
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Nikolay Stoyanov Kaleyski

Eigenvalues of symmetric interval
matrices

Department of Applied Mathematics

Supervisor of the bachelor thesis: Milan Hlad́ık

Study programme: Computer Science

Specialization: General Computer Science

Prague 2014

I would like to thank, first and foremost, my supervisor, Milan Hlad́ık, for his
constant support and impeccable professionalism, as well as for introducing me
to a very interesting topic that I would most probably not have discovered on my
own.

I would also like to thank all the excellent teachers and lecturers from the
Faculty of Mathematics and Physics who have taught me during the past three
years. As much as I would like to, I am afraid that it would be unreasonable to
present a complete list of their names here; suffice it to say that there hasn’t been
a single lecture or seminar that I haven’t, to a lesser or greater degree, enjoyed.

Last but not least, I would like to thank all my family and friends for their
encouragement and support during my studies. Mathematics, and computer sci-
ence in general, is not an easy field of study, and sometimes even such a simple
thing as a letter or a birthday greeting can be incredibly invigorating.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Vlastńı č́ısla symetrických intervalových matic

Autor: Nikolay Stoyanov Kaleyski

Katedra: Katedra aplikované matematiky

Vedoućı bakalářské práce: Mgr. Milan Hlad́ık, Ph.D.

Abstrakt: Ćılem práce je popsat a př́ıpadně vylepšit některé algoritmy pro hledáńı
vnitřńıch a vněǰśıch odhad̊u hranic interval̊u vlastńıch č́ısel reálných symetrických
intervalových matic, převést je do verifikovaného tvaru a implementovat je v
programovaćım jazyce Matlab. Popsány jsou základńı principy verifikace a in-
tervalové aritmetiky, použité teoretické základy a problémy, které nastávaj́ı při
verifikaci jednotlivých algoritmů, včetně možnost́ı jejich řešeńı. Popsány jsou ex-
perimenty ukazuj́ıćı některé empirické vlastnosti zkoumaných algoritmů. Prak-
tický výsledek práce je softwarový baĺık funkćı pro verifikovaný výpočet odhad̊u
množin vlastńıch č́ısel symetrických intervalových matic.

Kĺıčová slova: vlastńı č́ısla intervalové matice, symetrická matice, intervalová
matice, verifikace

Title: Eigenvalues of symmetric interval matrices

Author: Nikolay Stoyanov Kaleyski

Department: Department of Applied Mathematics

Supervisor: Mgr. Milan Hlad́ık, Ph.D.

Abstract: The goal of the thesis is to describe and possibly improve some algo-
rithms for finding inner and outer approximations of the borders of eigenvalue
intervals of real symmetric interval matrices, to modify them so that they perform
verified computations and to implement them in the Matlab programming lan-
guage. The main principles of verification and interval arithmetic are described,
as well as the used theoretical foundations and the problems which occur when at-
tempting to verify the individual algorithms, including possibilities of overcoming
them. Experiments illustrating some empirical properties of the algorithms are
described. The practical result of the thesis is a software package for computing
approximations of the sets of eigenvalues of symmetric interval matrices.

Keywords: eigenvalues of an interval matrix, symmetric matrix, interval matrix,
verification

Contents

Introduction 3

1 Interval arithmetic 6
1.1 Real intervals . 6
1.2 Interval matrices . 7
1.3 Eigenvalues of interval matrices 8
1.4 Outer and inner approximations 10
1.5 Further reading . 10

2 Theoretical foundations 11
2.1 Outer approximations . 11
2.2 Inner approximations . 13

3 Algorithms 16
3.1 Simple bounds . 17
3.2 Direct interlacing algorithm . 18
3.3 Indirect interlacing algorithm . 20
3.4 Improving outer approximations by filtering 21

3.4.1 Speeding up the filtering algorithm 22
3.5 Local improvement algorithm . 23
3.6 Vertex enumeration algorithm . 25
3.7 Submatrix vertex enumeration . 26

4 Implementation details 33
4.1 Outer bounds . 35

4.1.1 Simple methods . 35
4.1.2 Methods applying the direct interlacing procedure 35
4.1.3 Methods applying the indirect interlacing procedure 36
4.1.4 Choosing between the direct and indirect method 36
4.1.5 Filtering methods . 38

4.2 Inner bounds . 38
4.2.1 Methods applying the local improvement method 38
4.2.2 Methods applying the vertex enumeration method 39
4.2.3 Methods applying the direct submatrix vertex enumeration

method . 39
4.3 Interface functions . 40

5 User guide 44
5.1 Prerequisites . 44
5.2 Working with input data . 45
5.3 Computing inner and outer approximations 46
5.4 User-defined computation modes 48

1

6 Numerical experiments 50
6.1 Direct and indirect interlacing methods 50

6.1.1 First experiment . 50
6.1.2 Second experiment . 55

6.2 Faster filtering methods . 60
6.3 Sample results . 63

Conclusion 66

2

Introduction

As is evident by the title of the bachelor thesis itself, ”Eigenvalues of symmetric
interval matrices”, the following text concerns two main areas, namely interval
arithmetic and eigenvalues of matrices. Although the first chapter contains all the
information that the reader might need on these two topics in order to understand
the rest of text, we would still like to take a few paragraphs to describe the goals
and principles of the work in a freer and more general way and to familiarise the
reader with the problem at hand before we proceed with the actual theory.

Possibly the most important concept to introduce is interval arithmetic; as
the name implies, this is basically the application of the ordinary arithmetic
operations, such as addition, multiplication and so forth, to intervals (instead of
numbers). The rules for performing such operations are quite intuitive, and are
laid out in detail in Chapter 1; furthermore, the concept of working with intervals
can be naturally extended to mostly any operator or function applicable to real
numbers in some way, including, as we shall see, the calculation of eigenvalues
and eigenvectors of matrices. Nonetheless, the easiest way to grasp the reasoning
behind interval arithmetic is to understand its motivation and the reasons it is
used.

In a word, intervals are used to express uncertainty. Mathematics itself is,
of course, perfectly accurate and exact, and mathematical computations by their
very nature cannot lead to uncertain or approximate values; the result of a certain
operation does not necessarily have to always be defined, and there can be multi-
ple solutions to a certain problem, but there can be no doubt as to the correctness
of the final answer, provided that all calculations are performed correctly.

Applying mathematics to practical problems from the real world, however,
introduces an element of uncertainty, as we can never say for sure what the
values of our parameters and input data are. Suppose, for example, that we want
to measure the length of a table, a wooden plank, or some other common object.
We utilise some sort of measuring device, such as a simple ruler, and conclude
that the length of the object is about 34.5 metres. The keyword here is ”about”,
as the length will never be precisely 34.5 metres: if we were to take a ruler with a
finer scale and, possibly, a magnifying glass to assist us in our measurement, we
would come to the conclusion that the number in question is closer to, e.g., 34.87
metres. We can continue this process by using better and better measurement
devices, and making more and more accurate estimates about the length of the
table, but still, we would never be able to say precisely how long the table is; the
best that we can do is state that its length is somewhere between 34.85 and 34.89
metres, for example. For most practical applications this should be good enough,
yet any calculations that we might want to perform involving the table’s length
as a parameter will necessarily be uncertain as well.

As a simple example, suppose that we now want to find out how many such
tables we would be able to place in a row inside a room of a given size. The
obvious solution is to divide the length of the room by the length of a single table
and round down, which will give us the maximal number of tables that the room
can hold. Nonetheless, the length of our table is not a number, but an interval;
and, therefore, our answer will be an interval as well: a room of length 314, for

3

example, can hold 9 tables of length 34.85, but only 8 tables of length 34.89.
Now, although we don’t know the ”real” answer, we do know that we will be able
to fit no more than 9, and no less than 8 tables inside the room in question.

Intervals are not limited to the handling of inexact measurements and can be
used to express other kinds of uncertainty as well: we might have several different
tables with different lengths (for example, 10, 20 and 30 metres), and might want
to find out how many of them are always guaranteed to fit into the room without
knowing how many of each type we have beforehand. In this case, we can express
all possible lengths of any single table with the interval [10, 30].

Another common use of intervals, which is somewhat similar to the first ex-
ample presented (the one about inexact measurements), is providing verification
for computer algorithms. The problem in this case is that, even if we know the
exact values of the input parameters for a given program, in the general case we
will still not be getting the exact, mathematically precise answer to our query
in practice due to the rounding up and down of floating point numbers inside
the computer’s memory. The reason for this is that every number is represented
using a finite quantity of bits, which obviously makes it impossible to represent
all possible real values; essentially, numbers are rounded up or down to ”fit” into
the limited representation available. The same principle applies to, and can be
easily illustrated using ordinary pocket calculators, where adding a very large
number to a very small number will leave the large number unchanged; one can
also try dividing one by a number which produces a repeating decimal (for exam-
ple, three) and then multiply the result by the number again (possibly performing
some meaningless operations in between, such as adding and subtracting zero);
on most calculators, the result is not going to be one.

Although such small lapses in precision can seem harmless, they can quickly
accumulate, e.g. during the course of more complicated arithmetic operations
(multiplying such an imprecise result by a large number, for example, will increase
the difference between the computed and the actual value times the number).
Furthermore, for certain applications even a very small error might prove to be
critical. In such cases, verification can be used, the basic principle of which is,
instead of returning a single real number as a result of each computation to return
an interval that is guaranteed to contain the actual result. Interval arithmetic
obviously needs to be used in such verified algorithms.

The eigenvalues and eigenvectors of a square matrix should be familiar no-
tions to anyone who has studied linear algebra, and are known to be one of the
important and quite frequently used in practice characteristics of a matrix. We
will remind the reader that λ is an eigenvalue of some square real matrix A if
there exists a non-zero vector x such that Ax = λx; the vector x itself is called an
eigenvector of A. Furthermore, simple and well-known methods for calculating
the eigenvalues of a given square matrix exist, such as finding the roots of the
matrix’s characteristic polynomial.

