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Introduction

Poker is an interesting research topic due to many reasons.

Chess is similar to Poker in a sense that due to the size of the game, we can’t
solve the entire game. Even though we can’t solve the game of chess, state-of-
the art chess programs win against the top human players. That being said,
can we apply similar algorithms and create winning poker agents? The answer
is no. Algorithms being used for games like chess, go etc. can’t be used here.
The reason is that the Poker is a game with imperfect information (see chapter
2 for details, informally - player can’t see opponent’s cards). We need different
algorithms to solve games with imperfect information.

First, note that the existence of optimal strategy in Poker is far less obvious
than the existence of optimal strategy in Chess. As we will see, the optimal
strategy indeed exists. There are algorithms that can solve games with imperfect
information, but the bottleneck is the game size. The study of Poker has led to
new, state-of-the art algorithms able to solve games orders of magnitude larger
than ever before, such as counterfactual regret minimization [44] and EGT for
extensive form games [15] (we will see the first algorithm in chapter 7).

Using these new algorithms, current agents beat top human Poker players
in no-limit version of Hold’em Poker [9]. Poker research community agree that
computers will beat humans in no-limit version within 2 or 3 years.

Note that the theoretical and algorithmical results are not limited to Poker.
It’s just the case that Poker has served as the test bet due to the imperfect
information and the size of the game.

First chapters introduce the reader to the game theory. Some general ideas
are presented and few game theory models are defined. Chapter 3 introduces the
concept of Nash equilibrium and briefly talks about the existence of such strate-
gies. Following chapter further develops this concept and shows the computability
results.

Chapter 5 finally shows the game of Poker, Poker rules and different game
types. Annual Computer Poker Competition is also presented. Chapter 6 deals
with Poker minigames that are easily solvable. Chapter 7 introduces the concept
of regret, counterfactual regret and shows regret minimization algorithms. Chap-
ter 8 deals with game abstractions and applies regret minimization algorithms to
the abstracted game of Poker. Chapter 9 shows new result about no-limit betting
in Poker (this result is not limited to Poker, it applies to two-players extensive
form game with imperfect information).



1. Game theory

1.1 Introduction

Game theory can be defined as the study of mathematical models of conflict
and cooperation between intelligent rational decision-makers [26]. The models of
game theory are highly abstract representations of classes of real life situations
[29].

Some situations are clearly ”games” and one can imagine that some math can
be used to solve them - chess, tic-tac-toe, poker etc. But game theory is applied
in many surprising situations - traffic in big cities [28], stability of price systems in
economy [29] and even evolution of lifeforms in biology [38] (Evolutionary game
theory).

To solve any game, we need to create or apply an appropriate mathematical
model for our situation (we need to model participants, decisions, strategies,
outcomes etc). Then we need to ”"solve” this model - compute the best strategies
for all participants (or for some of them).

I briefly describe some concepts without any formal definitions. Later chapters
define all of this formally.

1.1.1 Models
Basically, any game theory model should define:
e game players
e what are the possible actions player may take
e what will happen when all players choose some actions (consequences)

e player preferences on the possible consequences

There are many different game theory models, and they apply to different real-
life situations. For example, one model can be used to solve rock-paper-scissors
and different one to find a best price for some product. Later, I will describe
several models and mention some games those models apply to. Even though
first game theory models were motivated by real-life applications [1], there are
many models and results that are purely theoretical.

1.1.2 Strategies

Player’s possible actions are usually defined using a finite or infinite set. For ex-
ample, in rock-paper-scissors the set would be finite with only 3 members. On the
other hand, in some bidding games where a player may bid any amount of money,
the set would be infinite. Player’s strategy refers to action (or sequence of actions)
he decided to play whenever he plays the game. Sometimes, this may be too re-
strictive (playing rock all the time may not be a great strategy). These strategies
are called pure strategies. If we allow player to choose his strategy randomly, his
strategy now becomes a probability distribution over his pure strategies. This is
called mized strategy (clearly pure strategies C mixed strategies)

5



1.1.3 Optimal play

When playing any game, player usually wants to ”win”. To do this, player should
play as good as possible. But what does it mean to play "good” strategy? Let’s
first define what does it mean to play ”badly”:

Player played badly, if he could gain higher value by choosing different strategy
(given the other players stick to their’s previous strategies)

Similarly, by playing ”good” strategy we mean:

Player played good, if he could gain higher value by choosing different strategy
(given the other players stick to their’s previous strategies

Now imagine that all players want to play as good as possible - all players want
to choose some good strategy. If there’s such a solution, for which no player can
improve by choosing different strategy, all players could ”agree” on this solution.
This solution may or may not exist, but if there is one, it’s usually referred to
as the steady state or Nash equiltbrium and it’s very important concept in game
theory.

Later sections describe all of this formally and show what are the conditions
for the existence of the steady state. Chapter 4 focuses on the computability of
such solutions.



2. Game theory models

In this chapter, I describe few models and show some games these models can be
applied to.

2.1 Strategic games

A strategic game is a model in which each player chooses his strategy and then
all players play simultaneously.

Before any formal definitions, let me show some simple games that are simul-
taneous and thus can be modeled using strategic games.

Rock, paper, scissors Very famous game where two players simultaneously
select either rock, paper or scissors [35]. Player either wins, looses or draws.

Rock, paper, scissors, lizard, spock Advanced version of the previous game.
[24]

Prisoner’s dilemma Two prisoners are being interrogated. Prisoner can either
stay quiet or cooperate. If both stay quiet, they both get 2 years. If they both
confess, they get 6 years. But if only one cooperates, he is offered a bargain and
is freed, but the other prisoner gets 10 years

Battle of sexes Boy and a girl decide where to go on a date. There’s an
important football match and some opera tonight. Let’s suppose that happinnes
can be represented by an integer (and sadness by negative one).
e Both choose to go to football
Boy is happy (10) and girl is quite sad (—6)
e Both choose to go to opera
Boy is sad (—8) and girl is happy (10)
e Boy chooses football and girl opera

They argue and are both sad (—20).

e Boy chooses opera and girl football

Well, that could never happen, so arbitrary number is fine.



Definition 2.1.1. A strategic game (N, (4;), (u;)) [29] consists of

e a finite set N (the set of players)

e for each player i € N a nonempty set A; (the set of actions available to
player i)
e for each player i € N a preference relation >; on A = x ey A; (the prefer-

ence relation of player 7)

If the set A; of actions of every player is finite, then the game is finite. For a
finite strategic game (and under some conditions also for infinite games), a pref-
erence relation may be conveniently represented by a payoff function (utility
function):

uc A—R (2.1)

Value of this function is a payoff(utility) for a given player, that is - how much
the player wins or looses. From now on, I will refer only to finite strategic games.

Definition 2.1.2. Zero sum games are games for which:
Zui(a) =0 VaecA (2.2)
ieN
In other words, utility gained by one player is utility lost by the others.
2.1.1 Strategies
Definition 2.1.3. Pure strategy
Vi € P,a; € A; is player i’s pure strategy

This strategy is referred to as pure, because there’s no probability involved.
For example, he always chooses Scissors.

Definition 2.1.4. Mixed strategy strategy is a probability measure of player’s
pure strategies. Set of player ¢’s all mixed strategies is denoted as ;

Mixed strategies allow a player to probabilistically choose actions. For exam-
ple, his mixed strategy could be (Rock — 0.4, Paper — 0.4, Scissors — 0.2)



2.1.2 Normal form

If there are only two players (|]/N| = 2) and the game is finite , it can be conve-
niently described using the table (Fig.2.1). Rows correspond to actions of player
one, columns to action of player two. In a cell (7, ), there are payoffs for both
players - (u1(, ), us(, 7))

Examples

Follow normal form representations of the four previously mentioned games.

Rock Paper Scissors Lizard Spock

. Rock 0,0 (1,1) (@-1) (@-1) (1,1
Rock Paper Scissors Paper  (1,-1) (0,0) (L1) (L,1) (1,-1)

Rock 0,0 (1,1 1, - Scissors  (-1,1) (,-1) (0,00 (1,-1) (1,1

paper (1 _1) (O 0) (_1 1) Lizard (-1, 1) (1, -1) (-1, 1) 0, 0) (1, -1)

Sei (i 1 (1' 0 (0'0) Spock  (1,-1) (1,1) (@-1) (1,1 (0,0
cissors (-1, = )

(a) Rock-Paper-Scissors (b) Rock-Paper-Scissors-Lizard-Spock
Confess Be quiet Opera Football
Confess (8, 8) (0, 10) Opera (-8, 10) (0, 0)
Be quiet (10, 0) (2, 2) Football (-20, -10) (10, -6)
(c) Prisoner’s dilemma (d) Battle of the sexes

Figure 2.1: Few strategic games in normal form. Note that some games are zero
sum games - (a) and (b); some are not - (¢) and (d)



2.2 Extensive form games

In many games, players don’t act simultaneously, but rather sequentially make
some actions. This is the case of Chess, Tic-Tac-Toe, Poker and many more.

Extensive form games model this behavior by using a tree-like game repre-
sentation. Nodes correspond to game states, edges to player’s actions. In every
node, the corresponding player chooses some action (one of the outgoing edges).
Leafs correspond to final states and contain utilities for all players.

I already mentioned that in some games, players have imperfect information.
Extensive form games also allow to model this property. Having a game with
imperfect information, some game states are indistinguishable from player’s point
of view. Those states are grouped to so called information sets. Player’s decisions
are then made in these informatin sets rather then in game states.

Extensive form games also allow to model actions of "nature”. Another player,
so called chance player, is part of the game and chooses his actions according to
some probability distribution. In Poker, the chance player randomly deals cards.

Definition 2.2.1. Finite extensive form game with imperfect information Is
a tuple (N, H, P, f., (I),u), where [29]

e A finite set IV (the set of players)

e A set H of sequences (possible histories), such that:
empty sequence is in H
every prefix of sequence in H is also in H

Z C H of terminal histories (those which are not a prefix of any other
history)

The set of action available in every non-terminal history A is denoted A(h) =
a:(h,a)e H

e A function P that assigns to each non-terminal history a member of N Uc.
(P is the player function, P(h) being the player who takes an action after
the history h. I fP(h) = ¢ then chance determines the action taken after
history h)

e A function f, that associates with every history for which P(h) = ¢ a proba-
bility measure on A(h), where each such probability measure is independent
of every other such measure

e For each player © € N a partition Z; of h € H with the property that
A(h) = A(R') whenever h and b’ are in the same member of the partition.
For I; € Z; we denote by A(I;) the set A(h) and by P(I;) the player P(h). Z;
is the information partition of player i ; a set I; € Z; is an information
set of player ¢

e For each player i € N a utility function w; : Z — R. I refer to this
function also as an outcome function O;

10



2.2.1 Simple card game example

As a simple example, I will show extensive form game formulation of very simple
card game. This can be seen as a very small Poker game.

The rules

1.

