tributions. Then, some clustering algorithm, usually k-means, is used to cluster
hands into buckets. This approach, known also as a distribution aware ab-
straction, is quite simple to implement and it has very good empirical results
[17].

3.10 Opponent cluster hand strength

On the final round, there is not any potential for a hand to improve itself since
there are none future rounds. Therefore, both, potential aware and distribution
aware abstractions are equivalent with E[HS] on this round.

22

Figure 3.1: Hand strength distributions for hands on the first round of poker[17].
E[HS] of the hand is represented by vertical line. In each column, hands have
very similar E[HS] value, but different hand strength distribution. On the con-
trary, hands have significantly different E[HS] value in each row, but similar hand
strength distribution. Expectation aware abstraction would likely merge hands
in the same column, while distribution aware abstraction would merge hands in
the same row.

By definition, E[HS] gives our winning probability against opponent with uni-
form random distribution of hands. However, we can obtain even more infor-
mation by looking at wining probabilities against other possible distributions of
opponent hands.

The opponent cluster hand strength (OCHS) bucketing was designed
for this purpose.

All possible starting hands are partitioned to several subsets called opponent
clusters . Instead of computing single E[HS] value, we can now compute a vector
of winning probabilities with one probability for each cluster. Distance between
hands is defined as L2 distance between these vectors. Finally, some clustering
algorithm, like k-means, is used to cluster hands into buckets.

3.11 Prior public state abstractions

With use of imperfect recall, we can handle more information about current
game state. In addition to information about his own hand, a player can also
distinguish between different public board cards. This has been shown to be
significant advantage in the domain of computer poker [26].

23

3.11.1 Abstraction using transition table

First use of the public state abstraction in poker domain in literature was using a
transition table [26]. This table captures change of hands expectations caused
by public board.

To compute the table, prefect recall abstraction using E[HS] is created for
first two rounds. Then, for the public board we are interested in, a vector of
transition probabilities is created for each first round bucket. This vector has the
same number of elements as the count of second round buckets, and the value
of the i-th element is defined as a probability that random hand from the first
round bucket will be in i-bucket on second round.

These vectors are rows of the transition table, one for each first round bucket.
We can now define the distance between two public boards as L2 distance be-

tween their transition tables. When the distance is defined, we can use clustering
algorithm to cluster public boards into buckets.

Final abstraction uses nested bucketing with two levels. Top levels is used for
the public information bucketing, and second level for bucketing of player hands.

3.11.2 Current public state abstraction techniques

There is only 1755 distinct, non-isomorphic public flop card combinations. There-
fore, creation of a public bucketing is scalable by humans, and most of the current
state of the art agents use public state abstraction hand crafted by expert poker
players for the flop round.

This approach has several drawbacks:

• It is very domain specific - it would be difficult to apply it on another
variants of poker or on another game types. For each game type, new,
specialized human experts are needed.

• It has very low scalability - card combinations are typically assigned to
buckets according to some system of rules defined by an expert, and the
whole system of rules has to be changed to change number of buckets.

• We believe that the automatic solution with precisely described similarity
between card combinations and with the support of a strong clustering
algorithm can outperform expert approaches based only on human intuition.

3.12 Empirical performance of abstract strate-

gies

As we can see, a lot of techniques for poker state space abstraction were developed.
For each abstraction technique, there are also several parameters, that have big
effect on it’s performance. Therefore, a lot of effort is needed to find the best of
them. Fortunately, there are several publications that focus on this problem.

24

3.12.1 Perfect recall, imperfect recall and public state ab-
straction

The publication [26] compares perfect recall and imperfect recall public state
abstractions in poker.

It shows that for the expectation aware abstractions, imperfect recall is a great
advantage in domain of no-limit poker, but this does not necessary hold for limit
poker.

It came out for limit poker abstractions of the same size, that public bucketing
along with imperfect recall has significantly better performance than perfect recall
abstraction without public bucketing.

3.12.2 Comparison of distribution aware and expectation
aware abstractions

The publication [17] introduces distribution aware bucketing and OHCS bucketing
and compared them with an older expectation based abstractions. The combina-
tion of distribution aware bucketing and OHCS bucketing performed best from
all of the evaluated abstractions.