If we apply the principle of using intervals to represent uncertainty described
above to matrices, we will get so called ”interval matrices”; informally, one can
imagine them as ordinary, real matrices in which the individual numbers (or
elements) of the matrix have been replaced by intervals. It is easy to determine
the result of simple operations, such as addition, multiplication with a number
and multiplication with a matrix, applied to such interval matrices. Perhaps

4

surprisingly, however, there is no known method for finding the exact eigenvalue
intervals (the eigenvalues, from single numbers, become intervals as well) of an
interval matrix.

Nonetheless, certain approaches can be used to obtain some sort of estimates,
or approximations, of the eigenvalue intervals of a given matrix. We can look for
an outer approximation of an eigenvalue interval (which is essentially an ”outer
boundary”, which is generally larger than the actual interval, but is guaranteed
to contain it) or for an inner one (which is some interval that is generally smaller
than the one being approximated; the latter is guaranteed to contain ”at least”
the inner approximation). Ideally, we would want to find a narrow enough outer
approximation, as well as a wide enough inner approximation; while certainly
not an exact solution, it can still give us a good idea of what that exact solution
might possibly be.

The only question left to answer is, how could one go about computing in-
ner and outer approximations for the eigenvalues of a given matrix; and this is
precisely the subject of this bachelor thesis, which examines several methods for
finding and improving such approximations. As a general rule, we must look for
some number which will always be greater than the eigenvalue of any real matrix
with elements inside the corresponding intervals of the interval matrix in order to
establish an upper outer bound, and, in the same way, we should look for values
which are always smaller to get a lower outer bound. Finding inner approxi-
mations is somewhat easier, as the eigenvalues of any matrix with its elements
inside the corresponding intervals can be used for that purpose, so basically all
we have to do is select one or several such matrices and examine their eigenvalues.
Still, we should attempt to find some better strategy than just picking random
matrices.

Once again, we remind the reader that the above paragraphs describe the
principles presented in a very informal and, hopefully, intuitive way. The follow-
ing text contains the precise mathematical definitions of the notions described
here, such as inner and outer approximations, intervals and interval matrices,
etc., as well as specific theorems and algorithms that can be used to look for
approximations for the eigenvalue intervals of symmetric interval matrices and a
discussion of some of the problems that arise when attempting to add verification
to them.

5

1. Interval arithmetic

1.1 Real intervals

Definition. Let x and x be real numbers fulfilling x ≤ x. Then the set x =
[x, x] = {y ∈ R :: x ≤ y ≤ x} is called a real interval. The set of all real
intervals is denoted as IR. The real number x, resp. x is called the lower, resp.
upper bound of the interval [x, x].

Naturally, this definition can be adapted to any partially ordered set, specif-
ically the set of complex numbers C. However, since we will mostly work only
with real matrices and intervals, we do not need to examine such cases in detail.

The basic arithmetic operations can be naturally extended to real intervals.
Intuitively, the result of an interval operation on a pair of real intervals should
encompass all possible values that can be obtained by applying the corresponding
real operation to any two real numbers from the first and second interval; in other
words, for an arbitrary binary operation ◦ on R and intervals x,y ∈ IR we can
define ◦ on IR as x ◦ y = {x ◦ y : x ∈ x, y ∈ y}. Specific definitions for the
individual arithmetic operations are provided in the following definition.

Definition. Let x = [x, x] and y = [y, y] be real intervals. Then the binary oper-
ations addition(+), subtraction(−), multiplication(·) and division(/) are defined
on IR as follows:

• x+ y = [x+ y, x+ y]

• x− y = [x− y, x− y]

• x · y = [min{x · y, x · y, x · y, x · y},max{x · y, x · y, x · y, x · y}]

• x/y = x · y′, where y′ = [1
y
, 1
y
] and 0 /∈ y.

Definition. Let x = [x, x] be a real interval. Then:

• The width of x is defined as widthx = x− x;

• The radius of x is defined as radx = 1
2
· widthx;

• The centre or midpoint of x is defined as midx = 1
2
· (x+ x)

• The absolute value of x, also referred to as the magnitude of x, is
defined as |x| = max{−x, x}

Note that the upper and lower bounds of an interval can be unambiguously in-
ferred from its midpoint and radius, and vice versa. This allows for an equivalent
representation of the interval x = [x, x] as x = [midx− radx,midx+ radx].

Since intervals are essentially sets, set operations can be naturally applied
to them, e.g. x ∩ y = {z ∈ R : z ∈ x & z ∈ y} = {z ∈ R : x ≤ z ≤
x & y ≤ z ≤ y} = [max{x, y},min{x, y}] (the last equality holds as long as the
intersection is non-empty). Caution needs to be taken when computing the union

6

of two intervals, however, as IR is obviously not closed with respect to the union
operation; for example, the union [1, 2] ∪ [3, 4] is evidently a set of real numbers,
but not a single interval. Should we need to combine two intervals in such a
way, we can define an enclosure operation x ∪̇ y = [min{x, y},max{x, y}] which
defines an interval containing both operands as subsets. Interval variants of more
complex set operations, such as symmetric difference, can now be defined using
intersection and enclosure.

Another import aspect of working with intervals is specifying an ordering rela-
tion. Such a relation is used, albeit implicitly, in practically all of the algorithms
that we’ve implemented, since the results that they produce (which are a set of
intervals) are sorted in ascending order. Naturally, there is more than one sensi-
ble definition which can be used for this purpose, but we will generally use the
following one:

Definition. The relation ≤̃ on IR is defined as follows:

(∀x,y ∈ IR)(x ≤̃ y ↔ midx ≤ mid y)

Note that this relation is not an order in the general case, as it is not anti-
symmetric: for example, according to the definition, [1, 2] ≤̃ [0, 3], [0, 3] ≤̃ [1, 2],
but [0, 3] 6= [1, 2]. However, suppose that we are working with a set of interval
S ⊂ IR for which the following holds:

(∀x,y ∈ S)(midx = midy → x = y)

Then ≤̃ is a correctly defined total order on S.
We will usually write only ≤ instead of ≤̃, as this is the only interval ordering

that we use in the following text, and it should always be possible to determine
from context whether the symbol is used for comparing numbers or intervals.
Furthermore, if we state that a certain interval is smaller or larger than another,
we are referring precisely to this ordering.

1.2 Interval matrices

As we mentioned in the previous section, the notion of an interval can easily be
extended to any partially ordered set, including the set of real matrices Rm×n for
given dimensions m,n ∈ N.

We remind the reader that an m-by-n matrix over the field of real numbers is,
informally, a rectangular ”table” of real numbers with m rows and n columns.
The notation A ∈ Rm×n means that A is a real, m-by-n matrix. If this is the case,
we will use Aij to denote the element of the matrix located at row i and column
j, for some i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}. Of course, matrices can be defined
over other sets than just the real numbers as well. In any case, since these are
very basic notions, we will not go into too much detail.

Considering the natural element-wise order relation on matrices, A ≤ B ⇐⇒
(∀i ∈ {1, 2, ...,m})(∀j ∈ {1, 2, ..., n})(Aij ≤ Bij), for A,B ∈ Rm×n, we can define
an interval matrix as follows:

7

Definition. Let A,A ∈ Rm×n be two real matrices of dimension m × n, where
m,n ∈ N. We define the interval matrix A as the set A = {M ∈ Rm×n : A ≤
M ≤ A}. The matrix A, resp. A is called the lower, resp. upper bound of A.
The set of all interval matrices over Rm×n is denoted as IRm×n.

An alternative way of looking at an interval matrix is to imagine it as an actual
matrix with intervals (instead of real numbers) as elements. A given real matrix
will then be a member of the interval matrix if and only if each of it’s elements
lies within the range defined by the interval at the corresponding position. For
example, suppose that we have

A = [A,A],

where

A =

(
a11 a12
a21 a22

)
∈ R2×2,

A =

(
b11 b12
b21 b22

)
∈ R2×2,

and it holds that

(∀i, j ∈ {1, 2})(aij ∈ R, bij ∈ R, aij ≤ bij)

Then the interval matrix A could also be represented as

A =

(
[a11, b11] [a12, b12]
[a21, b21] [a22, b22]

)
,

where for a given real matrix A ∈ R2×2,

A ∈ A ⇐⇒ A ≤ A ≤ A ⇐⇒ (∀i, j ∈ {1, 2})(aij ≤ (Aij) ≤ bij)

Yet another different representation of an interval matrix which is used through-
out the text is based on the central and radial matrices of an interval matrix,
which correspond to the midpoint and radius of a general interval.

Definition. Let A = [A,A] ∈ IRm×n,m, n ∈ N be an interval matrix. We define
the central matrix of A as Ac = 1

2
·(A+A) and the radial matrix of A as Aδ =

1
2
(A−A). The interval matrix A can then be written as A = [Ac−Aδ, Ac +Aδ].

1.3 Eigenvalues of interval matrices

As we know from linear algebra, a number λ ∈ C is called an eigenvalue of a matrix
A ∈ Rn×n, n ∈ N if there exists a non-zero vector v ∈ Rn such that A ·v = λ ·v. A
square matrix of dimension n has n (not always different) eigenvalues. Although
this does not necessarily hold in the general case, for symmetric matrices the
eigenvalues are real numbers. This implies that they can be naturally ordered,
for example in a non-descending order, such that λ1 ≤ λ2 ≤ ... ≤ λn are all
eigenvalues of the matrix. These two notions can be naturally adapted to interval
matrices, as is shown in the following definition. We assume that the interval
matrix is symmetric, since in that case all of its eigenvalues form continuous real
intervals; this is the case that we are working with in our project. Naturally, we
first have to clarify what a symmetric interval matrix is:

8

Definition. Let A ∈ IRn×n be a real interval matrix. We define a symmetric
interval matrix as the set AS = {A ∈ A : A = AT} ⊆ A.

For convenience, we may sometimes write AS ∈ IRn×n instead of the full
AS ⊆ A ∈ IRn×n, indicating thatAS is a symmetric interval matrix. This should
not lead to confusion, as the notation AS indicates that the interval matrix in
question is a symmetric interval matrix.