Player one is dealt either Ace or King

2. Player two is dealt either Ace or King
3.
4

Pot (money on the table players are playing for) is two dollars

. Player one acts

can either bet one dollar or check
Player two acts

can bet (if player one checked), or if player one bet, he can either call
(even up the bet) or fold (give up)

. Player one acts again only if he checked first and second player bet

can either call or fold

. Player who folded or had worse card looses one dollar

Extensive form game formulation

1.
2.

There are two players - N = {1,2}.

The set H of all histories
H={(K),(K,A), (K, A, bet), (K, A, bet,call), ...}

The set Z of terminal histories

Z ={(K, A, bet,call), (K, A, bet, fold), (K, K, check, bet, fold), ...}
The player function

P0)=c¢, P(K)=c¢, P(K,A) =1, P(K, A, check) = 2,

P(K, A, check, bet) = 1 etc.

. Information sets - we need to group histories that are indistinguishable by

the player (he can’t see opponent’s card).
7, = {{(K,A),(K,K)},{(K, A bet), (K, K,bet)}},...},
T = {{(K,A), (A A}, {(K, A bet), (A, A bet)}}, ...}

. The utility function on terminal histories.

uy (K, A, check, bet, fold) = —2, us(K, A, check, bet, fold) = +2,
uy (K, A, check, bet, call) = —3, us(K, A, check, bet, call) = +3

11
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Figure 2.2: Nodes grouped in information set are connected using horizontal lines.
Picture created using the Gambit open source software.

Let me briefly describe what is presented on 2.2. Green color corresponds to
the chance player - in the first two tree levels, cards are dealt. In each node, there
are some labeled action that player can take (red color for the first player, blue
for the second one). Notice that some tree nodes are connected using horizontal
line - this indicates what nodes are grouped in an information set. In this game,
information sets allow us to describe the fact, that the players don’t see what the
opponent was dealt.

We group nodes the player can’t distinguish (can’t see opponent’s card), to
information sets, enforcing the player to play the same strategy in these nodes.

The utilities are visible in every leaf. For the path (A — K — bet — call), red
player’s utility is 3, blue player’s utility is —3 (red player was dealt better and
won).

12



2.2.2 Perfect and Imperfect recall

Information sets can not only be used to model games where a player doesn’t
see some hidden information, but can also group nodes so that the player may
"forget” some information he already knew. If this is the case, it’s referred to as
games with imperfect recall (and games with perfect recall otherwise).

Formally, let (N, H, P, f., (1;)) be an extensive game form and let X;(h) be the
record of player i’s experience along the history h: the sequence consisting of the
information sets that the player encounters in the history h and the actions that
he takes at them. Extensive game form has perfect recall if for each player i we
have X;(h) = X;(h') whenever the histories h and h’ are in the same information
set of player i.

2.2.3 Strategies

Definition 2.2.2. A mixed strategy of player ¢ in extensive form game G is a
probability measure over the set of player’s pure strategies.

Definition 2.2.3. A behavior strategy of player i is a collection (8(1;)) of
independent probability measures, where §(I;) is the probability measure over
A(1;). For any history h € I; € H, any action a € A(h) we denote by B(h,a) the
probability assigned by 5(I;)to the action a.

Intuitively, mixed strategies allow the player to mixed between all his possible
paths (pure strategies). On the other hand, behavior strategy allows player to
mix his strategies in every information set. There’s a following relation between
these two type of strategies:

Theorem 1. For extensive form games with perfect recall, mized and behavior
strategies are equivalent [29][p. 203].

2.2.4 Normal form of extensive form game

Given any game in normal form, it’s easy to create an equivalent extensive form
game. The root node corresponds to player one’s decision, and all next level
nodes are grouped to the information set of player two (this way we simulate
simultaneous turns - player two doesn’t know what action player one chose). But
is it possible to convert any two-player extensive from game to equivalent game
in normal form? It’s not possible in general, but:

Lemma 1. Given any two-player extensive form game with perfect recall, it’s
possible to create an equivalent normal form game [29].

We can create the normal form game by considering all possible information
sets and actions - all possible pure strategies. Unfortunately, the created normal
form game can be exponentially large compared to extensive form game repre-
sentation.

13



A B C D
(A-L, B-L, C-L, D-L) |1;-1|3;-3|5;-5|7;-7
(A-L, B-L, C-L, D-R) |1;-1|3;-3|5-5|8;-8
(A-L, B-L, C-R, D-L) |1;-1|3;-3|6;-6|7;-7
(A-L, B-L, C-R, D-R) |1;-1|3;-3|6;-6 |8;-8
(A-L, B-R, C-L, D-L) |1:-1|4:-4|5-5|7;-7
(A-L, B-R, C-L, D-R) |1;-1|4;-4|5;-5|8;-8
(A-L, B-R, C-R, D-L) |1.-1|4:-4]6;-6|7-7
(A-L, B-R, C-R, D-R) |1:-1|4:-4|6;-6 |8;-8
(A-R, B-L, C-L, D-L) |2;-2|3;-3|5-5|7;-7
(A-R, B-L, C-L, D-R) |2;-2|3;-3|5;-5|8;-8
(A-R, B-L, C-R, D-L) |2;-2|3;-3|6;-6 |7;-7
(A-R, B-L, C-R, D-R) |2:-2|3:;-3|6;-6/8;-8
(A-R, B-R, C-L, D-L) |2:-2|4:-4[5.-5]7:-7
(A-R, B-R, C-L, D-R) |2;-2|4;-4|5,-5|8;-8
(A-R, B-R, C-R, D-L) |2:-2|4:-4|6:-6 |7;-7
(A-R, B-R, C-R, D-R) |2;-2|4;-4|6;-6|8;-8

(a) (b)

Figure 2.3: Extensive form game (a) and its corresponding normal form game
representation (b).

2.2.5 The sequence form

Main idea behind sequence form representation is to represent all paths of the
extensive form (instead of pure strategies, since there are exponentially many of
them).

Definition 2.2.4. A sequence of actions of player i € N | defined by history
h € H, is the ordered set of player ¢’s actions contributing to that history. Let
() denote the sequence corresponding to the root node. The set of sequences of
player i is denoted as ¥;. ¥ =¥, x ... x X, is the set of all sequences. [11]

Definition 2.2.5. The sequence payoff function g; : ¥ — R for agent i is is
given by g(o) = w;(2) if a leaf node z € Z would be reached when each player
played his sequence o; € o, and by g(c) = 0 otherwise. [11]

Unlike the normal form, the size of the sequence form representation is linear
in the size of the extensive form game. There’s only one sequence for each game
tree node (history). As we will see later, both normal and sequence forms can be
used to compute optimal strategies using linear programming. But since the size
of sequence form is linear (in contrast to exponential size of normal form), it’s
much more appealing.
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C] A B C D
C] 0;0 0;0 | 0,0 |0;0 |00
L, 0;0 | 1;-1 | 0;0 | 0;0 | 00
R, 0;0 | 2;-2 | 0;0 | 0;0 | 0;0
L, 00 | 0;0 |3;-3|0;0/|050
R, 0;0 | 0;0 |4,-4]|0;0 |00
L, 0;0 | 0;0 | 0;0 |5;-5]|0;0
R, 0;0 0;0 | 0,0 6;-6 | 0;0
L, 0;0 0,0 | 0;0 | 0;0 |7:-7
R, 0;0 0;0 | 0;0 | 0;0 8:-8

Figure 2.4: Sequence form of the game from 2.3a

2.3 Stochastic game

Intuitively speaking, stochastic game models situations where instead of one
game(state), there is a collection of games and players repeatedly play games
from this collection. Transition from a current game to another probabilistically
depends on actions taken in the current game. Poker tournament is an example
of stochastic game. Basically, individual games are single hands and correspond
to different stacks. I will describe poker as a stochastic game later.

Definition 2.3.1. A stochastic game G is a tuple (N, S, A, p,r) where

e N ={1...n} denotes a finite set of players

e S denotes a set of states(games)

A is a tuple (A, .., A,) where for s € S, A;(s) is a finite set of player ¢’s
actions at state s

pst(a) denotes the probability of transformation from state s to ¢ when all
players play according to the strategy profile a € A(s)

e 7 : S — R” denotes the payoff function, where 2’th component is the payoff
to the player ¢« when the state s is reached

State s is terminal if pso(a) = 0 for all ' # s,a € A(s) (the game is over).
A state is nonterminal if it is not terminal. Terminal states in poker tournament
are states when players are eliminated (and winners receive payouts according to
the payout structure)

2.3.1 Strategies

Mixed strategy of player ¢« € N in a state s € S is a probability distribution over
actions in A;(s), denoted as o; ;. For the current state s;, the goal of player i is
to maximize Y .o 7'ri(s).
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3. Nash equilibrium

I already described what Nash equilibrium basically is. Having defined some
models, it’s now possible to define this concept formally.

3.1 Finite strategic game

A Nash equilibrium of a strategic game (N, (4;), (u;)) is a profile 0* € ¥ with
the property that:
ui(02;,07) > ui(0%;,0:) Vi € N,o; € %; (3.1)
Which states that "no player can improve if the other players stick to their
strategies”. So given any strategy profile for any finite game, one can easily check
if it’s an equilibrium using the definition. We just check if all pure strategies of
player i give the same utility as o}

3.2 Extensive form games

A Nash equilibrium in mixed strategies [29][p. 203](recall that for games with
perfect recall, it’s the same as behavior strategies) is a profile o* € ¥ with the

property:
Oi(0”,,07) > O;(c*,,0_1) Vi € N,0; € &; (3.2)
This is essentially the same as 3.4. Following concept of sequential equilibrium
enforces to play optimally each ”subgames” as well.

3.2.1 Sequential equilibrium

If player plays optimally, he plays the "best strategy” given other players strate-
gies. In extensive form games, player acts many times during the game (in con-
trast to strategic games). Intuitively, he should play optimally in any of his
information sets.

This is basically the idea behind sequential equilibrium. But since players
don’t actually know what state the game is in (they only know the information
set), formally defining this idea is not that straightforward. In Poker terms, if a
player doesn’t know opponent’s cards, how could he know his counterstrategy?

Informally, one first assigns to every information set what he thinks about the
actual game state (”if opponent raised 2008, T think 80% times he holds aces and
20% queens”) - this is called assesment. Now given this belief, he needs to play
"best response”. Finally, we want the belief to be computed from opponent’s
strategies using Bayes’ rule.
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Assesment

An assessment in an extensive game is a pair (o, u), where § is a profile of
behavioral strategies and p is a function that assigns to every information set a
probability measure on the set of histories in the information set.

The interpretation of p, which we refer to as a belief system, is that u(1, h)
is the probability that player P(I) assigns to the history h € I, conditional on
I being reached. For example in poker, this the probability we assign to the
cards opponents may hold given their action ("what is the probability opponent
is holding Aces given he raised?”).

Define O;(o, p|I) of (o,u) as denote the outcome conditional on I being
reached.