3.12.3 Comparison of potential aware and distribution aware
abstractions

The most recent work [5] shows that the potential aware abstraction along with
imperfect recall and earth mover’s distance slightly outperforms the distribution
aware abstraction in the domain of no-limit poker.

3.13 Abstractions used by state of the art play-

ers

In limit poker, use of the imperfect recall allows abstractions to use large number
of buckets in the first few rounds of the game. The top limit poker agents, like
Hyperbolean [1] of Slumbot [10], use lossless abstraction for the first two or three
rounds of the game and large number of buckets on later rounds.

For no-limit poker, state space abstraction has to be much smaller, there-
fore imperfect recall is used almost exclusively. Since there is only 169 distinct
non-isomorphic hands at the first round of the game, all top agents use lossless
abstraction for this round. Distribution aware or potential aware abstraction is
used for private hands bucketing on later rounds

25

3.14 State space abstraction used by our agent

in 2013 ACPC competition

Our agent Nyx participated in 2013 ACPC. We achieved 4th and 3/4th place in
No-limit total bankroll and No-limit instant runoff competition [1].

Action space abstraction is very important in no-limit games. Because of that,
we decided to restrict the maximum number of buckets to 1000 for our state space
abstraction, so there is more space for action space abstraction.

For the first round of the game, our agent used lossless abstraction with 169
buckets, one for each possible non-isomorphic starting combination.

For next two rounds (flop and turn), we used distribution aware abstraction
with 1000 buckets.

Finally, for the last round (river), we used OCHS bucketing with 1000 buckets
and 8 clusters for the opponent’s hands.

At the beginning of each round, all information about previous rounds buckets
is forgotten.

26

4. Our new public state space
abstraction

We designed new automatic method for creating public state space abstraction.
Our approach is applicable on many extensive games, but we evaluated it in the
domain of No-limit Texas Hold’em Poker.

4.1 Overview of our approach

Design of a state abstraction typically consists of two steps - definition of a dis-
tance measure between information sets and specification of clustering algorithm
used for bucketing.

4.1.1 Distance measure

Basic idea behind our approach is to define the distance between two public states
as the distance between two sets. Elements of these sets are all states sharing
the same public information which corresponds to the public state represented
by the set.

In poker, these sets consist of all hands which a player can have on the same
public board.

We used the Earth Mover’s Distance to measure distances between the sets.
This measure can naturally extend notion of distance between elements to dis-
tance between whole sets.

There are many ways how to define distance measure between elements (in
our case player’s hands), and we examined two of them.

4.1.2 Clustering technique

Although most of the state space abstractions use k-means for clustering, our
approach uses k-medoids. Big advantage of this approach is that it can use table
of precomputed distances. This makes it much faster than k-means in our setting.

In practice, k-medoids often demonstrate better performance than k-means.

4.2 Overview of clustering algorithms

4.2.1 K-means clustering

In k-means clustering, we want to divide the data points into k clusters, in a
manner that each data point belongs to the cluster with the nearest mean. The
mean is created as a mean value of all points in the cluster. The main objective
is to find clustering with minimal sum of distances between means of a cluster and
elements of that cluster. This problem is proved to be NP-complete. Therefore,
a heuristic which finds only local optimum is used.

27

K-means algorithm

The algorithm consists of these four steps:

1. Place k points into the data space which we want to cluster. These points
represent initial centroids for clusters, and they are typically chosen ran-
domly from input data points.

2. Assign each point to the nearest centroid.

3. For each group of points assigned to same centroid, calculate new centroid
as a mean of these points.

4. Repeat steps 2 and 3, until the centroids remain unchanged.

To obtain better results, more runs of algorithm with different starting cen-
troids are used. Solution with lowest squared error is then chosen.

4.2.2 K-medoids clustering

The k-medoids clustering is closely related to the k-means clustering. Like
k-means, it clusters data into k groups and tries to minimize the squared sum of
distances between the center that represents the cluster and the data points be-
longing to that cluster. Difference from the k-means clustering is that k-medoids
chooses a medoid as a center of a cluster in contrast to a mean. A medoid is
usually defined as a data point from the cluster which has the lowest average
dissimilarity to all objects in that cluster.

This clustering method is considered to be more robust to noise and outliers
in comparison with k-means.