Note: From this point on, we assume that if we’re talking about some symmet-
ric interval matrix AS, then it is non-empty.

Let us take a minute to clarify the above definition, as it can be slightly counter-
intuitive. A symmetric interval matrix is actually a subset of an interval matrix
which only contains symmetric real matrices. As was already mentioned above,
one way of looking at an interval matrix is to imagine it as an ”ordinary” matrix
which contains intervals instead of numbers; from this viewpoint, it might be
natural to think that the symmetric interval matrix is such a matrix of intervals
fulfilling the additional condition that its elements are symmetric, i.e. the interval
at position (i, j) is the same as the interval at position (j, i). Formally, this means
that the matrices A and A defining A = [A,A] are symmetric, i.e. AT = A,

A
T

= A. However, such a definition is not equivalent to the one presented above!
For example, consider the following matrix with interval elements:

A =

(
[0, 5] [1, 2]
[1, 2] [4, 6]

)
It is obvious (actually, it follows immediately from the definition) that AS ⊆

A, where AS = {A ∈ A : AT = A}. In fact, it holds that AS (A: for

example, A =

(
0 1
2 5

)
is an element of A, since all its elements lie within the

corresponding intervals, but A /∈ AS, since A is not symmetric.
On the other hand, sometimes it is useful to assume that the lower and upper

bounds of an interval matrix A = [A,A] defining a symmetric interval matrix AS

are symmetric matrices, which we can do without loss of generality by defining
a new, ”symmetrized” interval matrix A′ = [A′, A

′
], where (A′)ij = (A′)ji =

(A)ij∩ (A
′
)ji and (A

′
)ij = (A

′
)ji = (A)ij∩ (A)ji, in other words, by replacing each

pair of intervals at symmetric positions in the matrix with their intersections.
Since we’re dealing with a symmetric interval matrix, all such intersections must
be non-empty (otherwise AS = ∅).

From the above definitions it is now obvious that the eigenvalues of all matrices
contained within a symmetric interval matrix are real numbers; furthermore, it
is known that the i-th eigenvalues of all of these real matrices form a continuous
interval, which ultimately makes the next definition possible.

Definition. Let AS ⊆ A ∈ IRn×n be a symmetric interval matrix, where n ∈ N.
We denote as Λ(AS) = {λ ∈ R : (∃A ∈ AS)(∃x)(x 6= 0 & Ax = λx)} the set
of all (real) eigenvalues of the matrices from AS; similarly, for i = 1, 2, ..., n, we
denote Λi(A

S) = {λi ∈ R : (∃A ∈ AS)(”λi is the i-th eigenvalue of A”)} the set
containing the i-th eigenvalue of every matrix in AS.

9

Note that the definition for the eigenvalue sets of (non-symmetric) interval
matrices (which we do not need) are defined in almost exactly the same way, but
they can contain complex numbers and do not form intervals. We cannot define
individual sets Λi(A) for some interval A either, since we cannot order complex
eigenvalues.

1.4 Outer and inner approximations

As Proposition 2.1. of [3] shows, the set of real eigenvalues of an interval matrix is
a finite union of compact real intervals. However, in the general case (at least with
our current knowledge) we cannot compute the exact bounds of these intervals;
this is in contrast to the computation of eigenvalues of individual real matrices,
for which simple and exact formulas exist (for example, finding the roots of the
matrix’s characteristic polynomial). Instead, we concentrate on finding inner and
outer approximations of these bounds.

Definition. Let a be a set. We say that the set i is an inner approximation
of a if i is a subset of a. We say that the set o is an outer approximation of a
if a is a subset of o. If a and a are respectively the smallest and largest elements
of a (specifically, if a = [a, a] is a real interval), we say that the number r ∈ R is
a lower outer approximation, resp. a lower inner approximation, resp.
an upper outer approximation, resp. an upper inner approximation of
a, if it holds that r ≤ a, resp. a ≤ r, resp. a ≤ r, resp. r ≤ a.

1.5 Further reading

We have presented only the necessary minimum of theory related to interval
computations for the purposes of the thesis. Should the reader desire to get
acquainted with the topic in more detail, we suggest referring to a specialised
text on this subject, such as [1] or [6].

10

2. Theoretical foundations

As was mentioned in the previous section, no formulae are known for computing
the exact bounds of Λ(A) (or Λ(AS), for that matter) in the general case, and
therefore we have to content ourselves with finding inner and outer approxima-
tions for these values. The current section describes the main theorems used to
compute such approximations and the way they are applied in the implementa-
tion. We mainly use the theoretical results of Hlad́ık and his colleagues described
in [3], [4] and [5].

2.1 Outer approximations

A simple, but quite useful theorem proven by Rohn and originally appearing as
Theorem 2 in [8] allows us to establish an outer bound on Λ(A) by performing a
relatively very small amount of computations.

Theorem 1. Let A = [Ac − Aδ, Ac + Aδ] ∈ IRn×n, n ∈ N be a square interval
matrix (not necessarily symmetric). Then for each eigenvalue λ of each matrix
A ∈ A the following inequalities hold:

λmin(Mr)− ρ(∆r) ≤ Re(λ) ≤ λmax(Mr) + ρ(∆r)

λmin(Mi)− ρ(∆i) ≤ Im(λ) ≤ λmax(Mi) + ρ(∆i)

where

Mr = 1
2
(Ac + Ac

T)

∆r = 1
2
(Aδ + Aδ

T)

Mi =

(
0 1

2
(Ac − AcT)

1
2
(Ac

T − Ac) 0

)

∆i =

(
0 ∆r

∆r 0

)
λmin(M) and λmax(M) are respectively the smallest and largest eigenvalue
of the real symmetric matrix M

Re(λ) and Im(λ) are respectively the real and imaginary component of the
complex number λ

Although we’ve included the whole statement of the theorem for the sake of
completeness, we only need the first of the two inequalities for the purpose of our
work, since we’re dealing with symmetric matrices, the eigenvalues of which are
real numbers.

A similar theorem exists, approximating the outer bounds of the sets Λi(A
S) of

a symmetric interval matrix. It is listed as equation (3.14) in Rohn’s ”A handbook
of Results on Interval Linear Problems”([10]) as a consequence of the Wielandt-
Hoffman theorem, while a complete proof is provided in [3] under Theorem 3.1.

11

Theorem 2. Let AS ∈ IRn×n, n ∈ N, be a symmetric interval matrix. Then, for
i = 1, 2, ..., n and A ∈ AS it holds that

λi(Ac)− ρ(Aδ) ≤ λi(A) ≤ λi(Ac) + ρ(Aδ)

Evidently, the first theorem is a special case of this one if we consider only
symmetric interval matrices. In any case, Theorem 2, to which we shall refer to as
Rohn’s theorem from this point on, is a very valuable starting point in our search
for a tight outer approximation, and its results are frequently used as an input
for more complicated improvement algorithms or as a basis for certain criteria
(e.g. the direct vs. indirect interlacing methods). The practical utilization of the
theorem involves computing all eigenvalues of the Ac and Aδ matrices in order
to find the individual eigenvalues of the first matrix and the spectral radius of
the second. Upper and lower bounds for the possible eigenvalues and its spectral
radius can potentially be applied here if faster computation is required. Then a
single arithmetic operation yields the outer approximation for each Λi(A

S).

In certain cases we need an upper bound only for the largest eigenvalue of a
given interval matrix; if this is the case, the following theorem, appearing with
proof as proposition 3.2 in [3], can prove to be useful.

Theorem 3. Let AS ⊆ IRn×n, n ∈ N be a real symmetric matrix. Then

λn(AS) ≤ λn(|A|)

Another simple and very important theorem which serves as the foundation of
two algorithms for approximating the eigenvalue bounds of a symmetric interval
matrix is Cauchy’s interlacing property.

Theorem 4. Let A ∈ Rn×n, n ∈ N be a real symmetric matrix and denote by Ai
for i = 1, 2, ..., n the matrix obtained from A by removing the i-th row and column
(such a submatrix is called a ”principal submatrix” of A). Then it holds that

λ1(A) ≤ λ2(Ai) ≤ λ2(A) ≤ λ3(Ai) ≤ ... ≤ λn−1(Ai) ≤ λn−1(A) ≤ λn(Ai) ≤ λn(A)

The theorem, obviously, allows us to use the eigenvalues of a principal sub-
matrix of AS as bounds. The direct and indirect interlacing algorithms are based
on this theorem. The latter also makes use of the following theorem due to Weyl,
which allows us to express bounds on the eigenvalues of a matrix C = A + B
using the eigenvalues of the matrices A and B:

Theorem 5. Let A ∈ Rn×n, B ∈ Rn×n, n ∈ N be real symmetric matrices. Then,
for r, s ∈ {1, 2, ..., n}:

(r + s ≤ n+ 1) =⇒ (λr+s−1(A+B) ≥ λr(A) + λs(B))

(r + s ≥ n+ 1) =⇒ (λr+s−n(A+B) ≤ λr(A) + λs(B))

One of the methods we use for finding a tight outer approximation of the
eigenvalue bounds of an interval matrix, namely the filtering algorithm, is based
on computing some initial approximation and then iteratively improving it by
”cutting off” parts of the intervals that do not contain any eigenvalues. This
approach is based on the following theorem, presented with proof in [5].

12

Theorem 6. Let A ∈ IRn×n, n ∈ N be a square interval matrix and λ0 be a real
number such that λ0 /∈ Λ(A). Define M = A− λ0I. Then, for any real number
λ fulfilling

|λ| <
1− 1

2
ρ(|I −QMc|+ |I −QMc|T + |Q|Mδ +Mδ

T |Q|T)
1
2
ρ(|Q|+ |Q|T)

it holds that
(λ0 + λ) /∈ Λ(A)

where I is the identity matrix and Q 6= 0 is an arbitrary real matrix.

The special case for a symmetric interval matrix is listed as Corollary 2 in
the original article, and follows immediately from the fact that Mc = Mc

T and
Mδ = Mδ

T can be assumed for A symmetric, and from the special choice of Q to
be a symmetric matrix as well.