Sequential rationality

The assessment (o, i) is sequentially rational, if for every player i € N, every
information set I; € I; and every strategy o} € ¥;:

Oi(o, ulI) = Oi((o-i, 07), pl1) (3-3)

Intuitively, sequential rationality states that each player plays optimally based
on his belief (best response given some belief).

Consistency

Informally, consistency means that belief system is derived from strategy profile
using Bayes’ rule (so it’s consistent with the strategy). Unfortunately, since
every strategy must be defined in all information sets and there may be some
information sets that are not reachable given a strategy, defining consistency is
not straight-forward application of Bayes’ rule

Let I' = (N, H, P, Fe, (I;), (u;)) be a finite extensive form game with perfect
recall. An assesment ([, 1) is consistent if there is a sequence ((5", ")) =1
of assesments that converges to (5, 1) in Euclidian space and has the properties
that each strategy profile 8" is completely mixed and that each belief system p”
is derived from (8" using Bayes’ rule. [29]

Sequential equilibrium

An assessment is a sequential equilibrium of a finite extensive game with
perfect recall if it’s sequentially rational and consistent. Every finite extensive
game with perfect recall has a sequential equilibrium [29][p. 225]

As we will see later, sequential equilibrium allows to prove an interesting
property regarding betting actions in no-limit Poker.
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3.3 Epsilon-equilibrium

In Nash equilibrium, the player can’t improve by changing his strategy. An e-
equilibrium states that he can improve only by some small €
An epsilon-equilibrium is a profile ¢* € ¥ with the property that:

ui(o”;,07) > ui(o*,,0;) —eVi€ N,o; €% (3.4)

3.4 Best response

Knowing the strategy of other players, we know what are the "best counterac-
tions”. Those are the actions with the biggest utility against opponent’s strate-
gies. This is called best response.

For any a_; € A_; define B;(0_;) to be the set of player i’s pure best action
given a;. We refer to b; € B;(c_;) as a pure best response

Bi(O'_i) = {ai € Al . ui(aha_i) Z ui(a;70_l-) Va; < AZ} (35)

Similarly, best response

ri(o_;) ={0; € X s ui(0_4,04) > wi(o_y,00) for allo) € ;} (3.6)

Defining equilibrium via best responses

Reformulating "no player can’t improve” to ”all players play best response” gives
alternative formulation of Nash equilibrium. A Nash equilibrium is a profile a*
of actions for which

ar € ri(a*;) Vi (3.7)

This alternative definition is the key element for the proof of existence of Nash
equilibrium.

3.5 Existence of Nash equilibrium

3.5.1 Pure strategies

I haven’t mentioned if this optimal strategy profile exists at all. If the players are
restricted to pure strategies, we've actually already seen a game where this pure
equilibrium doesn’t exist.

Recall the strategic game rock-paper-scissors. Since there are only 3 x 3
possible pure Nash equilibriums (that is, 9 possible tuples of pure strategies), we
can enumerate all of them and see that indeed none of them satisfies a definition
of Nash equilibrium 3.4.

On the other hand, we have already seen a game where pure Nash equilibrium
exists. It’s easy to check that if both players choose to confess, the strategy profile
forms the Nash equilibrium.

To sum it up, pure Nash equilibrium may or may not exist.
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Rock Paper Scissors
Rock 0,0 1,1 (1,-1)
Paper 1,-1) (0,0) (-1, 1)
Scissors  (-1,1) (1,-1) 0, 0)

Figure 3.1: Rock-Paper-Scissors, none of the cells form a Nash equilibrium

Confess Be quiet
Confess (8, 8) (0, 10)
Be quiet Y (10, 0) (2, 2)

Figure 3.2: Prisoner’s dilemma - red cell forms a pure Nash equilibrium. We see
that if any player changes his strategy (and the other one doesn’t), his utility
doesn’t improve (here, it actually gets worse)

3.5.2 Mixed strategies

If all players are allowed to mix their strategies, Nash equilibrium is guaranteed
to exist (for finite games). Define a set-valued function r = (r;(0_;),7—_;(0;)).
Then from 3.7 follows:

Lemma 2. a* is a fixpoint of function r <= a* is Nash equilibrium

This function satisfies all properties for the Kakutani fixed point theorem [3].
This gives us the key result of existence of Nash equilibrium for mixed strategies.
Note that this is just proof of existence. Chapter 4 deals with computing these
strategies.

Rock-Paper-Scissors As we have already seen, this game has no pure equi-
librium. Now we know that mixed equilibrium - how does it look like? It turns
out that it’s (Rock — %, Rock — %, Rock — %) for both players. So player should
randomly (uniform distribution) select his action. Again, we can easily check
that this is indeed Nash equilibrium.
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3.6 Some properties

3.6.1 Two players, zero sum

Nash equilibrium has one appealing property in this case. If (01, 05) forms a Nash
equilibrium, player has guaranteed utility if he plays his strategy. This utility is
referred to as the game value. This property follows from the definition - since
opponent can’t improve, and players are strictly competitive, player always gains
this value if he plays Nash.

3.6.2 Other cases

Above argumentation doesn’t hold here. Even though opponent can’t improve
when all players play according to a Nash, utilities of other opponent’s can ar-
bitrary change. This even if players want to play Nash. Suppose that both
(01,09,03) and (07,04, 0%) form a Nash equilibrium. If players play (oq, 02, 0%)
(that is, all players play a strategy in Nash, but they didn’t communicate which
Nash should they choose), utilities gained by players can be arbitrary high or
low. It may also be a case that there are many equilibrium profiles, and one
player decides which one to play (strategies for other player are same in these
equlibriums)

Such cases occur in real-life situations, as suggested by [39]. [39] found a
family of equilibrium profiles for three-player Kuhn Poker. The profiles exhibit an
interesting property where one player can shift utility between the other players,
while staying in equilibrium and not changing his utility.
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4. Computability

If there’s a Nash equilibrium, how to compute one? Are there any efficient algo-
rithms? The result of existence of Nash equilibrium in any finite strategic game
is from 1951 [27], but the first results on computational complexity of Nash equi-
librium are from late nineties. The result for complexity class of computing a
Nash equilibrium is from 2006 [8].

I find it very exciting that many results mentioned in this thesis are so new.
Some of those results also find straightforward application - that is, help us com-
pute much larger games than ever before.

In this chapter, I present current results and some algorithms for computing
Nash equilibrium.

4.1 Two players, zero sum

It turns out that this is the easiest case. The key observation is that both players
are competitive - that is, one player wants the opponent to loose as much as
possible (because this the amount he wins).

This is leveraged in a linear program that consequently leads to the optimal
strategy. Unfortunately, if there are more players or the game is not zero sum,
this property is lost and the problem seems to be much harder.

4.1.1 Linear program
Normal form games

For any finite, two player zero sum games in normal form, it’s possible to create
a linear program LP with these properties

1. s* is an optimal solution to LP <= s* is a Nash equilibrium

2. size of the LP is linear in the size of normal form

Extensive form games

As mentioned previously, extensive form games can be converted to the normal
form. We could compute the equilibrium by using the normal form game, but
since the size of normal form game can be exponential, we don’t want to do that.

Fortunately, we have already seen the sequence form 2.4. This form can be
used as well

1. s* is an optimal solution to LP <= s* is a Nash equilibrium

2. size of the LP is linear in the size of sequence form

Combining these results, we get the following corollary

Theorem 2. There’s an polynomial-time algorithm for finding a Nash equilibrium
in two player, zero sum game (in both, extensive and normal form representation)
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4.1.2 Fictitious play

Fictitious play is an iterative algorithm, where players select their strategies based
on previous iterations. At each iteration, players select the pure best response to
the opponent’s empirical mixed strategy (based on previous iterations).

Theorem 3. If finite two players zero sum game is played repeatedly using ficti-
tious play, empirical game value converges to the game value [32]

As for the convergence of strategies, there is a following results.

Theorem 4. If finite two players zero sum game is played repeatedly using ficti-
tious play, empirical mized strategies converges to the game value [32]

There are actually other classes of games where the fictitious play is guaran-
teed to converge. Unfortunately, it doesn’t converge even for some simple two
players non zero sum games. Shapley provides some small games where fictitious
play fails to converge [34].

Fictitious play is easy to implement - we only need to compute best response
at each iteration. Unfortunately, we get negative results regarding the speed of
convergence

Theorem 5. In symmetric two-player constant-sum games, F'P may require ex-
ponentially many rounds (in the size of the representation of the game) before an
equilibrium action is eventually played. This holds even for games solvable via
iterated strict dominance. [4]

Despite this, fictitious play is very popular algorithm - easy to implement and
typically converges fast to € - equilibrium. Fictitious play is also used in games
that are not two players zero sum. Even though not guaranteed to converge, we
have following result:

Theorem 6. Under fictitious play, if the empirical distributions over each play-
er’s choices converge, the strategy profile corresponding to the product of these
distributions is a Nash equilibrium. [12]

Unfortunately, if there are more players or the condition of zero sum is re-
moved, the problem seems to be much harder to solve.

4.2 Other cases

If computing a Nash equilibrium in a case of two players zero sum is easy, what
about three, four or five players? Is it "harder” to compute a game with four
players than a game with only three players? Do the problems fall to different
computability classes? Latest results show that this is not the case.

Theorem 7. Finding a Nash equilibrium in an r-player can be reduced to finding
a Nash equilibrium in a game with 4 players [18](2005)

22



4.2.1 Appropriate complexity class

So is it possible that finding a Nash equilibrium in a game with 4 players is
NP-complete? It turns out that NP-completeness is not appropriate class of
complexity. Basically, the reason is that for NP-complete problem, the solution
may or may not exist. On the other hand, Nash equilibrium is guaranteed to
exist. But there are many closely related problems without the guarantee of
existence and those problems indeed fall to the class of NP-complete problems -
this result is from 1989 [14]

e Does the game have at least two Nash equilibrium?

e Does the game have a Nash equilibrium with player ¢’s utility at least a
given amount?

¢ And many more...

PPAD complexity class

PPAD stands for "polynomial parity argument (directed case)” [30]. T won’t for-
mally define the class itself, but merely mention some of the interesting properties.
It’s a class of combinatorial problems, where the existence of solution is guaran-
teed. Solution corresponds to finding some specific vertex in an exponentially
large graph with some specific properties.

e The graph is directed

Every vertex has at most one incoming and outgoing edge

It’s easy to find neighbors (with the edge direction)

We need to find any vertex with no outgoing edges (sink) - this is the
solution.

There is no known polynomial time algorithm for this complexity class. Note
that the existence of polynomial time algorithm doesn’t imply P = N P. It could
be that PPAD = P and still P # NP

Finally, the problem of computing Nash equilibrium falls to this class. First,
the case for 4 and more players was proven, shortly after followed by the rest.