4.2.3 Partitioning around medoids algorithm

The most used algorithm for k-medoids clustering method is the Partitioning
Around Medoids (PAM). This algorithm is heuristic and it finds only local
optimum. It consist of these four steps:

1. Randomly select k data points as centers of clusters.

2. Associate each data point to the center which is closest in a chosen metric.

3. For each group of points associated to the same center find new center as
point that has the lowest average distance to other points in the group.

4. Repeat steps 2 and 3 until there is no change in centers of the groups.

For better results, more runs with different cluster centers are used and the
best resulting clustering is then picked.

As we can see, algorithm uses only distances between the data points, so all
distances can be precomputed before the algorithm starts. Because computation
of distances between each pair of points is independent, this task can be highly
parallelized. This allows us to use distance measure with high computational
demands.

In practice, k-medoids often have better performance than k-means.

28

4.3 Earth mover’s distance

The Earth Mover’s Distance (EMD) is a measure of distance between two
multi-dimensional distributions in some feature space where a distance measure
between features form that space, called the ground distance, is given [21].

When EMD is used as a distance between the histograms in distribution
aware abstraction, as described in previous chapter, features are bins of these
histograms and the ground distance is defined as a distance between centers of
intervals defined by these bins.

When EMD is used as a distance between the public states, features for one
public state will be all information sets with corresponding public information.
More specifically, in case of poker, features for some public board will be all hands
which a player can hold on that board. We define ground distance used in our
abstraction later in the chapter.

Intuitively, Earth mover’s distance measures the ”minimum work” we need to
change one distribution into another. We can see distribution as a mass of earth
properly spread in space. Then, unit of work is defined as a moving unit of earth
by unit of ground distance.

4.3.1 Formal definition

A distribution can be represented by a set of clusters. Each cluster is repre-
sented by pair of the cluster representative and fraction of the distribution
belonging to that cluster called cluster weight. Such representation is called
the signature of the distribution.

Now we can formalize the distance between these signatures by linear program
[22]. Let P = {(p1, wp1), ..., (pm, wpm)} be the first signature with m clusters;
Q = {(q1, wq1), ..., (qn,qn)} the second signature between n clusters and D = [di,j]
the ground distance matrix where di,j is the ground distance between clusters pi
and qj.

EMD between these two signatures is then defined as a minimum of:

∑m
i=1

∑n
j=1 di,jfi,j

min(
∑m

i=1wpi ,
∑n

j=1 wpj)
(4.1)

Where F = [fi,j] is the flow; fi,j is the flow between pi and qj and it satisfies
these constraints:

fi,j ≥ 0 (4.2)
n∑
j=1

fi,j ≤ wpi (4.3)

m∑
i=1

fi,j ≤ wqj (4.4)

m∑
i=1

n∑
j=1

fi,j = min(
m∑
i=1

wpi ,

n∑
j=1

wpj) (4.5)

29

Constraint 4.2 allows flow to moving ”earth” only from P to Q and not the
reverse way. Constraint 4.3 limits the amount of earth that can be sent from
cluster to its weight. Constraint 4.4 limits amount of earth that can be sent to
cluster to its weight. Finally, constraint 4.5 forces flow to move the maximum
possible amount of dirt. This amount is also called the total flow. We can see,
that EMD is by definition normalized by the total flow. This is not necessary
when the total flow is always constant.

4.3.2 Properties of EMD

EMD has several advantages for our usage:

• It naturally extends the notion of distance from ground distance between
elements to distance between the whole sets. We will use this property for
clustering the public states.

• It is true metric when the sum of weights are equal for all signatures and
the ground distance is metric. In our case, these conditions are satisfied
and we can use it as an input for clustering algorithms.

• It describes similarity in very natural way. This was shown on domain of
image processing [21, 22].

• It has very good performance in the domain of poker where it outperforms
standard distance measures like L2 [17, 5].

4.4 Distance between hand strength distribu-

tions

As we have mentioned in the previous chapter, distribution aware clustering uses
earth mover’s distance between hands strength distribution histograms. In this
case, clusters of distribution signature are bins of the histograms and the distance
between them is defined as a distance between bin centers.

4.4.1 Computation of EMD between two hand strength
distributions

Signatures corresponding to hand strength distributions have dimension one,
count of the clusters is constant and sum of the weight is always one. This
allows us to compute EMD very fast.