Theorem 7. Let AS ∈ IRn×n, n ∈ N, be a real symmetric interval matrix and
λ0 /∈ Λ(AS). Then, for any real number λ fulfilling

|λ| <
1− 1

2
ρ(|I −QMc|+ |I −McQ|+ |Q|Mδ +Mδ|Q|)

ρ(|Q|)
(2.1)

it holds that
(λ0 + λ) /∈ Λ(AS)

where Q 6= 0 is an arbitrary real symmetric matrix.

Let us take a moment to examine what this theorem claims more closely, as
its utilization may not be immediately obvious from its statement. Suppose that
we have a symmetric interval matrix AS ∈ IRn×n and an outer approximation
[ω, ω] for the set Λi(A

S) for some i ∈ {1, 2, ..., n}, which we want to improve. We
pick some suitable symmetric Q, and take λ0 to be ω; we also have all necessary
information to compute the value of the expression on the right side of (2.1)
(which represents the maximum size of the interval that we can ”cut off”), which
we can denote as λmax. Then the theorem states that for any real number λ
fulfilling 0 < λ < λmax, λ

0 − λ and λ0 + λ cannot be eigenvalues of any matrix
from AS; in other words, there is an interval with its centre at λ0 and with
radius λmax which does not contain any eigenvalues; we can therefore reduce the
approximation of the upper bound from ω to (ω−λmax). In the same way, we can
”tighten” the lower bound approximation, and the whole process can be repeated
again. This is, in fact, most of the reasoning behind the filtering algorithm.

2.2 Inner approximations

A simple inner approximation of the set of eigenvalues of an interval matrix can,
in fact, be trivially computed without the aid of any complicated theorems, which
is evident once we make the observation that any pair of eigenvalues (λi, λj) of
any two matrices fulfilling λi ≤ λj can serve as an inner approximation of Λ(A)!
This follows immediately from the definition of the inner approximation and the
fact that the eigenvalue sets of symmetric interval matrices form real intervals.

13

Observation. Let AS ∈ IRn×n, n ∈ N be a real symmetric interval matrix,
A ∈ AS, B ∈ AS. For i ∈ {1, 2, ..., n}, let λai be the i-th eigenvalue of A and
λbi be the i-th eigenvalue of B. Define λmin

i = min{λai , λbi}, λmax
i = max{λai , λbi}.

Then [λmin
i , λmax

i] is an inner approximation of Λi(A
S), as well as an inner ap-

proximation of Λ(AS). Furthermore,
⋃n
i=1[λ

min
i , λmax

i] is an inner approximation
of Λ(AS).

The above fact suggests that an inner approximation of Λ(AS) can be found
by computing the eigenvalues of some finite subset of AS and selecting the best
values from it. Indeed, this is the foundation of the simpler inner approximation
algorithms that we use, with the main difference between individual approaches
being the method for selecting the finite subset of the interval matrix.

A more sophisticated approach is suggested by Theorem 1 of [4], which we
present here without proof.

Theorem 8. Let AS ∈ IRn×n, n ∈ N, be a real symmetric interval matrix
and λ ∈ R be a boundary point of Λ(AS). Then there exists a natural num-

ber k ∈ {1, 2, ..., n} and a principal submatrix ÃS ∈ IRk×k of AS such that:

If there exists an index j ∈ {1, 2, ..., n} such that λ = λj(A
S), then

λ ∈ {λi(Ãc + diag(z)Ãδdiag(z)) : z ∈ {±1}k, i = 1, 2, ..., k}

If there exists an index j ∈ {1, 2, ..., n} such that λ = λj(A
S), then

λ ∈ {λi(Ãc − diag(z)Ãδdiag(z)) : z ∈ {±1}k, i = 1, 2, ..., k}

The theorem basically implies that all boundary points of Λ(AS) lie within
a computable, finite set of values, corresponding to a finite number of vectors
z. This means that, if the upper or lower bound of a given Λi(A

S) lies on the
boundary of Λ(AS) (in other words, if it does not lie within any other Λj(A

S)),
its exact value can be found by examining all possible real matrices of the type

¯(Ac) + diag(z)Āδdiag(z). This is the main theoretical foundation of the direct
submatrix vertex enumeration.

The final theorem worth noting, due to Hertz([2]), is rather exceptional, as it
actually allows us to compute two exact bounds (the upper bound for the largest
eigenvalue and the lower bound for the smallest eigenvalue). The theorem’s state-
ment is the following:

Theorem 9. Let AS ∈ Rn×n, n ∈ N, be a real symmetric interval matrix. Then:

λ1 = min
v∈{±1}n

{λ1(Ac + diag(v)Aδdiag(v))

λn = max
v∈{±1}n

{λn(Ac + diag(v)Aδdiag(v))

The theorem implies a simple algorithm for finding these values, which involves
computing the largest (or smallest) eigenvalues of the extremal matrices described
by the sign vectors v. While finding only two from a total of 2n bounds might
seem rather limiting, the fact that we get exact bounds has multiple theoretical

14

and practical applications: the vertex enumeration algorithm (7), for example,
examines all such extremal matrices in order to construct an inner approximation
of the eigenvalue intervals, and therefore the results it finds for λ1 and λn are, in
fact, the exact lower and upper bound of the corresponding intervals. The same
can be said for the direct submatrix vertex enumeration method (Algorithm 9).
Finally, Algorithm 6, while not guaranteed to find any exact bounds, is based on
a similar idea as well (namely, examining only some of the extremal matrices).
Furthermore, exact bounds are the best possible ”approximation” (inner or outer)
and knowing them allows testing the efficacy of other methods and approaches
by comparing their output against this optimal result.

15

3. Algorithms

A note on verification

The goal of our work is to create a set of functions providing mathematically
verified results. Since verification involves making certain changes to the origi-
nal, unverified algorithms, and the source materials that we use do not explicitly
address this issue, it makes sense to spare a few paragraphs and describe the
problem in more detail. Calculations performed on computers (as well as other
electronic devices) are never exact, mainly due to rounding problems. For sim-
ple arithmetic operations (addition, subtraction, etc.), this inaccuracy is usually
negligible, however for more complicated computations involving large amounts
of arithmetic the magnitude of error can quickly accumulate and produce highly
inaccurate results. One way of coping with this problem is to use interval arith-
metic and work with intervals instead of single numbers; in this way, the end
result will be a range within which the actual answer is guaranteed to lie. This is
precisely the principle of verification: computing mathematically correct, verified
bounds for the result, which compensates for the inherent inaccuracy of electron-
ic computations. Adding verification to an existing algorithm is usually a trivial
matter, since simply substituting intervals for numbers and regular for interval
arithmetic is sufficient in a lot of cases (although such a simple conversion, albeit
correct, will most probably not be optimal). As we shall see, however, certain
situations require special handling which may lead to significant changes in the
algorithm. We will assume that we can compute the verified eigenvalues of a real
matrix as a single operation, since our implementation uses an existing library
for verified matrix computations which allows this.

Some general notes

The following section, as well as the articles in which the original algorithms
are detailed, only describe the process of finding an approximation for the upper
bounds of the eigenvalue intervals of a symmetric interval matrix AS; this is
due to the fact that an approximation for the lower bounds can be obtained
by running a given algorithm for the upper bounds of −AS and inverting them
afterwards.

Observation. Let AS ∈ IRn×n, n ∈ N, be a real symmetric interval matrix,
BS = −AS, i ∈ {1, 2, ..., n} and let ω ∈ R be an upper outer approximation of
the set Λi(B

S) = [λi, λi], i.e. ω ≥ λi. Then −ω is a lower outer approximation
of the set Λn−i+1(A

S).

Proof According to the definition, λ ∈ R is an eigenvalue of some matrix A ∈
Rn×n, n ∈ N, if there exists some vector x 6= 0 such that Ax = λx, which is true
if and only if −Ax = −λx. Therefore each eigenvalue λ of A corresponds to an
eigenvalue −λ of −A, and vice versa. Since for any two real numbers a and b
it’s true that a ≤ b ⇐⇒ −b ≤ −a, and all eigenvalues of a symmetric matrix

16

are real numbers, for A symmetric we can see that λi(A) = −λn−i+1(−A) for
i = 1, 2, ..., n.

It is also easy to see that a matrix B is a member of BS if and only if −B
is a member of AS. This statement is fairly obvious, but if a formal proof is
required, it is easy to obtain, for example, by noticing that Ac = −Bc, Aδ = Bδ

and expressing a given real matrix A belonging to AS as the sum of Ac and a
”distance matrix” D belonging to the interval [−Aδ, Aδ]; then −A can also be
expressed as the sum of Bc = −Ac and −D, which is a valid ”distance matrix”
for BS.

Now suppose that ω > λi, which implies that (∀B ∈ BS)(λi(B) < ω). Since
B = −A, from the above remarks we can see that for every B from BS it holds
that −λ(B) is the (n-i+1)-th eigenvalue of A = −B and −ω ≥ −λ(B). Since
this is true for every B from BS and therefore for every A from AS, we get that
−ω is an outer approximation of the lower bound of Λn−i+1(B

S).

A similar observation can be made for the inner approximations.

Another thing worth noting is the method by which we will rate the perfor-
mance of the presented algorithms. Since the verified computation of an outer
eigenvalue approximation for a real matrix is considered a basic (unit) operation
as mentioned above, and it is obviously much more computationally expensive
than basic arithmetic and other simple operations, we can measure the complexity
of a given algorithm relative to the complexity of the verified eigenvalue compu-
tation by counting (instead of the total number of all operations) the number of
times that the verified eigenvalue operation is performed. As our practical exper-
iments show, this is a very sensible rating, as the vast majority of computation
time for any of the tested algorithms is spent within the method for real matrix
eigenvalue computation, while only a relatively very small portion is reserved for
the further processing of its results. Note that the unit operation always com-
putes an approximation for all eigenvalues of a given matrix (in other words, it’s
not possible to look for bounds for individual eigenvalues in order to save time).