Theorem 8. The problem of computing Nash equilibrium in games with 4 players
is PPAD-complete. [8](2006)

Theorem 9. The problem of computing Nash equilibrium in a bimatriz games is
PPAD-complete. [6](20006)
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4.2.2 Summary

Computing a two players, zero sum game can be done using linear programming
in polynomial time. As we will see, this doesn’t mean that computing poker
game with two players is tractable (Poker is simply too large). On the other
hand, for small games with three or more players, we are usually able to compute
reasonably good strategies (player can’t win much more by deviating from his
strategy). This is due to the fact that some algorithms which are guaranteed to
find a Nash equilibrium in two players games, work usually well in other cases
and often converge to good strategies.
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5. Poker

Online Poker gained a huge popularity in last few years - revenues grew from
$82.7 million in 2001 to $2.4 billion in 2005 [41]. There are many Poker cardrooms
worldwide, with Pokerstars being the largest and most popular one (having almost
47 million registered users [31]).

Looking at these numbers, it’s not surprising that many people got interested
in creating some Poker programs that could beat their opponents.

On the other hand, Poker is an interesting game from the theoretical point of
view. The game of poker has been identified as a beneficial domain for current Al
research [2] In the last few years, new great results and algorithms were discovered.
I would like mention Computer Poker Research Group (CPRG) of University of
Alberta and the group from Carnegie Mellon University (CMU). Their results
from the last 14years allowed to create most sophisticated and best performing
Poker bots ever, and these results apply to all extensive form games.

5.1 Rules

Poker is a family of card games - there are many different variants and variations.
In general, all players receive some private cards. Then there are some betting
rounds, where players bet their money (or chips) according to some rules.

In those betting rounds, some public cards may be revealed, in other variants
player may change their private cards. Player may ”give up” (fold) during the
game, but if there are some players who make it to the end, they reveal their
public cards (showdown).

Based on private and public cards, winner is determined using some ordering
over cards.

There are many different groups and variants of Poker. In this thesis, I deal
only with the most popular one [40]. - Tezas Hold’em Poker

Texas Hold’em Poker Each player is dealt two private cards (hole cards).
There are four betting rounds - Preflop, Flop, Turn and River. Five public cards
are subsequently dealt - three public cards on Flop, one card on Turn and one
card on River.

First, mandatory bets are posted, known as blinds (big blind and small blind).
In each betting round, players can fold (give up the pot - game ends), check/call
(match the opponent’s bet), bet/raise (bet more money). Betting round ends
when both players’ bets are equal and both of them made some action. If none
of the players folds during all four rounds, one player wins (takes the pot) or it’s
a draw (pot is splitted). The winner is the player with the strongest 5-card hand.
That is, he selects five cards from his two private hands and five public cards
(seven in total) with the highest value. Note that these values (poker hands)
form an ordering.
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Please refer to [36] for more detailed rules. Follows some poker terminology
used in the following chapters

e preflop, flop, turn, river: betting rounds

e heads up (HU): there are two players

e stack: player’s money/chips

e pot: money/chips on table

e all-in: bet equal to the size of player’s stack (he bets all the money he has)
e hand: player’s cards

e limit betting/limit poker: player is allowed to bet only a fixed amount

e no-limit betting/no-limit poker: player is allowed to bet any amount
up to his stack

Hand  #100 00s g8 1 ™M™ KB | VIEWLOBBY || LEAVE TAELE |

| Pot: $320 |

A
IS
)

L) m S,
mtvdeuem = Fo—t Harthor
| @ :

[ Allin ' 3680 |

Notes

Dealer: Hand #100905454140: Harthar wins pok [160]
Dealer: Hand #100905459466: Harthaor wins pok [40]
Diealer: Hand #100905461689: Harthar wins pok [40]
Dealer: Hand #100905464683: mtvdeuem wins pot [20]

Figure 5.1: Heads-up no-limit Hold’em Poker, 1000$ table on PokerStars - that
is, the winner wins $1000$ Player on the left won the round, since his best 5-card
hand is stronger than the opponent’s

(KO AD A 8O 20) = (90 JO Ad 8O 20)

26



5.2 Poker bots

5.2.1 Computer vs humans

In contrast to chess, where state-of-the-art chess agents beat the world best chess
players [10], poker agents have still long way to go (namely the no-limit variants).

In 2005, chess computer Hydra beat British grand master Michael Adams (5—
1 —0) (won-draw-lost). In 2006, Deep Fritz 10 beat Kramnik, World Champion
at the time, (4 —2 —0).

Compare it to no-limit Hold’em Poker. In the First Man-Machine Poker
Championship (2007), the match between the program Polaris and two profes-
sional Poker players ended up (1 — 1 — 2), humans won. In the Second Man-
Machine Poker Championship (2008), advanced version of Polaris challenged
four professional Poker players. Polaris won (2 —1—1)

It’s important to mention that there was a great progress in computing poker
strategies since 2008. I believe that if the Man-Machine Poker Championship was
to be held again, humans would stand no chance.

5.3 Computer vs computer

Computer poker competition is held every year since 2006. In 2013, there were 13
different agents in the heads-up limit Texas hold’em, 11 agents in the heads-up
no-limit and 5 agents in the 3-player limit competition. Agents were submitted
by a mixture of universities and individual hobbyists from 10 different countries
around the world. [7]

We send our own agent for this year - see chapter 8 for details.

5.3.1 Comparing opponents

Note that in chess, we can play only few games between human and computer to
determine who won. To get some statistical significance, one needs to play much
more matches.

This is not the case with Poker. Even though there are techniques to decrease
the necessary number of matches [23], one still needs to play thousands of hands
to get some statistical significance.

This seems almost impossible in real life tournaments. On the other hand,
it’s easy to get these numbers playing online. This is thanks to two fact. First,
Poker players typically play many tables simultaneously - client software allows
having many table windows and brings the table to the front whenever player
is to act. Second, every hand is much faster - dealing cards is faster as well as
player’s actions. Consequently, professional players are able to play enough hands
in a year to easily overcome the variance.
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6. Computing Poker strategies -
Part 1

In this chapter, we will finally see some application of game theory to Hold’em
Poker. 1 will show some minigames that are easy to solve. Some of these
minigames occur in real life games, typically in the end of tournaments.

First notice that Poker is always a zero sum game. This follows from the fact
that all the money (or chips) player wins, other players looses.

6.1 Heads-up push fold

Consider a poker game with following properties:

1. Two players (heads up)
2. No limit betting

3. Both players have stack lower than some small multiplier of big blinds - K

Now having two players zero sum game, it’s theoretically possible to compute
this game in polynomial time (2). Unfortunately, the game is too large, making
the computation intractable.

But if the K is very low, it’s possible to play almost optimally using only three
actions - all-in, fold, call [5]. This makes the game tree much smaller, because
there are no more actions possible - one of the players folds or one of the players
is all-in. When a player is all-in, public cards are dealt and player with better
combination wins the pot (or they draw).

How does the game tree look like? First, both players are dealt their private
cards and pushing/folding follows. There two types of leafs: either one of the
players folds (and looses his bet), or one of them is all-in. The utilities equal to
expected value of chips (based on both player’s hands). This game is so small
that it’s possible to represent it using the sequence form and compute using linear
programming.

I used both GLPK and Gurobi and the computation took only fraction of
second using my computer. There is also a nice web interface from Holdem-
Resources, which uses described method - see citeholdemresources. This way,
players can easily see the optimal strategy for the push-fold heads-up minigame.

Even more, it’s possible to represent the strategy in a simple table. Players
can see in this table if they should push or fold based on his hand and K.
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Pusher Caller

A |20+|20+ |20+ | 20+ |20+ | 20+ [20+ |20+ |20+ |20+ 20+ |20+ | 20+ A |20+ |20+ |20+ |20+ 20+ | 20+ |20+ |20+ |20+ |20+ |20+ |20+ |20+

K |20+|20+ 20+ |20+ |20+ |20+ [20+ |20+ 20+ |20+ 20+ |19.9(19.3| | K |20+ |20+ |20+ |20+ |20+ |20+ [17.6]|15.2|14.3|13.2[12.1|11.4|10.7

Q |20+ |20+ |20+ | 20+ |20+ | 20+ |20+ |20+ |20+ |20+ |16.3]|13.5(12.7| | Q |20+ |20+ |20+ |20+ (20+ |16.1|13.0|10.5/9.9 (8.9 |84 (7.8 (7.2

J |20+ |20+ | 20+ |20+ |20+ |20+ |20+ |20+ |18.6|14.7|13.5|10.6|8.5 | | J |20+ |20+ |19.5/20+ |18.0|13.4(10.6|88 |7.0 |69 (6.1 |58 (5.6

T |20+(20+ |20+ |20+ |20+ |20+ |20+ |20+ |20+ |11.9|10.5|7.7 |65 | | T |20+ |20+ |15.3|12.7|20+ |11.5(9.3 |74 |63 |52 (5.2 |48 |45

9 |20+|20+ |20+ |20+ |20+ |20+ |20+ |20+ |20+ |14.4|6.9 |49 |37 9 (20+|17.1(11.7|95 |84 |20+ |82 |70 |58 |50 |43 |41 |39

8 |20+(18.0|13.0|13.3|17.5| 20+ |20+ | 20+ | 20+ |18.8|10.1)2.7 |25 8 (20+|13.89.7 |7.6 |66 |6.0 |20+ |65 |56 |48 |41 |36 |35

7 |20+|16.1({10.3|8.5 (9.0 |10.8(14.7| 20+ [20+ |20+ [13.9]25 |21 7 |20+ |12.4|80 |6.4 |55 |5.0 |47 |20+ |54 |28 a1 |36 |33 5“'“‘?

6 |20+|15.1(9.6 |65 |57 |5.2 7.0 |10.7(20+ |20+ [16.3]* |20 6 |20+|11.0|7.3 |54 |46 (4.2 |41 4.0 |20+ |49 |43 |38 |33 }S:::;SI

5 |20+[14.2|8.9 |6.0 |41 |35 |3.0 |26 |24 |20+ |20+ |* |20 5 (20+|10.2(6.8 |5.1 (4.0 |3.7 |36 |3.6 |3.7 |20+ |46 |40 |36

4 |20+(13.1|7.9 |54 |38 |27 |23 |21 |20 |21 |20+ |** |18 | | 4 |183|9.1 |62 |47 |38 |33 (3.2 |32 |33 |35 (20+(38 (34 | [+ 635 7.1-51,23
3 |20+[12.2|75 |50 |34 |25 |19 |18 |17 |18 |16 |20+ |17 3 (16.6|8.7 (59 |45 (36 (3.1 |29 |29 |29 |31 |3.0 |20+ |33 | 53s: 12.9-38, 2.4‘
2 |20+|116|7.0 |46 |29 |22 |18 |16 |15 |15 |14 |14 |20+ | 2 |158|8.1 (56 |4.2 35 |3.0 |28 |26 |27 |28 |27 |26 |15.0 | 43s: 10.0-4.9, 2.2‘

Figure 6.1: Table cell denotes a number of blinds player should push with. If
player’s stack is lower or equal this number, player should go all-in with the
corresponding hand. For example in the left table, we see that that the first
player should go all-in with 7#9Q offsuit if his stack is < 10.8. Source: [19]

6.2 Tournament push fold

If there are only two players, player just maximizes his expected stack after the
hand. This is because the more chips/money the player have, the better. This
may not be the case in tournaments. Consider this tournament situation:

e There are three players left in the game

e Payout structure is following
First position (the winner) gets 50%
Second position gets 50%

e The players are named A, B, C

And consider two different situations (possible chips distributions):
1. (100, 100, 100)
2. (10,1, 289)

In the first distribution, player A has 100 blinds compared to 10 blinds in the
second distribution. But because it doesn’t matter if he finishes first or second
(see the payout structure), the second distribution is actually better. This is
because in the second distribution, players B have only 1 blind and is very likely
to loose the game soon.
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6.2.1 Computing tournaments

Now it’s not possible to represent the game as in previous case, where leafs
corresponded to expected stack. We can’t maximize our value just in on hand
(because we don’t know which chip distribution is better). Nodes representing
the end of hand can’t be leafs (as were in the HU), but the game continues with
another hand (blind position is changed and cards are dealt again). This way we
get a stochastic game.