In one-dimensional EMD algorithm, the input are two signatures P , Q. All
hand strength histograms have the same bins, thus the corresponding clusters
are also the same and pi = qi. We will assume clusters are ordered (that means
pi < pi+1), and the distance between consecutive clusters is constant. These
assumptions are naturally satisfied in our case.

This allows us to compute EMD by scanning array of clusters and keep the
track of how much ”earth” need to be moved between consecutive bins. It can
be expressed by formula [4]:

30

s0 = 0 (4.6)

si+1 = (wpi + si)− wqi (4.7)

EMD =
∑
|si| (4.8)

Variable s represents a ”shovel” we use to move earth between the clusters.
It is easy to see that algorithm runs in time linear to the size of the histogram.

4.5 Distance between public states

In our poker application, we represent board card combination as a set of the
hands players can hold on that board, and we measure the distance between
boards as EMD between these sets.

There are 1755 distinct non-isomorphic possible boards on the flop and we
need to compute distance matrix which captures the distance between each pos-
sible pair for the clustering algorithm.

On each flop board, a player can hold one of 1176 hands. Each cluster of flop
signature represents one hand. The count of possible hands is constant for all
flop boards, thus the count of the clusters is also constant. We assigned arbitrary
but constant weight to the each cluster.

To compute EMD between the boards, some ground distance has to be speci-
fied. When this distance will be metric, the resulting measure will also be metric.
We will discuss two possible ground distance definitions later in the chapter.

4.5.1 Computation of EMD

Definition of EMD 4.2 gives us good defined linear program. The problem de-
scribed by this program is called the transportation problem. We can solve
this problem directly by some LP solver, or we can use some combinatorial algo-
rithm.

It is easy to see this optimization problem as an instance of the minimum-
cost flow problem, as well as an instance of the minimum-weight perfect
matching problem [4]. For both of these problems, there are powerful polyno-
mial time solving algorithms. We obtained the best results by using minimum-
cost flow problem solver.

The distance between each pair of public states has to be computed for clus-
tering. Thus, the count of distance computations grows asymptotically quadratic
to the count of public boards. Because each single distance computation is an
optimization problem, the total computational time is quite big. Fortunately,
since single computation is independent, we used massive parallelization.

4.6 Ground distance between hands

Crucial part of our approach is to specify good ground distance. It has huge
impact on the final distance measure and consequently on the quality of final
bucketing.

31

4.6.1 Distribution aware ground distance

In distribution aware abstraction, the distance between two hands is specified as
EMD between their hand strength distributions. Since we can use any metric to
specify ground distance between hands, use of the same measure seems to be a
natural choice.

Thus, this was the first option of ground distance we had examined. Con-
trary to our expectations, the resulting abstraction had poor quality, according
to human experts and it had also bad performance in our experiments.

We have an idea, why this approach did not work. When we cluster hands on
some round of game, our target is a good answer to the player’s question: ”How
does my hand look like?”. But when we cluster public boards, the question is
different: ”What kind of hands will the opponent have in this situation?”. To
answer the second question, we have to know how had the opponent played his
hands on rounds before the actual one. Thus, our ground distance should take
into account also information about the properties the hand had during previous
rounds of the game.

Human players also try to find the answer to the second question during the
play. They call this skill ”hand reading”.

4.6.2 Distribution history aware ground distance

EMD between hand strength distributions seems to be good for comparing hand
properties on current round of the game. To capture information about hand
properties on previous rounds, we will not represent hand only by single hand
strength distribution, but rather by a vector of these distributions, one for each
round until the current one. We call this vector the distribution history
vector.

We define the distance between two distribution history vectors p = (pi, .., pn)
and q = (qi, ..., qn) as:

√∑
i

(EMD(pi, qi))2 (4.9)

Where EMD(pi, qi) is the Earth mover’s distance between i-th elements of
the vectors.

We can define the ground distance between hands as a distance between their
distribution history vectors, and we call it the distribution history aware
distance . It gives us good empirical results in the domain of No-limit Texas
Hold’em Poker.