3.1 Simple bounds

The simplest and fastest method we use for approximating the bounds of the
eigenvalues of a symmetric matrix is essentially a direct implementation of The-
orem 2. While not technically an algorithm, it is convenient to take a closer look
at the complexity of this procedure, since it is used extensively as a basic compo-
nent of the more complex algorithms. Note that although the library for verified
computations which we use does provide a specialized procedure for computing
the spectral radius of a real matrix, we do not consider it to be a unit operation
and in the following description of the algorithm we compute it ”manually” from
the definition. This is mainly due to two reasons: on one hand, we will have a
much easier time establishing the computational complexity of a given algorithm
if we only have one basic unit operation instead of two. Secondly, the difference
in performance between our method and the existing implementation is negligi-
ble even for very large matrices, and the latter is neither consistently faster, nor

17

slower than the former.

Algorithm 1: Computing bounds by Rohn’s theorem

input : A symmetric interval matrix AS ∈ IRn×n

output: Verified outer approximations [ωi, ωi] of the eigenvalue interval of
AS

1 compute verified intervals [λi(Ac), λi(Ac)] for i = 1, 2, ..., n ;

2 compute verified intervals [λi(Aδ), λi(Aδ)] for i = 1, 2, ..., n;

3 find ρ(Aδ) = maxi=1,2,...,n{max(|λi(Aδ)|, |λi(Aδ)|} ;
4 for i = 1 to n do
5 ωi ← λi(Ac)− ρ(Aδ) ;

6 ωi ← λi(Ac) + ρ(Aδ) ;

As we can easily see, the verified eigenvalue computation procedure is called
exactly two times, regardless of the dimension of the input matrix; naturally, the
actual running time still depends on the size of the matrix, since computing the
verified eigenvalue intervals is not a constant time operation.

3.2 Direct interlacing algorithm

Originally appearing as Algorithm 1 in of a symmetric interval matrix. We remind
the reader that the statement of the theorem basically implies that the eigenvalue
bounds of the principal submatrices of AS can be used as an outer approximation
for the eigenvalue bounds of AS. Examining all principal submatrices, however,
is too computationally expensive: for a symmetric matrix of dimension n ∈ N we
would need to examine and compute the eigenvalues of

∑n−1
k=1

(
n
k

)
= 2n − 2, or

O(2n) matrices; the algorithm uses a heuristic which examines only O(n) matrices
according to a certain criterion. Although appearing as a single algorithm in
the original article, the whole procedure actually consists of two more or less
independent parts, which we refer to as the forward and the reverse version of
the algorithm. Both operate by finding approximations of the eigenvalue sets of
principal submatrices of AS restricted on the set of indices I; while the former
starts with the whole set I = {1, 2, ..., n} and iteratively removes indices from
it until we are left with the empty matrix, the latter begins with I = ∅ and
keeps adding indices until we get the whole AS. For maximum precision, both
versions of the algorithms should be applied and the best results taken from each;
if computation time is a concern, on the other hand, we can apply, for example,
only the forward version of the algorithm; numerical experiments show that it

18

usually performs better in the general case.

Algorithm 2: Direct interlacing algorithm, forward version

input : A symmetric interval matrix AS ∈ IRn×n

output: Verified outer approximations [λui]
n
i=1 of the upper bounds of AS

1 BS ← AS ;
2 for k = 1,2,...,n do

3 compute a verified upper bound λ for the largest eigenvalue of BS ;

4 λun−k+1 ← λ ;
5 select an index i from {1, 2, ..., (n− k + 1)} ;

6 remove the i-th row and column from BS

Algorithm 3: Direct interlacing algorithm, reverse version

input : A symmetric interval matrix AS ∈ IRn×n

output: Verified outer approximations [λui]
n
i=1 of the upper bounds of AS

1 I ← ∅ ;
2 for k = 1,2,...,n do
3 select an index i from {1, 2, ..., n} \ I ;
4 I ← I ∪ {i};
5 let BS be a submatrix of AS obtained by removing the rows and

columns from {1, 2, ..., n} \ I;
6 compute a verified upper bound λ for the largest eigenvalue of BS;

7 λui ← λ

Two natural questions that arise from the description of the above algorithms
are: how to approximate the bounds of the i-th eigenvalue of BS in steps 3 (of
the first) and 6 (of the second algorithm), and how to select the indices i in steps
5 (of the first) and 3 (of the second algorithm). The first problem simply involves
using any known method for establishing an outer approximation of the bounds;
this method will be called O(n) times during the computation, therefore it should
provide a certain balance between speed and precision. Theorem 2 or 3 can be
used here. For optimal results, both methods (which are sufficiently fast) can
be applied to a matrix and the best result taken (indeed, this is how our own
implementation works).

Regardless of whether we use Rohn’s theorem, Theorem 3 or both, we always
need to compute no more than one verified upper bound during each iteration.
Since for a given input matrix of dimension n the forward and reverse loop repeat
exactly n times each, the number of eigenvalue computations that need to be
performed is at most kn for some constant k (which can be exactly determined
provided that we know the method used to find the upper bound).

As for the selection of the index i to remove or add, any sensible heuristic
can be used; the description of the algorithm in the original article contains the
following two helpful suggestions:

• i = arg min
j=1,2,...,(n−k+1)

λun(BS
j)

19

• i = arg min
j=1,2,...,(n−k+1)

∑
r,s 6=j |Br,s|

The first method is fairly straightforward to understand: we select the index
which provides the best possible result for the currently examined index. The
second one utilises the fact that the square of the Frobenius norm (defined as

||A||F =
√∑m

i=1

∑n
j=1 |Aij| of a normal matrix is equal to the sum of the squares

of its eigenvalues; therefore, attempting to minimise the norm by using the sec-
ond criterion (which can be computed relatively quickly) should lead to smaller
eigenvalues as well.

It should be noted that the first selection method is slower, but usually per-
forms better in practice. This is the one that is used by default in our implemen-
tation of the algorithm.

Since these are only heuristics and we do not need to use verification in the
implementation of such index selector methods, we can assume that this step
adds no further complexity to the algorithm (in particular, the eigenvalues of the
submatrices in the first selector do not need to be computed with verification).

3.3 Indirect interlacing algorithm

The main idea behind this algorithm is to express every matrix A ∈ AS as
A = Ac + Ad, Ad ∈ [−Aδ, Aδ]S, find the eigenvalues of Ac and compute bounds
for the eigenvalues of [−Aδ, Aδ]S, after which we approximate the eigenvalues of
AS using Theorem 4.

Algorithm 4: Indirect interlacing algorithm

input : A symmetric interval matrix AS ∈ IRn×n

output: Verified outer approximations [λui]
n
i=1 of the upper bounds of AS

1 Compute the eigenvalues λi(Ac) for i = 1, 2, ..., n ;

2 Compute upper outer bounds λi for Λi([−Aδ, Aδ]S) ;
3 for k = 1 to n do

4 λun−k+1 = mini∈{1,2,...,k}{λi(Ac) + λk−i+1([−Aδ, Aδ]S)

Although the actual description does not specify any one method in step 2
(and, obviously, any valid approach can be used there), the eigenvalue bounds
of [−Aδ, Aδ]S are meant to be computed by one or both versions of the direct
interlacing algorithm, and this is precisely how our implementation functions.

Since we know that the direct version of the interlacing method performs kn
verified eigenvalue computations, the above algorithm will increase this count
only slightly to kn+ 1 ≤ kn+ n = (k + 1)n = k′n due to the verified calculation
of the eigenvalues of Ac in step 1.

Also note that we don’t explicitly describe that the eigenvalues of Ac are
computed with verification, and that we take the upper bounds of the resulting
intervals for use with the algorithm (which is the worst possible case for the
outer approximation) since this is done in the same trivial way in virtually all
algorithms.

20

A note about the interlacing algorithms

In theory, as well as in practice, both algorithms performs similarly with respect to
their running times; however, the quality of the output data varies from matrix
to matrix, with the direct variant performing better for some inputs, and the
indirect one providing tighter approximations for others. According to [3], the
direct method is better suited to matrices without, or with relatively small ”gaps”
between their eigenvalue intervals, while the indirect one is to be preferred in the
opposite case. The experiments performed in Section (6.1) confirm this empirical
observation for interval matrices with their central matrix close to zero; however,
the farther the centre of an interval matrix is away from the zero matrix, the less
effective the direct method becomes, even if most of its eigenvalue intervals cover
each other. Nonetheless, the indirect method appears to give better results in
general, and it should therefore be used if no further information is known about
the matrices to which it is applied.

3.4 Improving outer approximations by filtering

The filtering algorithm described in [5] utilizes Theorem 5 in order to eliminate
parts of an outer approximation that can not possibly contain any eigenvalues.
Since the theorem and its implications have already been discussed in some detail
in section 2.1, we will now present the actual algorithm.

Algorithm 5: Filtering algorithm

input : An interval matrix A ∈ IRn×n, an interval a = [a, a], a maximal
number of iterations T and a precision threshold ε

output: A potentially improved interval b ⊆ a

1 b← a ;
2 t← 0 ;
3 λ ← ε · rad b+ 1 ;
4 while λ > ε · rad b and t < T do
5 t← t+ 1 ;

6 M ← A− bI ;
7 compute Q = (Mc)

−1 ;

8 λ← 2−ρ(|I−QMc|+|I−QMc|T+|Q|Mδ+(Mδ)
T |Q|T)

ρ(|Q|+|Q|T)
9 if λ > 0 then

10 b← b− λ
11 if b < b then
12 b← ∅ ;
13 return ;

The precision (ε) and maximal step count (T) parameters limit the number of
iterations that the algorithm can go through before ending; the former keeps the
procedure from wasting computation time on insignificant improvements, while
the latter prevents looping. In practice, however, the algorithm usually finishes
after only a small number of steps.

Another explicit condition for terminating the filtering process is the second

21

”if” clause, which indicates that the input interval does not contain any eigenval-
ues at all and has been wholly ”filtered out”.