This was of course also the case with two players, but we could forget the
next hand and just maximize stack the player would have for the next round. I
present a picture for better illustration (6.2)

N |

100; 90; 210 100; 200; 100 — 130;180; 90

NG v
- 200; 100; 100 \

300; 0; 100 i 210; 100; 90
=
210; 90; 100

/ N

Figure 6.2: Three players tournament. Triples correspond to players’ stack sizes.
Red stack represents a player posting a big blind. Only few nodes and edges are
presented. The green node is a final state - one of the players lost all chips and
the game is over (so there are no outgoing edges from this state)
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6.3 Independent chip model

Independent chip model (IC'M) is a formula to estimate a player’s game value
based on the chips distribution and payout structure. If the game state values
are estimated, it’s possible to solve the game independently in any game state (as
it was possible in heads up). It’s clear that if the estimate is wrong, computed
game strategy could be wrong as well. As I will show later, ICM is very good
estimate in most of the situation.

ICM assumes that the probability of player i winning the game (finishing first)
equals to ﬁ (s; being player i’s stack). Probability that player finishes on the
second posi%ioln equals to probability that any other player finished first and he
finishes first among the remaining players (and so on for n-th position).

Stacks Expected values
(100,100,100) | (5,3, 3)

(10, 1, 289) (0.37,0.04,0.59)
(1,1,298) (0.2,0.2,0.6)

Table 6.1: Few values computed via [CM. Stacks are displayed relatively to blinds,
payout structure: (0.6,0.4)

Thus, using this formula, one can compute player’s expected value over all
payout positions. Computing this formula from definition has exponential time
complexity, but there’s a simple dynamic algorithm that is polynomial.

Unfortunately, this formula doesn’t handle blind position. It computes the
same value for all players in this situation: (1,1,1). Clearly, if all players have
only one blind, their game value depends a lot on whether they do or don’t post

a blind.

6.3.1 Computing an equilibrium

Even with the state values estimated, it’s hard to compute an equilibrium in a
game with three players (see the computability chapter).

As mentioned in chapter 4, fictitious play can be used in these games and typ-
ically converges to reasonable good strategies. Fictitious play needs to compute
best response in every iteration. This may seem hard, since there are 169 cards
and player can push or fold with any one of them, making 2'%° pure strategies.

But to find a best response, it’s not necessary to try all pure strategies. The
best response can be computed by simple traversing an extensive game tree.

Using the ICM and the fictitious play, we can compute strategies in tourna-
ments with more than two players (we still limit players to push/fold strategies).
There is a tool by HoldemResources [19] that computes these strategies. When
we implemented this approach, we got the same results.
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6.4 Approximate push fold equilibrium without
ICM

[13] showed how to compute an approximate equilibrium in a tournament game.
Main idea is to compute state values from a strategies in every state, recompute
the strategies using those values and repeat. The algorithm works basically as
follows:

1. Estimate state values using ICM

2. Run fictitious play in every state

3. Recompute state values using new strategies

4. Compute how much the values changed in step 3

5. If the change is bigger than some ¢, go to step 2

This algorithm is not guaranteed to converge. Unfortunately, even if it con-
verges, it may not converge to a Nash equilibrium. In the follow-up paper, they
came up with an "ex post” check, which computes best response. This allows
to check if the strategy profile is indeed an e-equilibrium. In that paper, they
also showed how to adapt the algorithm that if it converges, it converges to an
equilibrium.

In their setup, there were 13500 total chips, small blind was 300 and big blind
600. The payout structure structure was: first place: 50%, second place: 30% and
third place: 20%. Using described algorithm and ”ex post” check, they computed
an e-equilibrium where none of the players was able to improve his value in state
by more than 0.5% of the tournament entry fee.

The results also show that ICM is a very good estimate in most of the situa-
tions.

When I implemented this algorithm, it converged in this setup as well. Using
different payout structure - 60/40/0, I was not able to force the algorithm to
sufficiently converge
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7. Regret algorithms

Learning algorithms make repeatedly decisions and adapt the current strategy
based on previous results. This can be seen as repeatedly playing some game
from one player’s point of view. For the Rock-Paper-Scissors, player would select
his action probabilisticaly on a previous results. For some traveling game, player
would prefer paths that were previously fast. Preferring actions that previously
performed better is the basic idea behind all these algorithms.

First, consider repeatedly playing a sequential, two player, zero-sum game G.
Let ¢! be the strategy of player ¢ on round t.

Definition 7.0.1. Average utility
Is just player’s averaged utility over all games

|

ul = ! > ui(oh) (7.1)

Definition 7.0.2. Average overall regret

(Also known as external regret) of player i at time T is the average value player
would gain by playing single strategy o all the time, that would maximize his
average value (note that this value may be negative).

T

1

Rl = mmazges, Y (w(o], 0L) = (o) (7.2)
t=1

Definition 7.0.3. Average strategy

7ila) = —Ztﬂﬁ @) (7.3)

In a case of two players, zero-sum game, there’s a direct connection between
the external regret and epsilon-equilibrium

Theorem 10. If both player’s external regret at time T is less than €, then G° is
a 2¢ equilibrium

Proof. Since the game is zero sum, u; = —uy and suppose that the player zero

is maximizing.. Suppose for contradiction that there is a strategy of, so that

up(0g, 1) — ug(a) > 2e. Because the player one’s external regret is less than e,
_ T .

131 (wo(@o, %) —uo(0')) > —e and consequently £ >, (uo(0f, 0f) —ug(c?)) >

€ which is contradiction.

]

Consequently, to find an e-equilibrium, it’s possible to use some algorithm
that minimizes average overall regret.
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7.1 Regret minimization

There are many regret minimizing algorithms. To find an e-equilibrium, regret
grow must be bounded by some function so the average overall regret goes to
zero. I will show a simple algorithm and using this algorithm, grow of external

regret is bounded by /T. Consequently, average overall regret is bounded by
VT _ 1

T =T

7.1.1 Regret matching
Definition 7.1.1. Action regret
oy L (oot ) — w
Ri(a) = 7 ;T(uz(a,m) ui(0)) (7.4)

Definition 7.1.2. Action positive regret
R (a) = maz(R{ (a), 0) (7.5)
Regret matching uses following equation to select a strategy a time ¢ + 1

T+1 RiT’—F(a)
% (CL) = T,+
D wea Lt (a)

if Y ea RI"(a’) > 0 and uniformly otherwise.

g

(7.6)

Theorem 11. If |[u| = maxz; maz,aea (u'(a) — u'(a')), and strategy at t + 1 is
selected using (7.6), the average overall regret is bounded by

RT < % (77)

Note that this algorithm is easy to implement. All we need is to acummulate
regrets at each iteration, and to compute simple fraction 7.6.

7.2 Counterfactual regret minimization

Since regret is defined using single strategy, we can use regret minimization al-
gorithms on normal form games. It’s also possible to use regret minimization
algorithms directly on the extensive form game representation (in every informa-
tion set). This result allows us to compute much larger extensive form games,
and the paper was published in 2007 [44]. Briefly, we

1. Define counterfactural regret in information set

2. Bounding overall regret by the sum of all counterfactural regrets
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7.2.1 Counterfactual regret

Counterfactual utility is the expected utility given that the information set I is
reached and all players play using strategy o except that player i plays to reach
I. Let ©7(h, k') denote the probability of going from history A to history h’ given
0.

Let Z; be the subset of all terminal histories with a prefix in I and for z inZ;
let z[I] be that prefix. Define counterfactual value as [25]:

vi(o, 1) = Z 7% (2177 (2[I], z)ui(2) (7.8)

2€ZT

Let 0|/, be a strategy profile identical to o except that player i always
chooses action a in information set /. Now similarly to action regret (using
utilities), define counterfactual regret (using counterfactual utilities) as

T

RZTme(I) = %mawa Z(Ui(‘7|l—>aa I) — (o', 1)) (7.9)

7.2.2 Bounding regret by counterfactual regret

Finally, there’s a key relation between average overall regret and immediate coun-
terfactual regret [44]:

I€Z;

Consequently, we can minimize counterfactual regret in each information set
to minimize average overall regret. Using 7.6 to minimize counterfactual regret,
from 7.7 7.10 follows that

[ \/T :

This algorithm is refered to as CFR or vanilla CFR.
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7.3 Monte Carlo sampling

To compute counterfactural values and update the strategy, we traverse the game
tree only once. If the game tree is too large and doesn’t fit into the memory, we can
"sample” only a part of the tree. Another possible advantage is that computing
the sampled part of the tree is faster and possibly, this lower cost of each iteration
may lead to faster convergence.

The key idea behind Monte Carlo CFR.is to sample a part of the tree,
while having the expected value of immediate counterfactual regrets unchanged.

[25].

First, we restrict the terminal histories Z we sample on each iteration. Let
Q=0@Q,...,Q be a set of subests of Z, for which Ui:{1...7~ Q; = Z. One if these
subsets is called a block. On each iteration, only one block is sampled (this block
defines a subtree we walk).

Let g; be the probability of sampling block @);. Let ¢(z) = Zﬂzer q¢; (the
probability of sampling terminal history z). The sampled counterfactual val-
ue when updating block j is:

- . 1 o
(o, 1]j) = Z @W—z‘(zm)ﬁ (2[1], 2)ui(2) (7.12)
2€Q;NZy
Notice that if we choose ) = Z and ¢; = 1, we get the vanilla CFR. It’s
easy to show that the expected value of sampled counterfactural value matches
counterfactual value.