4.7 Abstraction of the whole game

In order to obtain abstraction for the whole game, also private state of the game
has to be taken into account. For this purpose, arbitrary bucketing can be used.
We decided to use distribution aware bucketing due to it’s good performance, low
computational cost and relatively easy implementation.

32

4.7.1 Nested bucketing

In order to combine our public state abstraction technique with private state
space abstraction, we used nested bucketing with two levels of buckets. Top level
bucket is determined by public board cards. Second level bucket is determined
by the hand that the player holds.

We computed private hand buckets independently for each top level public
bucket.

4.8 Summary of our approach

First step in our approach is to cluster board card combinations to public buckets.
To do that, the distance matrix between all boards has to be computed.

Each board card combination is represented as a set of hands which a player
can hold on that board. The distance between boards is defined as EMD be-
tween these sets. We used minimum-cost flow solver for EMD computation, and
distribution history aware distance as the ground distance.

Once the distance matrix is computed, public board combinations are clus-
tered into the buckets with k-mediods algorithm.

When public bucketing was created, arbitrary hand clustering algorithm is
used to cluster private hands. We used distribution aware bucketing for this
purpose.

4.9 State space abstraction used by our agent

in 2014 ACPC competition

We submitted our new agent Nyx 2014 to the 2014 ACPC competition. This
agent uses our new abstraction technique.

The size of new abstraction is the same as the size our last year agent’s -it is
1000 buckets for each round, except the first one. We decided to expand the size
of action space abstraction instead.

We used lossless abstraction for the first round (preflop).
For the second round (flop), we used our new approach. We had 20 top level

buckets for public boards, and for each of these buckets, there were 50 lower level
buckets for private hands. So the total count of flop buckets was 1000.

For the third round (turn), we used standard k-means distribution aware
bucketing with 1000 buckets. We did not use public bucketing for this round.

For the last round (river), we used OCHS bucketing with 1000 buckets.

33

4.10 Implementation notes

4.10.1 Representation of buckets

When the bucketing is done, there are two ways how to represent it. We can
hold only centers (mediods or means) of buckets. When we want to find which
bucket a hand belongs to during a game play, we have to compute distribution
histograms for this hand and then to find bucket with the nearest center.

This representation of bucketing has very low memory requirements, but com-
putation of hand strength distribution histogram has to be performed after each
change of the game state. We initially used this representation.

Tables for bucketing

To evaluate abstraction with some meaningful confidence interval, large number
of games has to be played. Bottleneck in a game play speed is computation of
bucket number for a hand. To speedup this process, we decided to use lookup
tables.

Our tables contain bucket numbers for each possible hand and are indexed
by hand identifier. To obtain this identifier, we use algorithm exploiting hand
isomorphisms, similar as [24]. This allows us to keep the size of tables manageable
small and to keep them in the RAM. We used tables for the flop and turn round
in our implementation. This allows us to play hundreds of games per second on
the desktop CPU.

34

5. Experimental results

In order to evaluate our new abstraction technique, we performed experiments
in the domain of No-limit Texas Hold’em Poker. State space abstraction has to
be much smaller for no-limit poker than in limit poker. Thus, algorithms for
abstraction have to be very effective.

5.1 Game parameters

5.1.1 Stack size

One of the important parameters of a poker game is the size of players’ stacks.
Many games with different stacks’ sizes are played regularly. In the ACPC compe-
tition, both players have a stack of 200 big blinds. Most matches among humans
start with stack size of 100 big blinds, but a variety of games is played with higher
and also lower stacks. Even games with stacks lower than 20 big blinds are often
played.

In our experiments, we used action abstraction with stacks equal to 25 big
blinds.

One of the advantages of using small stack is that one-to-one play produces
small observed standard deviation and we can obtain narrow confidence interval
for our results.

Another advantage is that we can keep action space of the game relatively
small, but still capable to represent advanced betting strategies.

5.1.2 Action abstraction

To keep the size of action abstraction reasonably small is very important, because
it allows us to produce strong strategies in manageable computational time.

In betting abstraction we used, there are up to five bet sizes allowed according
to the game state and previous bets of players. All-in bet is always a valid option.

Only 2513 betting sequences are possible in the abstraction, what is few mag-
nitudes less than in action abstractions we used for our ACPC competitors.