The algorithm follows Theorem 7 and our previous discussion very closely.
One difference is that Q, which was an arbitrary matrix in the theorem, is taken
here to be the inverse of Mc. It is important to stress that we do not actually
need the inverse matrix, and neither does the computation have to be exact or
even accurate. A numerical computation of the inverse matrix can be used here,
mainly for speed and convenience.

Note that the interval a does not necessarily have to be an outer approxi-
mation of an eigenvalue set of A; however, it usually makes the most sense to
filter precisely such sets. Approximations for the individual sets can be filtered
separately for better results, since the algorithm does not account for gaps within
the filtered set by itself.

Concerning the computational complexity, the only important step is number
8, which requires the verified computation of two spectral radii. As discussed
previously in 3.1, the calculation of the spectral radius of a real matrix is com-
putationally equivalent to finding all of its eigenvalues. A simple upper bound
for the number of iterations of the loop is, of course, the number T , which means
that there will be at most 2T verified eigenvalue computations; if we assume
that T is a fixed value, then the number of iterations is bounded by a constant.
This algorithm is difficult to analyse, however, since its calculation time is af-
fected by many different factors: the nature of the filtered set, its quality as an
approximation and the values of ε and T .

3.4.1 Speeding up the filtering algorithm

Practically all of the time spent by the filtering algorithm is devoted to computing
the two spectral radii, which (in theory and in practice) take as much time to com-
pute as the verified eigenvalue intervals of the corresponding matrices. Therefore,
we can dramatically reduce the time required by the algorithm by substituting
these exact verified computations with suitable upper approximations; it can be
easily seen that such a modification will preserve the correctness of the algorithm
(although the improvement we can achieve by using them will not be as good).

It is a known fact that, given a certain matrix norm || · ||, the spectral radius
of a given matrix A cannot possibly be greater than its norm ||A||. In particular,
the norms ||A||1 (maximal column sum) and ||A||∞ (maximal row sum) can be
computed very quickly and without having to perform any complicated operations
(such as finding verified eigenvalue bounds); in fact, the time it takes to find such
an approximation is practically negligible when compared to finding the verified
spectral radius. This also means that we can freely utilise both norms and take
the better result as an approximation.

Since there are two spectral radii which need to be computed (or approxi-
mated) in the filtering algorithm, we examine three different variations: we can
compute the first spectral radius (in the numerator) and approximate the second,
we can approximate the first and compute the second, or we can approximate
both. Intuitively, the first two methods should have similar running times, while
the last one will be very quick indeed, but will be much less accurate.

As it turns out, the first variant we mentioned (computing the spectral radius

22

in the numerator and approximating the one in the denominator) is indeed very
useful in practice, as it reduces the accuracy of the result only slightly in the
general case, but the computation time is almost two times shorter than that of
the original algorithm.

The last (and least accurate variant) performs, as can be expected, quite
poorly with respect to precision, but still does manage to tighten the bounds a
little in some cases, and it is so fast that it can be used alongside any algorithm
for outer approximations without noticeably increasing the computation time.

The third variant (approximate the spectral radius in the numerator and
compute the one in the denominator) takes as much time to finish as the first,
but provides results comparable to the last one; therefore, we do not use it in our
implementation.

A detailed description of the experiments we conducted with the different
variations of the filtering method can be found in Section 6.2.

3.5 Local improvement algorithm

All algorithms that we use for inner approximations of the eigenvalue bounds
originate from [4]. The simplest of these involves examining some of the extremal
matrices of AS and potentially improving the constructed inner approximation
with them; as was already mentioned, every eigenvalue of a matrix from AS can
serve as an inner approximation. Beginning with Ac, the sign vector correspond-
ing to the eigenvector of each matrix defines the next one, until no improvement
is possible and the algorithm ends.

Algorithm 6: Local improvement for inner bounds

input : A symmetric interval matrix AS ∈ IRn×n and an index
i ∈ {1, 2, ..., n}

output: An upper inner approximation µi

1 µi ← −∞ ;
2 A← Ac ;

3 compute a verified interval [λi, λi] for the i-th eigenvalue of A and a
(possibly non-verified) vector interval vi = [vi, vi] for the corresponding
eigenvector ;

4 ṽ ← (0, 0, ..., 0)T ;
5 while λi > µi do
6 µi ← λi ;
7 s← sign(mid vi) ;
8 if s = ṽ then
9 return ;

10 ṽ ← s ;
11 D ← diag(s) ;
12 A← Ac +DAδD ;

13 compute a verified interval [λi, λi] for the i-th eigenvalue of A and a
vector interval [vi, vi] for the corresponding eigenvector ;

23

The algorithm above describes the computation of the inner bound for a sin-
gle index i; to approximate the bounds of all eigenvalues of a given matrix, it is
enough to run the procedure once for each of the indices. Obviously, the eigenval-
ues of a certain extremal matrix can potentially be computed several times, which
would be a rather significant waste of CPU time, especially for larger matrices.
This can be prevented by sacrificing a bit of memory in order to store the eigen-
values of already visited matrices; the sign vectors used for selecting extremal
matrices of AS can serve as a very effective hashing function in this case.

The eigenvalues of Ac can (and should) always be computed only once, since
they are certainly used in every run of the algorithm.

As getting the same sign vector automatically implies getting the same ex-
tremal matrix (in which case we cannot possibly improve the existing bounds), it
makes sense to remember the previously computed sign vector ṽ and compare it
to the current one, prematurely ending the computation. This saves us a single
verified eigenvalue computation, which, of course, does not improve the overall
complexity of the algorithm, but can still provide a small boost in performance
for larger matrices. This approach can be taken a step further by hashing the
sign vectors of all visited matrices.

Step 6 of the algorithm is an example of a situation in which there is a no-
ticeable difference between the logic of the verified and the non-verified version.
Although in most cases it will be true that the sign vectors of vi and vi (and
therefore all vectors in between them as well) are the same, in the general case
it can happen that the lower bound for one of the interval vector’s elements is
negative and the upper is positive. In this particular case, this does not require
any significant modification of the algorithm, as the sign vectors are nothing
more than a heuristic for selecting specific real matrices from AS; essentially, we
could select random extremal matrices and the result will still be a correct inner
approximation (this also means that we do not have to find a verified interval
for the eigenvector in step 3, and could instead use non-verified methods which
will yield a single real vector; nonetheless, the actual functions that we use in our
implementation compute verified intervals for both the eigenvalues and the eigen-
vectors of the input matrix at the same time, and performance would only suffer
if we were to ignore the found eigenvector interval and run a separate non-verified
method; furthermore, any real vector can be represented by an interval with the
same lower and upper bound, and this is the reason that the above algorithm as-
sumes an interval vector). Nonetheless, we need to select a particular real vector
from vi, and midvi is certainly no worse than any other choice; intuitively, it
will also tend to be closer to the ”true” sign of the eigenvector in the case of a
disparity between the signs of the lower and upper bounds.

Since the algorithm potentially involves computing the eigenvalues of all ex-
tremal matrices of AS, each one corresponding to a different sign vector of the
form {±1}n, we can immediately claim that there will be no more than 2n verified
computations, a figure which can be reduced to 2n−1 if we account for the fact
that the first element of any eigenvector can be assumed to be positive due to
normalisation, but which is still quite large, implying exponential complexity. In
practice, the algorithm usually terminates after only a few iterations. A limit for
the total number of iterations, similar to the one in the filtering algorithm, can
be added to ensure a constant number of iterations in theory as well.

24

3.6 Vertex enumeration algorithm

The vertex enumeration algorithm is very similar to the local improvement de-
scribed above in that it examines extremal matrices of AS, indexed (or ”enumer-
ated”) by sign vectors. The difference is that all such matrices are examined,
which will usually provide a better approximation and require more computation
time. The asymptotic complexity of both algorithms is evidently the same, but
vertex enumeration is slower and more accurate in practice. Furthermore, ac-
cording to Theorem 9, the lower bound for the smallest eigenvalue interval and
the upper bound for the largest one are exact.

Algorithm 7: Vertex enumeration for inner bounds

input : A symmetric interval matrix AS ∈ IRn×n and an index
i ∈ {1, 2, ..., n}

output: An upper inner approximation µi

1 compute verified intervals [λi, λi] for the eigenvalues of Ac ;
2 for i = 1, 2, ..., n do
3 µi ← λi

4 for z ∈ {±1}n, z1 = 1 do
5 A← Ac + diag(z)Aδdiag(z) ;

6 compute verified intervals [λi, λi] for the eigenvalues of A ;
7 for i = 1,2,...,n do
8 µi ← max{µi, λi} ;

Note that all extremal matrices of AS are examined for all eigenvalues, which
means that all inner approximations can be computed with a single run of the
algorithm (this is not true for Algorithm 6, for example, where different sets of
extremal matrices are examined for different eigenvalues). Since it holds that
for (∀z ∈ {±1}n)(diag(z)Aδdiag(z) = diag(−z)Aδdiag(−z)), we can assume that
the first component of z is positive (equal to 1) and therefore examine only 2n−1

matrices.
A common problem with both the local improvement and the vertex enu-

meration algorithms which arises due to the addition of verification, is that they
might sometime produce improper intervals as approximations (in other words,
pairs (µ

i
, µi) such that µ

i
> µi). As can be seen from the descriptions of the

above algorithms, we always take the lower bounds of verified eigenvalues when
improving upper inner bounds so that we have a verified interval in the end. As
an initial approximation we use the eigenvalues of the central matrix Ac. The
initial approximation for µi is therefore λi, and for µ

i
it is λi, which obviously

does not define a correct interval. As the upper approximation is improved, it
increases and, conversely, the lower approximation decreases. In the majority of
cases the improvement is sufficient for the two numbers to define a valid interval;
however, there is no guarantee that this will happen, and, in theory as well as in
practice, the algorithms can produce improper intervals for the inner approxima-
tion, which essentially means that no inner approximation could be found. Note
that this is impossible to happen in the non-verified versions of the algorithms,
which begin with µ

i
λi(Ac) = µi and thus µ

i
and µi always define a correct (albeit

initially trivial) real interval.