EjNQj [6i(0-7 I|J)] = Ui(o', ]) (713)

Monte Carlo Countefactual Regret Algorithms work by sampling a block at
iteration and computing the sampled immediate counterfactual regret

F(I,a) = 05(0|1—a, 1) — 0i(a', 1) (7.14)

A member of family of MCCFR minimizing algorithms is specified by the set
Q. The algorithm samples a () € Q, computes sampled immediate counterfactual
regret in corresponding information sets, and applies regret matching to minimize
regrets. First, we show that this approach (under certain conditions) minimizes
overall regret for any member of the MCCFR family.

Let @; be a subsequence of history a containing only player ¢’s actions in that
history. Let A; be the se of all such subsequences. Let [i((a)i) be the set of all
infgrmation sets sets where player i’s action sequence up to that information set

is (a);.
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Define B; = {I;(@) : @ € A;}. Define M; = > pen, V| B| Using M;, we can
tighten the bounds of 7.11

Yir

Note that this is bound is indeed tighter, since M; < |I;| (this bound can be
realised on some games)

Having defined M, we can state the key result of MCCFR [25]:

For any p € (0, 1], when using MCCFR such that for all Q € Q and B € B

Y W“(Z[I],Z)ﬂi(fé[f]))g S%

IeB zEQﬂZi q(z)

where ¢(z) < § > 0, then with probability at least (1 — p):

2 1M, A
< (14 2 MV
vP'o VT
This result holds for any member of MCCFR family, and we present a member
with specific bounds

My Ju|/TA
RT < |”|T|| (7.15)

7.3.1 External-Sampling MCCFR

Here we sample only the actions of the opponent and chance, such that ¢(z) =
m¥igma_;(z). The algorithm simply does a traversal of the game tree, sampling
action at each history h for which P(h) # i. For the external-sampling MCCFR,
following property holds:

For any p € (0, ], when using external-sampling MCCFR, with probability at
leas (1 —p)

RT < (14 Y2) Milul V4]
IV
So we get same order of iterations as for the vannila CFR. For games where
players make roughly the same number of decisions, the iteration cost of the
external-sampling MCCFR is Q(y/[H]), while Q(|H|) for vanilla CFR. Both al-
gorithms require the same order of iterations (see 7?7 and 7.15).

7.3.2 Outcome-Sampling MCCFR

Here the blocks of Q are single terminal histories (VQ € Q,|Q| = 1). On each
iteration, one terminal history is sampled and information sets along that history
are updated. For this member, we get the following bounds [25]:

For any p € (0, ], when using outcome-sampling MCCFR where Vz € Z either

o

77,(2) =0 or g(z) > ¢ > 0 at every timestep, with probability at leas (1 — p)

Y
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7.3.3 Experimental comparison

In [25], performance of Vanilla CFR, Vanilla CFR with pruning , Outcome-
Sampling MCCFR and External-Sampling MCCFR were compared on four differ-
ent games. (CFR with pruning simply prunes a subtree whenever the opponent
has no probability of reaching corresponding history). See (Fig. 7.1) for the
results.

. Goofspiel bidding card games.

. One-Card Poker a generalization of Kuhn Poker

. Princess and Monster a pursuit-evasion game on graph.

Latent Tic-Tac-Toe simmilar to Tic-Tac-Toe, but the moves are discoled
after the opponent’s move (and lost if invalid)

Goofspiel

18t

CFR
CFR with pruning —
MCCFR-outcome -
MCCFR-external

0.25

02

0.15

0.1

0.05

Figure 7.1:
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Nodes Touched

One-Card Poker

5e+09

CFR
CFR with pruning —
MCCFR-outcome -
MCCFR-external

2e+08

4e+08 Ge+08 Be+08 1e+09

Nodes Touched

Latent Tic-Tac-Toe

CFR
CFR with pruning —
MCCFR-outCOmME s
MCCFR-external

4e+08 6e+08

Nodes Touched

2e+08

Princess and Monster

CFR
CFR with pruning —
MCCFR-outcome -
MCCFR-external «

2e+08 3e+08 4e+08

Nodes Touched

1e+08 5e+08

Experimental comparison of MCCFR members on four different

games. Different colors correspond to different samplings. X-axis denotes the
number of touched game tree nodes, Y-axis denotes the convergence (¢). We see

that Vanilla CFR is outperformed in every game.
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8. Computing Poker strategies -
Part 11

All the poker game examples I gave used the fact, that the player could play push-
fold strategy without loosing much value. This made the game small enough to
compute. This chapter deals with poker games, where the push-fold argument
holds no more (players have enough chips).

8.1 Size

Both limit and no-limit variants of poker can be represented using an extensive-
form game representation. Size of this representation is limiting factor for com-
putability purposes. In perfect information games, the game size could be repre-
sented simply by the number of game states. In the case of imperfect information,
it’s useful to know both - number of game states and information sets.

In limit variant of Poker, it’s quite easy to compute those numbers, but it’s not
the case with no-limit variant. Size of this game depends on the players’ stacks
and blinds, and until 2013, was just estimated. For example, if both players have
stack of 1000$ and the blinds are 1$/2$, the game was believed to have 10™
game states. Johanson [20] computed the size exactly for some no-limit cases. I
created a table comparing a size of some popular games

Game Game states | Inf. sets
Chess 104 -

Heads-up limit poker 3.162 x 1017 | 3.194 x 10
Heads-no limit poker, $1000 — 1$/2$ 7.16 x 107 | 7.23 x 107
Heads-no limit poker, $1000 — 1$/2% 7.16 x 107 | 7.23 x 107
Heads-no limit poker, $20000 — 50$/100% | 6.31 x 10'%* | 6.37 x 106!

Because the number of game states for such a huge game was computed ex-
actly, I can give the exact number of game states in a case of HU no-limit poker,
$20000 — 50$/100%. The number is: 631 143 875 439 997 536 762 421 500 982
349 491 523 134 755 009 560 867 161 754 754 138 543 071 866 492 234 040 692
467 854 187 671 526 019 435 023 155 654 264 055 463 548 134 458 792 123 919
483 147 215 176 128 484 600 [20]

40



8.2 Abstraction

Because the game size is far from tractable, it’s necessary to apply some abstrac-
tion techniques to the game. The purpose of abstraction is to create smaller,
tractable game, and to use the computed strategy for the original, unabstracted
game.

To play the original game, the mapping between must be defined both ways:

e given any state in the original game, find a state in the abstracted game

e given player’s action in the abstracted game, find an action in original game

In general, there are two different abstractions : lossless abstractions and
lossy abstractions. Theoretically, the abstracted game could be created using
any technique. Most straightforward technique to create smaller game from an
extensive from game is to group some information sets to shrink the game. This
is the case of all poker agents competing in ACPC.

In Poker, this is typically done by grouping different cards.

8.2.1 Lossless abstraction

Lossless abstraction of a game guarantees that an optimal strategy corresponds
to an optimal strategy in the unabstracted game. In Poker, lossless abstraction is
for example grouping some preflop cards. In the preflop phase, it doesn’t matter
if the player is dealt (A, KO) or (AQ, K#). Grouping cards is referred to as a
bucketing - cards are grouped to buckets.

But how do we know that (A&, K<) and (AQ, K#) are isomorphic pre-
flop? How can we find all isomorphisms throughout the game? [16] show the
GameShrink algorithm that finds all isomorphisms automatically. Using this al-
gorithms, they were able to compute for the first time the exact Nash equilibrium
in Rhode Island Hold’em Poker. Computing this game directly using linear pro-
gramming yealds 91,224,226 rows and columns. GameShrink reduces this to
1,190,443 rows and 1,181,084 columns. This linear program was solved using
the interior-point barrier method of CPLEX in a week.

8.2.2 Lossy abstraction

Lossy abstraction of a game doesn’t guarantee that an optimal strategy in the
abstracted game will be optimal in the unabstracted game. So player’s optimal
strategy in the abstracted game can loose in the original game. Again, some
grouping of preflop cards is loosy abstraction. If we group (Ad, A<) and (2,
2<), player can’t distinguish these two states in original game.

Why would we want to use these abstractions? We can group much more
information sets together, making the abstracted game much smaller. Sometimes
we can’t use only lossless abstraction, because the game is still too large to solve.
This is the case of Hold’em Poker.
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8.2.3 Imperfect recall in abstractions

Having a perfect recall abstraction, we don’t forget any information. For example,
we can use to 10 buckets in each round.

Other approach is to use more buckets on each round, but to forget the buckets
from previous rounds. We can use 10 buckets for preflop 100 buckets on preflop,
1000 buckets on turn and finally 10,000 buckets on river - and forget each round
previous buckets. This graph has exactly the same size as having 10 buckets each
round and remembering these buckets.

Creating this type of abstraction allows us to better capture the information
for current round. Since this information seems more important than previous
rounds, it could lead to better performing agents.

But forgetting previous buckets leads to game with imperfect recall. As we
already know, there’s not guarantee of existence of Nash equilibrium. Even worse,
vanilla CFR minimization is ill-defined in this situation. This is because from one
information set, there may be many actions leading to the same future information
set. Fortunately, if we use public-chance sampling (so the sampled portion of the
tree doesn’t have this problem), CFR minimization is well-defined. Of course,
there’s still no guarantee of convergence, but this approach works well in practice.

Comparing perfect and imperfect recall abstractions shows that imperfect re-
call abstractions indeed perform better than their’s (equally large) perfect coun-
terparts. [43] [21].

8.2.4 Abstraction size and quality

Naturally, even if the abstraction is lossy, we want abstraction’s strategy to per-
form well in the unabstracted game. In poker, choosing abstraction is crucial
step in creating a good agent. One could think that the larger the abstraction,
the better. Surprisingly, this is not that case even if the larger abstraction is
refinement of the smaller one [42]. (informally, refinement allows player to make
the same choices and possibly more). Let’s show it on very nice example from
[42]. Follows a simple, two players zero sum game in normal form

alb |c|d
A|T7|2 0
B|7]10]|5|6

oo
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Figure 8.1: Visualization of the previous normal form game. [42]

We see that the optimal strategy in the full game corresponds to the intersec-
tion of column player’s strategies ¢ and d. For the equilibrium, the guaranteed
value for the row’s player is slightly more than 5. Computing an equilibrium in
the abstraction of this game, where the column player is allowed to use only a
and b, yealds a set of equilibrium strategies (doted part on the figure). Adding
another option ¢ for the column player yealds new solution - the intersection of
c and b. But if the row player plays this strategy in the unabstracted game, his
worst-case utility is worse than for any doted strategy (that is, equilibrium if the
column player was allowed only strategies a and b).

Pathology occurs for the row play as well. Suppose that the row player may
play only B, the column player only c. In this case, row player’s optimal strategy
is to play B all the time. If we allow the row player to play A as well, his optimal
strategy now becomes A. Clearly, in the unabstracted game, his guaranteed value
for the strategy A is lower than for the strategy B. Why did that happen? Basi-
cally, having larger abstraction, the player can use strategies that seem valuable
against opponent’s abstraction. However, there may be strategies in the full game
that counter these strategies, and the opponent is just not allowed to leverage
that.