5.2 Used state space abstractions

We used two state space abstractions for our experiments. Both abstractions
had the the same amount of buckets - 169 for the first round and 1000 for later
rounds.

5.2.1 Our new abstraction

The first abstraction we used, was our new abstraction for 2014 ACPC competi-
tion. It used lossless abstraction for the first round. For the second round it used
nested abstraction, with 20 buckets for public information and 50 buckets for pri-
vate information. Public buckets were created by our new abstraction technique
and private buckets by distribution aware method.

35

For the third round distribution aware abstraction without any public buck-
eting was used. Finally, for the last round, OCHS bucketing was used. We used
imperfect recall and all information from previous rounds was forgotten at the
beginning of each new round.

5.2.2 Old state of the art abstraction

The other abstraction used for comparison was our abstraction from 2013 ACPC
competition. It is the same as 2014 abstraction, except for the second (flop)
round. Distribution aware abstraction without public information bucketing is
used for this round.

5.3 Used Strategies

We computed ε-equilibrium strategies for both abstractions. We used one million
iterations of public sampled CFR algorithm [6] to obtain these strategies. This
version of CFR exploits poker game structure and it is thus very effective in our
domain.

Both strategies used the same action space abstraction and therefore we did
not need to translate actions from these strategies into the original game.

5.4 Evaluation method

We chose one-to-one performance as our evaluation method because, as shown in
[17], we can obtain very good comparison results with relatively low computation
time.

Initially, we used ACPC protocol for players’ communication. Since we used
precomputed bucketing tables, we were able to play quite fast, approximately 100
games per second. However this still was not sufficient for our purposes. Because
of hte high standard deviation, we were not able to obtain confidence interval
tight enough with this approach.

5.4.1 Our new comparison algorithm

Instead of playing a game via ACPC protocol, we deiced to use a game tree
traversal similar to that used by CFR algorithm. In this approach, we sample
one random public board and some arbitrary number of betting histories in each
iteration.

This technique is the same as the one used to obtain counterfactual value in
the Monte Carlo CFR algorithms [6]. It was proved to give unbiased results.

We exploited poker structure compute values for all hands for both players in
linear time. To do that, we used the same trick as is used by PCS-CFR algorithm
[14].

In order to obtain good results with low variance, we sampled each betting
history according to the probability that players would play this history.

Because traversal directly on the game tree was used, there was not any
communication overhead and we were able to play large number of iterations

36

in a short time period. Much bigger part of the game tree was sampled than
in the standard one-to-one play, thus the observed standard deviation was much
smaller.

This allowed us to compare strategies with narrow confidence interval.

5.5 Measure of winnings

In heads-up poker, players switch their positions in every hand. This makes the
game symmetrical and the game value is consequently a zero. Therefore, the
agent’s performance can be measured by sum of chips he is able to win.

Unit for this measurement is one milliblind per hand (mb/h), where a
milliblind is 0.001 big blinds, the biggest bet players are forced to post on the
start of the game.

5.6 Obtained Results

Our new public state abstraction outperformed old state of the art abstraction by
3.473 mb/h in the domain of No-limit Texas Hold’em Poker with 25 big blinds
stack.

We run 195,000,000 iterations of our new comparison algorithm to obtain this
result. This gave us confidence interval ± 0.4 mb/h.

5.7 Evaluation of Results

As we can see, our new abstraction resulted into significantly stronger game
strategy. We believe we will obtain even better results when we will implement
our public state space abstraction also for later rounds of the game.

In the new abstraction, we used only 50 buckets for player’s hands. This
is very small number compared with 1000 buckets used for hands in the older
abstraction. Limit of 1000 buckets for each round is due to our ACPC agent’s
requirements.

We believe that larger number of total buckets, and consequently lager number
of buckets for player’s private hands, will be another significant advantage for our
new abstraction.

Since there is possiblity to win much more in game with 100 or 200 big blind
stacks than in our experimental game, the advantage of our abstraction is prob-
ably lager in these games.

5.8 ACPC 2014

The performance of our state space abstraction along with our other improve-
ments will also be evaluated at ACPC 2014 competition by our agent Nyx 2014.
Unfortunately, the deadline for this thesis is before the date when the competition
results will be published. Therefore we cannot evaluate our performance. Results
of the competition and our performance can be found on competition website[1].