25

One of the issues pertaining to the vertex enumeration algorithm’s implemen-
tation is the second algorithm (steps 4 through 8) which requires all vectors from
{±1}n for a given n to be generated. Although hardly a difficult problem, it is
still not entirely trivial, as a simple and efficient way of iteratively generating
all such vectors can significantly improve the readability and effectiveness of the
algorithm. A simple method for doing this is described by Rohn in section 2.2 of
[9], which we use in our implementation of the vertex enumeration algorithm.

Algorithm 8: Generating all z ∈ {±1}n

1 z ← (1, 1, ..., 1)T ;
2 v ← (0, 0, ..., 0)T ;
3 while v 6= (1, 1, ..., 1)T do
4 k ← min{i : vi = 0} ;
5 for i = 1, 2, ...(k − 1) do
6 vi ← 0 ;

7 vk ← 1 ;
8 zk ← −zk ;
9 process z ;

The original text describing the algorithm also contains a proof of its correct-
ness, however its operation is rather intuitive as it is: we start with z being a
vector with ones at all positions(although the procedure works for any starting
vector from the set {±1}n) and the auxiliary vector v keeps track of the ”inver-
sions” which we have already processed. All inversions of the components with
indices l+1, ..., n are processed before inverting the component at position l; once
no possible inversions remain, the algorithm terminates.

The last step of the algorithm consists of ”processing” the vector v. This
basically means that at this point we do what we need to with the vector; in the
case of the vertex enumeration method, for example, we find the extremal matrix
defined by it and proceed to make potential improvements to the existing inner
approximation. In practice, the while loop of Algorithm 8 replaces the for loop
on line 4 of Algorithm 7, and the ”process z” template is replaced by the body
of the algorithm (lines 5 through 8). Generating all vectors of a given length n
with a fixed first element is as simple as generating all vectors of length n − 1
and prepending a single 1.

3.7 Submatrix vertex enumeration

Easily the most complicated method that we use for computing inner approx-
imations, submatrix vertex enumeration makes use of Theorem 8 and actually
allows us to compute exact bounds in certain special cases. However, introducing
verification to this algorithm results in some complications, as we shall see below.

We will recall that the theorem basically states that eigenvalues belonging to
the boundary of Λ(AS) are eigenvalues of some extremal matrix of a principal
submatrix of AS. An important observation is that not all eigenvalues of such
matrices are eigenvalues of AS as well; a very simple example confirming this
fact can be practically any trivial (with Aδ = 0, i.e. containing only a single
real matrix and therefore being practically equivalent to it) interval matrix, e.g.

26

(
1 2
2 3

)
with eigenvalues λ1 ≈ −0.2361 and λ2 ≈ 4.2361, but with the single

eigenvalue of any of its principal submatrices being a whole number. The original
algorithm describes a condition which can be used to skip over useless (not leading
to eigenvalues of AS) matrices: having chosen a principal submatrix DS of AS,

we can assume that AS =

(
BS C
CT DS

)
. Then, having found some eigenvalue λ

and the corresponding eigenvector y of some matrix D ∈ DS, we check whether
there is some C ∈ C fulfilling Cy = 0, which is a necessary and sufficient condition
for λ to be an eigenvalue of AS. Provided a given number-vector pair does not
fail this test, further conditions are examined to decide whether λ is an element of
Λi(A

S) and whether Λi and Λi+1 can be guaranteed to be disjoint, in which case
λ is proclaimed to be the exact upper bound of Λi(A

S), and the corresponding
eigenvalue of some A ∈ AS with D as a principal submatrix and Cy = 0 is used
for potential improvement of the inner bound.

The original (non-verified) algorithm from [4] is presented here for reference:

Algorithm 9: Direct submatrix vertex enumeration algorithm, unverified

input : A symmetric interval matrix AS ∈ IRn×n and an index
p ∈ {1, 2, ..., n}

output: An upper inner approximation µp

1 compute outer approximations [ωi, ωi] for the eigenvalues of AS ;

2 compute inner approximations [µ
,
µi] for the eigenvalues of AS ;

3 for each non-empty set of indices J ⊆ {1, 2, ..., n} do

4 decompose AS =

(
BS C
CT DS

)
such that DS is the principal

submatrix of AS obtained by restricting AS to the indices from J ;

5 for z ∈ {±1}|J |, z1 = 1 do
6 D ← Dc + diag(z)Dδdiag(z) ;
7 for i = 1,2,...,n do
8 λ← λi(D) ;
9 y ← yi(D) ;

10 if λ > µp & λ ≤ ωp & 0 ∈ Cy then
11 if p = n ∨ λ < ωp+1 then
12 µp ← λ ;

13 else
14 take a C ∈ C fulfilling Cy = 0 ;

15 A←
(
Bc C
CT D

)
;

16 λ← λp(A) ;
17 if λ > µp then
18 µp ← λ ;

Unfortunately, attempting to introduce verification to the algorithm results
in some serious complications which make the computation of exact bounds in
this way seemingly impossible.

27

In a verified version of the procedure, the computations in steps 8 and 9
should produce a real interval λ = [λ, λ] and an interval vector y = [y, y] instead
of a single number λ and a vector y. The main problem arises from the third
condition of the ”if” clause in step 10, which now reads 0 ∈ Cy; since solving
such an interval equation is very hard, it was considered selecting a single vector
y ∈ y, e.g. midy to use as a heuristic and solving 0 ∈ Cy, but this approach
would, to the best of our knowledge, not yield verified results, since we cannot
guarantee that the vector y solving 0 ∈ Cy is the same as the eigenvector of D
corresponding to λ. Theoretically, we could instead attempt to prove in some
other way that λ is indeed an eigenvalue of AS, but this would be equivalent to
providing an inner approximation with λ as the upper bound; and if our candidate
λ corresponds to the value of the exact upper bound of an eigenvalue interval (and
that interval is disjoint with the next one, since that is one of the conditions for
applying the theorem), then we will never be able to find any eigenvalue of AS

within that interval larger than λ.
A verified version of the algorithm can be constructed by applying steps 14

through 18 for all examined eigenvalue-vector pairs, which will obviously yield
correct approximations, but the possibility of computing exact bounds, which is
one of the strongest points of the original algorithm, will be lost. What is left will
still be a useful algorithm, and the most accurate among our inner approximation
procedures, as it can be expected that it will provide us with results equal or, at
least, very close to the exact bounds in the case of disjoint eigenvalue intervals.

The complexity of the algorithm is still exponential, though, and therefore it
is useful to consider the branch and bound improvement described in the original
article. The basic idea involves checking the solvability of the system

Cy = 0, (DS − λI)y = 0, ‖y‖∞ = 1 (3.1)

for y; here λ = [µp, ωp] is taken as the possible range in which a potential im-
provement of the inner approximation can lie. As the article shows, should the

above system not have a solution for some decomposition AS =

(
BS C
CT DS

)
of AS for a set of indices J ⊆ {1, 2, ..., n}, we can safely not only skip the current
set J , but all of its subsets as well. Provided that we have an efficient way of
solving the system and proceed from larger to smaller subsets of {1, 2, ..., n}, this
approach can potentially lead to a great improvement in speed.

A method for solving equations of the type Cy = 0, C ∈ C for C is implicitly
presented in the proof of the Oettli-Prager theorem in [9]; the theorem itself
basically states that, given the interval system Ax = b, where A is an interval
matrix and b is an interval vector, there exists a matrix A ∈ A and a vector
b ∈ b such that Ax = b if and only if |Acx − bc| ≤ Aδ|x| + bδ; in other words, it
characterises so called ”weak solutions” of an interval system. The proof of the
theorem is constructive, being based on finding a matrix and a vector for which
x solves the corresponding system, and the approach can be used in our case as

28

well. The following algorithm describes how to solve Ax = 0 for A ∈ A.

Algorithm 10: Solving Ax = 0

input : An interval matrix A ∈ IRm×n and a vector x ∈ Rn

output: A real matrix A ∈ A such that Ax = 0, if it exists, or failure

1 if |Acx| > Aδ|x| then
2 return failure ;

3 ξ ← (Aδ|x|) ;
4 τ ← (Acx) ;
5 for i = 1, 2, ...,m do
6 if ξi > 0 then
7 ρi ← τi

ξi
;

8 else
9 ρi ← 1 ;

10 z ← sign(y) ;
11 A← Ac − diag(ρ)Aδdiag(z) ;

Taking into account the above discussion, we present our verified version of
the direct submatrix vertex enumeration algorithm which utilises the branch and
bound improvement (Algorithm 11 on the next page).

The algorithm remains mostly the same, with the exception that we always
need to solve Cy = 0 and construct the matrix A (guaranteed to be an element of
AS) so we can ensure that the eigenvalues we find are eigenvalues of AS. As was
discussed above, this not only results in a slower running time, but also means
that we can no longer find exact bounds of the eigenvalue intervals. Since the
eigenvalues and eigenvectors computed in steps 14-15 are never used for improving
the actual approximation, they do not need to be computed with verification; the
eigenvalue of A on line 20, on the other hand, needs to be verified.

The branch and bound modification introduces several new elements to the
algorithm as well. Firstly, we use the set Ω to keep track of useless sets of in-
dices, i.e. those that cannot improve the existing approximation. The specific
implementation can be done in a variety of ways; in our implementation we use
an array of logic values and a bijective function mapping subsets of {1, 2, ..., n} to
natural numbers (used as indices) and vice-versa. This allows us to quickly deter-
mine whether a given set is useless, but requires 2n bits of memory; should this
prove to be a problem, one could replace the array with a dynamic data structure
which would only contain the maximal (with respect to inclusion) useless sets;
in this case some additional computation will be required in order to determine
whether a given set of indices belongs to Ω.