To sum it up, the strategy computed using the bigger abstraction can be
beaten more than the strategy computed using the smaller abstraction.
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8.2.5 Overfitting

Another drawback of dealing with abstraction is a possibility of overfitting. Com-
puting a strategy in abstracted game converges to an equilibrium, or in other
words, the exploitability gets lower and lower. But this holds just for the ex-
ploitability in the abstracted game. How will the strategy perform in the original
game? Does it get better as well? As we will see later, it’s tractable to compute
the best response in the limit hold’em Poker. Having the possibility to compute
the best response, we can check if the strategy gets better in the unabstracted
game of limit hold’em Poker (see following figures)

5
o
300 ' Abstract Game ——— | 340 'E
PR 10 bucket Perc. E[HS?] —— &\ Real Game 300 =
IR k-Means —x— S ] 3
S 280 | 1 S e 3
S . : S o 300 2
E ! e ]
= 260 > T 1280
2 S £
= to] 260 &
s 240 ¢ 1 . ‘ . o
Q 5]
s o
G 220
(b) Green dots denote the exploitability in
200

the unabstracted game, red in the abstrac-
(a) Perfect (red) and imperfect (green) re- tion. See that even though the exploitabil-
call abstractions. See that the strategy ini- ity in the abstraction goes to zero, this is
tially improves, but than steadily gets worse not the case in the real game

I will show how to deal with both, overfitting and abstraction pathologies,
later.

8.3 Card bucketing

Popular lossy abstraction technique is grouping private or public cards. This is
called bucketing - cards are group to buckets. It’s desirable to group cards that
player should play similarly. But what cards should player play similarly?

8.3.1 E[HS]

E[HS] stands for ”expected hand strength” - idea is to group hands with similar
"strength”. In this case, strength of hand is defined as a probability of beating
opponents random hand. For example, player’s odds with hand (A#, Ad) against
(2$,3¢) is 82.16%. If the flop (4,5, K ) is dealt, odds drop do 50.61%..
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8.3.2 Hand strength distribution
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Figure 8.3: Two hands and the hand strength distribution for them. X-axis de-
notes the probability against random hands, Y-axis the corresponding number of
such random hands (normalized). Note that E[HS] is the mean of this distribu-
tion and is displayed for both hands (0.570 and 0.575). We see that these hands
have almost the same E[HS], but the distribution is quite different.

Grouping cards using only expected hands can group cards with different
strength distribution (see figure above). Professional players believe that such
cards should be played differently [37].

Note that this histogram shows only distribution over final hand strength, and
doesn’t take in account how the hand strength developed over time (intuitively,
we want to group cards that develop similarly over time). But this histogram
gives us still much more information than just an expected value.

Johanson et al. use different distances on this histogram to cluster similar
hands. In this paper, they describe abstraction used by Hyperborean, one

8.3.3 Potential-aware automated abstraction

E[HS] nor hand strength distribution don’t handle the development of the hand
over the streets. Gilpin et al. [17] describe a technique that, simply stated, creates
a histogram over future possible states (these states are actually discretized) and
cards with similar histogram are grouped using Euclidian distance metric.
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8.3.4 Accessing card bucketing

To translate from unabstracted game to abstracted one, agent needs to find ap-
propriate bucket. Unfortunately, bucketing could be time-consuming. If it takes
too much time to compute appropriate bucket, agent can’t play the game in real-
time. Straightforward workaround is to use some lookup table - bucket for any
hand.

Naive implementation needs approximately (%) (%) (%) () =~ 5.62 x 10%°.
Using two bytes for each hand, this table would require more than 100 gigabytes
to store. Of course, this is possible using current computers.

This table could be made much smaller - since some hands are equally strong,
it’s possible to exploit this symmetricity. Gilpin et al. [17] showed how this table

could be reduced by a factor of ~ 23, making the table much smaller.

8.4 Annual Computer Poker Competition 2012

8.4.1 Participants

Follows a list of participants of the no-limit tournament with brief descriptions.
Descriptions are given by the authors and I just copied them from the competition
website. As we see from these description, variety of approaches were used to
develop these agents.

Azure Sky

e Affiliation: Azure Sky Research, Inc
e Location: Berkeley CA US

e Technique: SARSA trained neural nets, k-armed bandits, secret sauce.

dcubot

e Affiliation: School of Computing, Dublin City University
e Location: Dublin 9, Ireland

e Technique: The bot uses a structure like a Neural Net to generate its own
actions. A hidden Markov model is used to interpret actions i.e. read an
opponent’s hand. The whole system is then trained by self-play. For any
decision, the range of betting between a min-bet and all-in is divided into
at most twelve sub-ranges. The structure then selects a fold,call, min-bet,
all-in or one of these sub-ranges. If a sub-range is selected, the actual raise
amount is drawn from a quadratic distribution between the end-points of
the sub-range. The end-points of the sub-ranges are learnt using the same
reinfrocement learning algorithm as the rest of the structure.
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hugh

e Affiliation: Independent

e Location: NY, US Toronto, Ont, CA

e Technique: Ben (poker player and son) attempts to teach Stan (program-
mer and father) to play poker. Stan attempts to realize Ben’s ideas in
code.
More specifically, pure strategies are utilized throughout. Play is based on
range vs range ev calculations. PreFlop ranges are deduced by opponent
modeling during play. Subsequent decisions are based a minmax search of
the remaining game tree, coupled with some tactical considerations.

Hyperborean2pNL

e Affiliation: University of Alberta

e Location: Edmonton, Alberta, Canada

e Technique: Our 2-player no limit bot was built using a variant of Counter-
factual Regret Minimization (CFR) ([3], [4]) applied to a specially designed
betting abstraction of the game. Using an algorithm similar to the CFR
algorithm, a different bet size is chosen for each betting sequence in the
game ([1], [2]). The card abstraction used buckets hands and public cards
together using imperfect recall, allowing for 18630 possible buckets on each
of the flop, turn and river.

LittleRock

e Affiliation: Independent

e Location: Lismore, Australia

e Technique: LittleRock uses an external sampling monte carlo CFR ap-

proach with imperfect recall. Additional RAM was available for training
the agent entered into this year’s competition, which allowed for a more fine
grained card abstraction, but the algorithm is otherwise largely unchanged.
One last-minute addition this year is a no-limit agent.

The no-limit agent has 4,491,849 information sets, the heads-up limit agent
has 11,349,052 information sets and the limit 3-player agent has 47,574,530
information sets. In addition to card abstractions, the 3-player and no-
limit agents also use a form of state abstraction to make the game size
manageable.
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Lucky7_12

e Affiliation: University of Maribor
e Location: Maribor, Slovenia

e Technique: We have developed a multi agent system that uses 8 strategies
during gameplay. By identifying the state of the game, our system chooses
a set of strategies that have proved most profitable against a set of training
agents. The final decision of the system is made by averaging the decisions
of the individual agents.

The 8 agents included in our system are most rule-based agent. The rules
for each individual agent were constructed using different knowledge bases
(various match logs, expert knowledge, human observed play...) and differ-
ent abstraction definitions for cards and actions. After a set of test matches
were each agent dueled against the other agents in system, we determined
that none of the included agents present an inferior or superior strategy
(meaning each agent lost at least against one of the other agents and won
at least one match).

Neo Poker Bot

e Affiliation: Independent
e Location: Spain

e Technique: Our range of computer players was developed to play against
humans. The Al was trained on top poker rooms real money hand histo-
ry logs. The Al logic employs different combinations of Neural networks,
Regret Minimization and Gradient Search Equilibrium Approximation, De-
cision Trees, Recursive Search methods as well as expert algorithms from
top players in different games of poker. Our computer players have been
tested against humans and demonstrated great results over 100 mln hands.
The AT was not optimized to play against computer players.

SartreNL

e Affiliation: University of Auckland
e Location: Auckland, New Zealand

e Technique: SartreNL uses a case-based approach to play No Limit Texas
Hold’em. Hand history data from the previous years top agents are encoded
into cases. When it is time for SartreNL to make a betting decision a case
with the current game state information is created. The case-base is then
searched for similar cases. The solution to past similar cases are then re-
used for the current situation.

48



Spewie Louie

e Affiliation: Georgetown University
e Location: Washington DC, USA

e Technique: The bot assumes bets can occur in: .25x, .4286x%, .6666x, 1x,
1.5x, 4x, and 9x pot increments. Nodes in the tree contain: A hand range
for each player, an "effectiveMatrix” that summarizes the tree below that
point in the tree, and a ”strategyMatrix” which is used by the "hero” of
that node. Prior to the competition a collection of 24 Million matrices (1/2
strategy and 1/2 effective) were refined while simulating roughly 12.5 Mil-
lion paths through the tree. This set of 24 Million matrices is then trimmed
down to 770k (strategy only) matrices for the competition. Any decision
not supported by this set of matrices is handled by an ”on line” tree learned.
During the learning process the set of effectiveMatrices and strategy ma-
trices are stored in a ConcurrentHashMap. This gives the learning process
good multi-thread behavior. Preflop hands are bucketed into 22 groups.
Flop and Turn hands are bucketed into 8 groups. River hands are bucketed
into 7 groups.

Tartanianb

e Affiliation: Carnegie Mellon University
e Location: Pittsburgh, PA, 15217, United States

e Technique: Tartanianb plays a game-theoretic approximate Nash equilib-
rium strategy. First, it applies a potential-aware, perfect-recall, automated
abstraction algorithm to group similar game states together and construct
a smaller game that is strategically similar to the full game. In order to
maintain a tractable number of possible betting sequences, it employs a dis-
cretized betting model, where only a small number of bet sizes are allowed
at each game state. Approximate equilibrium strategies for both players
are then computed using an improved version of Nesterov’s excessive gap
technique specialized for poker. To obtain the final strategies, we apply a
purification procedure which rounds action probabilities to 0 or 1.
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8.4.2 Results

Round 0 | Round 1 | Round 2 [ Round 3 Round 4| TRound5] Round 6] Round7 | Round 8 [ TRound 9
hyperborean 586 = 30 527 + 28 530 £ 31 273 + 23 223 + 25 167 + 27 167 + 31 181 £ 37 1744+ 24 161 £ 36
| tartanianb 597 + 27 536 £+ 27 509 £ 30 159 £ 30 97 + 27 -7 x26 17+29 4+34
I neo.poker.lab 534 +23 456 + 23 424 + 935 108 +£23 86 + 26 16 £ 28
little.rock 1116 =27 920 + 28 907 + 30 208 + 26 128 £ 25 3T+ 27

112 £ 25 19 £ 25 —21+29 56 = 22
71+18

sartre
hugh 483 £ 18 459 +19 422 + 22
spewy.louie 355 4+ 28 257 +29 204 + 33
Tucky7.12
azure.sky

uni.mb.poker

Figure 8.4: Results - won/lost chips (+ variance)

We see that the winning agent uses techniques already described in this thesis -
counterfactual regret minimization, regret matching, imperfect recall abstraction.
The results presented in the table are ”player vs player” - we can’t see how good
the agents are absolutely. In other words, we don’t know the exploitability of
these agents (best response).