37

Conclusion

This thesis described state of the art techniques for the state space abstractions
of extensive games with imperfect information. We focused on poker domain,
especially on No-limit Texas Hold’em Poker. Abstractions used by our successful
ACPC 2013 and new ACPC 2014 competitors were presented.

5.9 New public state space abstraction technique

We developed new public state space abstraction technique for our 2014 ACPC
competitor. This technique is capable of creating high quality state space ab-
straction fully automatically. Strong point of our algorithm is the new measure
of similarity between public states. This measure has nice properties, and an idea
behind it is similar to the techniques behind human reasoning in poker.

5.10 Experimental results

In order to examine our new abstraction technique, we used one-to-one play in
domain of No-limit Texas Hold’em Poker. Our new algorithm has outperformed
state of the art abstraction technique used by our last year agent by significant
amount.

5.11 Future work

We hope we will be able to successfully implement our new abstraction technique
to more rounds of a game, and eventually even to more types of games. We want
to investigate the trade-off between state space and action space abstraction and
also the trade-off between the size of private and public abstraction.

We also want to continue in our work in other areas of game theory, and
eventually to produce top level agent for next years’ ACPC competitions.

38

Bibliography

[1] ACPC, June 2014. http://www.computerpokercompetition.org.

[2] Nolan Bard, Michael Johanson, and Michael Bowling. Asymmetric abstrac-
tions for adversarial settings. In Proceedings of the Thirteenth International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-14),
2014.

[3] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online
implicit agent modelling. In Proceedings of the Twelfth International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2013.

[4] Scott Cohen. Finding color and shape patterns in images. Technical Re-
port STAN-CS-TR-99-1620, Stanford University (Stanford,CA US), Stan-
ford, 1999.

[5] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall ab-
straction with earth mover’s distance in imperfect-information games. 2014.

[6] Richard Gibson, Neil Burch, Marc Lanctot, and Duane Szafron. Efficient
monte carlo counterfactual regret minimization in games with many player
actions. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25
(NIPS), pages 1889–1897. 2012.

[7] Andrew Gilpin and Tuomas Sandholm. A texas hold’em poker player based
on automated abstraction and real-time equilibrium computation. In Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’06, pages 1453–1454, New York, NY,
USA, 2006. ACM.

[8] Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect
information games. Journal of the ACM (JACM), 54(5):25, 2007.

[9] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. Potential-
aware automated abstraction of sequential games, and holistic equilibrium
analysis of texas hold’em poker. In IN AAAI’07, 2007.

[10] Eric Jackson. Slumbot nl: Solving large games with counterfactual regret
minimization using sampling and distributed processing, 2013.

[11] Michael Johanson. Robust strategies and Counter-Strategies: Building a
champion level computer poker player. Master’s thesis, University of Alberta,
October 2007.

[12] Michael Johanson. Measuring the size of large no-limit poker games. CoRR,
abs/1302.7008, 2013.

[13] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding
optimal abstract strategies in extensive form games. In Proceedings of the
Twenty-Sixth Conference on Artificial Intelligence (AAAI), 2012.

39

[14] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael
Bowling. Efficient nash equilibrium approximation through monte carlo
counterfactual regret minimization. In Proceedings of the Eleventh Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS), 2012.

[15] Michael Johanson and Michael Bowling. Data biased robust counter strate-
gies. In Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 264–271, 2009.

[16] Michael Johanson, Michael Bowling, Kevin Waugh, and Martin Zinkevich.
Accelerating best response calculation in large extensive games. In Pro-
ceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI), pages 258–265, 2011.

[17] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling.
Evaluating state-space abstractions in extensive-form games. In Proceedings
of the Twelfth International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 2013.

[18] Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing ro-
bust counter-strategies. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, ed-
itors, Advances in Neural Information Processing Systems 20 (NIPS), pages
721–728, Cambridge, MA, 2008. MIT Press.

[19] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT
press, 1994.

[20] Christos H. Papadimitriou. On the complexity of the parity argument and
other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532,
1994.

[21] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distri-
butions with applications to image databases. In Proceedings of the Sixth
International Conference on Computer Vision, ICCV ’98, pages 59–, Wash-
ington, DC, USA, 1998. IEEE Computer Society.