8.5 Computing best response

To compute a best response, we need to traverse the game tree only once. As
already stated, Texas hold’em poker has 10'® states, which makes this tasks
intractable.

Exploitability is typically measured in milli-big-blinds per game (mbb/g),
where a milli-big-blind is one one-thousandth of a big blind.

[22] show how to accelerate the computation and consequently computed best
response for the limit version of Texas hold’em poker. There are actually three
orthogonal ways they use to accelerate the computation, which I will very briefly
describe

1. traversing a different type of tree
2. efficiently computing utilities in terminal nodes
3. game-specific isomorphisms to reduce the size of the tree

4. solving the task in parallel
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Traversing a different type of tree Informally, Public State Tree is a
game tree that an observer sees. Because he can’t see any private cards, all states
with the same betting history and public cards are indistinguishable. Traversing
this type of tree allows to reuse the queries to the opponent’s strategy. We will
see this tree once more in the chapter 9.

Efficiently computing utilities in terminal nodes Given a terminal node
in the public state tree, we need to compute utilities for each of our informa-
tion sets grouped in this node (for example, the information set in which we
hold Q#,Q&). This terminal node contains opponent’s information sets with
corresponding reach probabilities (for example 50% K&K, 50% JdhJ ).

Given our information set, we can compute the value against the opponents
distribution Doing this for each our information sets gives O(n?) operations.
Leveraging the fact that poker hands form an ordering, we can first sort the
hands by strength and than compute the values for all our information sets lin-
eary. This gives us O(nlog(n)).

Solving the task in parallel Raching a public tree node with corresponding
reach probabilities, the computation for all of its children can be done in parallel.
For example, we can do this splits on flop - we compute the reach probabilities
for the flop and then compute all non-isomorphic flops in parallel.

8.5.1 Results

Combining all these enhancements, [22] were able to compute the best response
in the limit Hold’em poker in a day.
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8.6 Performing well in the unabstracted game

One way to overcome both, overfitting and abstraction pathologies is to create an
abstraction only for one of the players. [42] show that if only one of the players
is abstracted, the refined abstraction indeed guarantees at least the same game
value in the original game. This is not surprising, since the unabstracted player
"punishes” the abstracted one in the original game.

But the very reason for creating the abstraction is that the original game is
too large. Fortunately, we can use the best-response as the opponent.

8.6.1 CFR-BR

Stands for Counter Factual Regret - Best Response. In CFR minimization, both
players were using some regret minimizing algorithm (such as regret matching)
to minimize their overall regret, consequently finding an e-equilibrium.

In CFR-BR, one player uses CFR minimization, while the opponent always
play the best response to his current strategy. First, notice that to compute the
best response, we need to know the current strategy (in contract to CFR, where
both players could compute their strategies simultaneously). This means that
one cannot use best response strategy for both players.

The convergence follows from the fact that one player is regret minimizing
and the second player has no positive regret on every iteration [21].

8.6.2 Hybrid agent

While using CFR-BR is possible, computing best response on each iteration is
still nontrivial.. [21] use a variant of Monte Carlo sampling and sample a public
chance event in the beginning of the game.

This way, the divide the game tree to the trunk (part of the tree prior to the
sampled action) and subgames. The trick is to compute the best response on
each iteration only in the currently sampled subgame, and use Counter Factual
regret minimization in the trunk. This hybrid agent minimizes overall regret
[21]. Public chance event dividing the trunk and subgames can be arbitrary, it’s
a matter of balancing time and memory requirements. [21]. achieved the best
results by using 2-round trunk - flop and turn cards are sampled on each iteration.

8.6.3 Best known strategy

The exploitability of Hyperborean2011.IRO (participant of the ACPC 2011), com-
puted using the best response computation described above, was 104.410mbb/g.
The abstraction had 5.8 billion information sets, and the total size was about
20GB. Using the Hybrid CFR-BR algorithm on the same abstraction, [21] com-
puted a strategy that is exploitable only by 41.199mbb/g - this is the least ex-
ploitable strategy known for heads-up limit Texas Hold’em Poker.
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8.7 Annual Computer Poker Competition 2013

The results of ACPC 2013 were announced only few days before the deadline for
this thesis. I'm happy to announce that our team finished on the 4th place out

of 13 competitors.
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9. No-limit betting

In this chapter, I show an interesting result regarding no-limit betting.

9.1 Actions count

In contract to limit betting, player is allowed to bet any amount up to the player’s
stack. This makes the game tree much larger. In limit version, the number of
actions (outcoming edges) is low - check/call, fold and bet.

On the other hand, if player’s stack is 10000$, the big blind is 1$ and he
can bet any integer amount, the number of actions can be 10000 (of course, this
depends and the particular node, if the node corresponds to the situation where
both players already made some bets, there will be fewer actions).

Fore example in the no-limit poker played in the Annual Computer Poker
Competition 2013, there were up to 20 000 bet sizes available in every information
set, and the game consequently contains 6.3 x 10'%* game states [20].

9.2 Mixing actions

In games with no hidden information, players don’t need to mix their strategies
to play optimally - in every game node, they just select the one, best action (best
response). This is not the case in games with imperfect information, where player
may need to mix his actions. But how many actions does he need to mix?

Imagine a game where player receives always one (the same) card (for example
always ace). Opponent knows which card he was dealt. This makes it a game
with perfect information and player can select just one action in any information
set. What if we add another card?

Does the player now need to mix all his actions? If there’s only one card,
player can use only one action - having two cards, can he use only two actions?
Or are there situations where he needs to mix all available actions?

o4



9.3 Public State Tree

Informally, public state tree is how the game looks like to an observer. Observer
sees the actions player make as well as all public cards, but he can’t see private
cards of any player. Based on the strategies, we can compute distribution over
grouped nodes in the public state tree using Bayes’ rule.

We call a partition of the histories, P, a public partition and P € P a
public state if [22]

e No two histories in the same information set are in different public states

o Two histories in different public states have no descendants in the same
public state

e No public state contains both terminal and non-terminal histories
For this public state tree, we also define [33]:

o A set of actions available in every P € P

A(P) = UjepA(I)

e Acting player in P

p(P) :=p(I) foranyl € P

e \(P) - information sets of player p(P) grouped in this public node

e v(P,I) - Probability of being in information set I € P, conditional on P € P
being reached (consistent with o)

e Probability measure over A(PI)

Y(P,a)=> v(P.1)B(I,a)

IeP
e P, € P, public state that follows P € P if action a € A(P) is taken.
(h,a)e P,eP < (h)e PeP
e Counterfactual information set CI* corresponding to I € A\(P). We

refer to these information sets as counterfactual, because they would be in-
formation sets if the player p(P) was to play again (and not an opponent).

(h) €I < (h,a) € CI

For counterfactual information sets, we also analogically define \.(F,),
Ve(Py, CI%), and pi..
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Figure 9.1: Public tree with displayed ranges.

Public State Tree and Poker

Follows a small portion of public state tree of no-limit Hold’em Poker. Note that
Poker community usually refers to v(P,I) as a range. In other words, range is
distribution over player’s cards given the public tree node.

9.4 Changing the strategies

Given a public game tree of a Nash equilibrium If we use just a subset of bets
without changing any range, opponent’s best response remains the same This
also means that the subgame values don’t change If we don’t change the overall
game value we gain, our strategy remains best response as well Both players are
playing best response, so the strategy pair forms a new Nash equilibrium How to
find some small subset?

9.5 Outline of approach

Let’s suppose there’s an sequential equilibrium (o, ) using more than |A(P)]
actions in any I € P (if there’s no such equilibrium, we are done). We create
new assessment (o’, ) that differs only in information sets in P, so that this
assessment satisfies:

1. sequential rationality
2. consistency

3. |actions used by new strategy in P| < |\(P)|

So we get a new sequential equilibrium, using no more than |A(P)| actions
in every I € P. Iteratively, we take this new equilibrium and if there’s another
I € P that uses too many actions, we just repeat steps above. Finally, since
the game is finite, we get Nash equilibrium using no more than |[A\(P)| actions in
every information set in P.
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9.6 Proof

We denote 3, u, v, m, 7 of the new strategy o’ as ', p/, v/, @', ~'.

Given an assessment (o, i), we find P that violates action bound. Now we
want to compute new strategy profile ¢’, but since we don’t change beliefs, (o', )
must be consistent. First step is to show that.

Lemma 3. If for all P,, for all CI® € \.(P,):

ve = V., then (o', ) is consistent [33]:

With this result in mind, we write down some simple equations, where each

variable x; correspond to v/(P, a;) so that v, = V..

S VP, CLF € A(Py,)) v(P, 1)

> ve(Po,, CI3 € A(Py) i v(P, L)

7 =

Z ve( Py, O[f)f(p” € Ae(Pa,))
; v(P, Ijnpy)

z; > 0Vi (9.-1)

See that for any solution, Z x; = 1. [33]:

)

9.6.1 New strategy

Because z; correspond to new 7/ (PI,a;), we set 5'(1,a) to:

(Pai, Cjai)l’i
v(P,I)

B(1,a;) =% (9.-1)
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9.6.2 Strategy properties
1. /' is valid distribution: *)
Z ﬁ/(lv ai) =1
a;€A(I)

2. Beliefs remain consistent: *)

Va € A(P),VI € \(P) : V/(Py, CI%) = v (P,, CI%)

So any solution to (9.6) gives us new strategy o', so that assessment ((o},0_;), i)
remains consistent. Since beliefs remain unchanged, we know that all players ex-
cept of ¢ are sequentially rational.

9.6.3 Sequential rationality

To satisfy sequential rationality for player p(P), we simply maximize his expected
value:

f@) =3 2aOpp (o' n|(Fa)) (9--1)

a; €A(P)

9.6.4 Action elimination

Maximizing function (9.6.3) over conditions (9.6) gives us new sequential equi-
librium. But both, the conditions and function are linear! Thus there must be
some optimal basic solution, using no more than rank(A) non-zero variables [7].
Finally, because there are only |[A(P)| rows in (9.6), this concludes our proof.
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10. Conclusion

This thesis described the state of the art algorithms and techniques used to solve
large extensive form games, namely Poker. I also presented an interesting result
regarding no-limit betting (which is not limited to Poker).

10.1 Future work

Looking at the Annual Computer Poker Competition, we see more and more
sophisticated participants every year. But poker strategies have still long way to
go, particularly in the no-limit version.

We hope to continue our work on game theory, imperfect information games
etc. We already have some new ideas and approaches in our minds. Finally,
this was the first time we participated in the ACPC, and we definitely plan to
compete next year with much better agent. Our goal is to beat all ACPC 2013
agents using our new program and use that program in ACPC 2014.
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