[22] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s
distance as a metric for image retrieval. Int. J. Comput. Vision, 40(2):99–
121, November 2000.

[23] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state
translation in extensive games with large action sets. In Proceedings of the
Twenty-First International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 276–284, 2009.

[24] Kevin Waugh. A fast and optimal hand isomorphism algorithm, 2013.

[25] Kevin Waugh, David Schnizlein, Michael Bowling, and Duane Szafron. Ab-
straction pathologies in extensive games. In Proceedings of the 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), pages 781–788, 2009.

40

[26] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David
Schnizlein, and Michael Bowling. A practical use of imperfect recall. In
Proceedings of the 8th Symposium on Abstraction, Reformulation and Ap-
proximation (SARA), 2009. To appear.

[27] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Pic-
cione. Regret minimization in games with incomplete information. In Ad-
vances in Neural Information Processing Systems 20 (NIPS), pages 905–912,
2008.

41

List of Tables

42

List of Abbreviations

43

Attachments

44

	Introduction
	Extensive games with imperfect information as a research topic
	Computer poker
	The Annual Computer Poker Competition
	Game abstraction
	Lossy and lossless abstractions
	Action space abstraction
	State space abstraction
	Public information

	Our goals

	Background
	Texas Hold'em Poker
	Rules of No-limit Texas Hold'em Poker
	Play of single hand

	Extensive game
	Poker example
	Constant sum games

	Strategy
	Perfect recall and imperfect recall
	Solution techniques
	Best response

	Nash equilibrium
	Properties of Nash equilibrium in two player zero sum game
	Computation of Nash equilibrium
	Linear programming
	Epsilon-equilibrium
	Counterfactual regret minimization

	 Game Abstraction
	Strategy in the abstraction
	 State abstraction
	 Action abstraction
	 Lossless abstractions
	 Lossy abstractions
	 Perfect recall
	 Imperfect recall
	 Private and public information

	No-limit Texas Holdem Poker example
	Action abstraction in poker
	Private state abstraction in poker
	Public state abstraction in poker

	Properties and evaluation of game abstraction
	Existence of Nash equilibrium in abstract game
	Perfect recall
	Imperfect recall

	Abstract strategy in real game
	Strategy development process
	Abstraction pathology
	Over-fitting
	Empirical performance

	Abstraction evaluation
	One-on-One performance
	Performance against best response
	CFR-BR

	Prior abstraction techniques
	Bucketing
	Expected hand strength
	Expected hand strength squared
	Percentile Bucketing

	Nested bucketing
	History bucketing
	Potential of the hand
	Abstraction as a clustering
	K-means clustering

	Potential aware abstraction
	Distribution aware abstraction
	Hand strength distribution
	K-means bucketing

	Opponent cluster hand strength
	Prior public state abstractions
	Abstraction using transition table
	Current public state abstraction techniques

	Empirical performance of abstract strategies
	Perfect recall, imperfect recall and public state abstraction
	Comparison of distribution aware and expectation aware abstractions
	Comparison of potential aware and distribution aware abstractions

	Abstractions used by state of the art players
	State space abstraction used by our agent in 2013 ACPC competition

	Our new public state space abstraction
	Overview of our approach
	Distance measure
	Clustering technique

	Overview of clustering algorithms
	K-means clustering
	K-medoids clustering
	Partitioning around medoids algorithm

	Earth mover's distance
	Formal definition
	Properties of EMD

	Distance between hand strength distributions
	Computation of EMD between two hand strength distributions

	Distance between public states
	Computation of EMD

	Ground distance between hands
	Distribution aware ground distance
	Distribution history aware ground distance

	Abstraction of the whole game
	Nested bucketing

	Summary of our approach
	State space abstraction used by our agent in 2014 ACPC competition
	Implementation notes
	Representation of buckets

	Experimental results
	Game parameters
	Stack size
	 Action abstraction

	Used state space abstractions
	Our new abstraction
	Old state of the art abstraction

	Used Strategies
	Evaluation method
	Our new comparison algorithm

	Measure of winnings
	Obtained Results
	Evaluation of Results
	ACPC 2014

	Conclusion
	New public state space abstraction technique
	Experimental results
	Future work

	List of Tables
	List of Abbreviations
	Attachments