A different complication arises due to the fact that a certain set of indices is
useless or useful only with respect to a certain eigenvalue, i.e. to a certain index
p. While the simpler variant of the algorithm (without branch and bound) can
be run for all eigenvalues at the same time, the version presented above requires
us to either run it separately for p from 1 to n (which means we would have to
compute the eigenvalues of some specific matrices at line 19 several times during
successive runs of the algorithm) or use extra memory to either keep track of
useless index sets for each eigenvalue individually or, alternatively, to store the

29

Algorithm 11: Direct submatrix vertex enumeration algorithm, verified,
with branch and bound

input : A symmetric interval matrix AS ∈ IRn×n and an index
p ∈ {1, 2, ..., n}

output: An upper inner approximation µp

1 compute outer approximations [ωi, ωi] for the eigenvalues of AS ;

2 compute inner approximations [µ
,
µi] for the eigenvalues of AS ;

3 Ω← ∅ ;
4 for each non-empty set of indices J ⊆ {1, 2, ..., n} do
5 if J /∈ Ω then

6 decompose AS =

(
BS C
CT DS

)
such that DS is the principal

submatrix of AS obtained by restricting AS to the indices from J ;
7 attempt to prove that the system

Cy = 0, (DS − λI)y = 0, ||y||∞ = 1 does not have a solution ;
8 if the system is guaranteed to be unsolvable then
9 Ω← Ω ∪ 2J ;

10 else
11 for z ∈ {±1}|J |, z1 = 1 do
12 D ← Dc + diag(z)Dδdiag(z) ;
13 for i = 1, 2, ..., n do
14 λ← λi(D) ;
15 y ← yi(D);
16 if λ > µp & λ ≤ ωp then
17 attempt to solve Cy = 0 for C ∈ C ;
18 if a solution exists then

19 A←
(
Bc C
CT D

)
;

20 compute a verified lower bound λp for the p-th

eigenvalue of A ;
21 if λp > µp then
22 µp ← λp ;

30

computed eigenvalues of already processed matrices so that they do not have to
be computed again.

Checking the necessary condition for processing a set of indices at line 7 is
also not explicitly described, as it is not a part of the actual algorithm. In our
implementation, we utilise an existing function for testing the unsolvability of an
interval system. Since we consider ||y||∞ = 1, we use the following approach for
examining a system Ax = 0:

Algorithm 12: Testing unsolvability of an interval system

input : An interval matrix A ∈ IRm×n and an interval vector x ∈ IRn

representing the interval system Ax = 0
output: True if Ax = 0 can be guaranteed to be unsolvable, otherwise

False

1 unsolvable← 1 ;
2 ξ ← 1 ;
3 while ξ < m do
4 y ← x ;
5 for i < ξ do
6 yi ← 0 ;

7 yξ ← 1 ;
8 if Ay = 0 cannot be proven to be unsolvable then
9 unsolvable← 0 ;

10 break ;

11 ξ ← ξ + 1 ;

12 if unsolvable = 0 then
13 return False ;

14 else
15 return True ;

The method presented above is rather straightforward: we replace the i-th
component of the vector x with a 1, and attempt to prove unsolvability. If we
fail, this means that a solution may exist; otherwise, we proceed to the next
component.

Substituting zero for all components with indices less than i is actually a
rather important step, as it significantly increase the speed of the algorithm; we
have not performed any specific tests, but the increase in performance is definitely
noticeable. Such an improvement is correct, since if a solution existed with aj 6= 0
for some j < i, then we couldn’t possibly have proven that no solution exists for
j, and the loop would have terminated during an earlier iteration.

Although, as we mentioned above, the condition allowing us to compute exact
bounds no longer holds for our verified version of the algorithm, an alternative,
albeit weaker variant, is still plausible. Let us recall that, according to Theorem
8, the direct submatrix vertex enumeration algorithm will certainly encounter the
exact bounds of disjoint eigenvalue intervals; the reason that we cannot use them

31

in the verified version is that we cannot assert that a given eigenvalue of a certain
matrix DS (from the decomposition) is also an eigenvalue of AS. Nonetheless, it
might happen that only a single eigenvalue interval is found that has a non-empty
intersection with a given ”improvable” interval; this then necessarily means that
the eigenvalue in question is the exact bound (provided, of course, that the outer
approximation does not intersect its ”neighbour”). Essentially, this means that
the number of potential ”candidates” needs to be counted for each eigenvalue
interval; an algorithm based on this idea is not difficult to implement, but it will
find exact bounds only rarely. The eigenvalues of D at step 14 need to be verified
in this case. Such an algorithm could be implemented separately (looking only
for exact bounds) or as an additional component of the method presented above.

We have created a basic implementation of this technique, but it hasn’t been
thoroughly tested yet as we do not consider it to be particularly perspective.

32

4. Implementation details

The current chapter describes the source files implementing the functionality of
the algorithms described in the previous parts of the thesis, as well as their
interconnections, in some detail. The source files themselves contain comments
and remarks which should be sufficient to explain their stand-alone functionality;
therefore, we will concentrate more on the way the individual procedures operate
as part of a more complex system.

The main goal of this section is to familiarise the reader with the different
computation options offered by individual implementations; input parameters
that we consider to be especially important (for example, those that select dif-
ferent versions of the algorithm or significantly affect its behaviour) are written
in bold.

Warning: The functions have been implemented and tested only on Matlab
R2013b under Windows 7 and Windows 8. Hopefully, they will work without
any problem for different versions of Matlab and on different operating systems,
but no guarantee is given as to their functionality in this case.

A note on the programming environment

All algorithms and auxiliary procedures are implemented in the Matlab program-
ming language, using the Intlab package ([11]) for interval computations along
with the Versoft library ([7]) which provides functions for the verified computation
of different values, including the eigenvalues and spectral radius of real matrices.
Versoft itself requires Intlab in order to function properly, since it works with
intervals.

We assume that the reader is familiar, at least on a basic level, with the
Matlab programming language; if this is not the case, a multitude of tutorials
can be found on-line which can serve as a quick introduction. Nonetheless, Matlab
is fairly simple and intuitive, with a syntax closely resembling any modern object-
oriented programming language, and it is our belief that the source files can be
understood even without studying any such materials.

The most important and frequently used function from Versoft is vereig, which
computes verified intervals for the eigenvalues and eigenvectors of a given real
matrix. It is used in the form

[L,X] = vereig(A)

with a given real matrix A, and returns interval matrices L and X such that
L(i, i) is a verified interval for the i-th eigenvalue of A and X(:, i) is a verified
interval vector for the eigenvector corresponding to the i-th eigenvalue.

We also make use of verspectrad for verified computation of the spectral radius
of a matrix.

For checking the necessary condition for skipping an index set in Algorithm
11 we utilise the functions ilssolvable and ilsunsolvablefcr by Jaroslav Horáček;
unfortunately, they do not appear to have been published at the time of writing.

33

General notes

As was already mentioned in the chapter dealing with the algorithms we use, it
is enough to know an approach for computing an approximation of the upper
bounds of the eigenvalue intervals of a given matrix A, since the lower bounds
can be approximated by finding the upper bound approximations of −A and
inverting them. As we shall very soon see, this is not just a theoretical ”trick”,
but is used extensively in practice as well: virtually all of our implementations
consist of a basic realisation of the corresponding algorithm for computation of
the upper bounds (filename ends with ”upper”) and a wrapper method (without
”upper”) which simply calls the upper bounds version for a given matrix and
its negation and combines the results. For example, the function which applies
Algorithms 2 and 3 for an outer approximation of the eigenvalue bounds is called
eigsymencouterdirect (see the naming conventions for more details); the whole
procedure consists of calling the actual implementation eigsymencouterdirectsin-
gleupper for upper bounds twice for each eigenvalue index and constructing the
verified intervals. In some cases additional handling is required; unless this is the
case, we will assume that the operation of the wrapper procedure is clear and will
not describe it explicitly.

We’ve generally tried making the whole project as modular as possible, taking
care to separate individual parts of algorithms into stand-alone functions, so that
their functionality can be easily improved or replaced without having to modify
the main method. This is the reason for the large number of auxiliary methods
in the project. In addition to this, some of the procedures contain optional
input parameters that allow a specific function to be used for a certain purpose
instead of the default one. Nonetheless, modification of any larger algorithm
should be possible, including those that do not include such parameters in their
implementations.

Naming convention

All of our procedures follow a certain naming convention, and therefore we should
take a minute to clarify how the names of individual functions are composed. Vir-
tually all important procedures begin with the prefix ”eigsymenc”, which stands
for ”eigenvalues of symmetric matrices, encapsulation”.

This can be followed by either ”outer” or ”inner” depending on the type of
approximation that the given method is computing; if neither word is present
in the filename, it implies that both approximations are computed or that the
function in question has a more general purpose.

Next is a keyword referring to the algorithm used; for example, ”direct” refers
to the direct interlacing method, while ”locimp” stands for ”local improvement”,
as in the procedure of the same name.

Auxiliary functions closely tied to some method will usually share the same
prefix (”eigsym”, type of approximation and algorithm keyword) followed by a
sort of verbal description of the specific function that is being implemented; for
example, the eigsymencouterindirectsingleupper function computes an upper ap-
proximation using the indirect interlacing approach for a single eigenvalue. Prac-
tically all actual algorithm implementations (as opposed to wrapper methods)

34

are named in this way.
Certain auxiliary methods might not completely adhere to the conventions

described above, especially if they are more general, with multiple uses within
our project or even potential application outside of it.

4.1 Outer bounds

4.1.1 Simple methods

A direct implementation of Theorem 2 is provided in the function eigsymencouter-
rohn. Optional input parameters allow pre-computed eigenvalues for the central
and radial matrices and the spectral radius for the radial matrix to be passed to
the function, which can save some computation time if it is called from within a
more complex procedure which has already computed (or is planning to compute)
one or more of these values as part of a different method. This option is not used
in our implementation, as Rohn’s theorem is always utilised as a first basic ap-
proximation before any other method is used. An additional output parameter,
added solely for convenience, contains the bound for the largest eigenvalue. This
is due to the possibility that some algorithms might require such information.

4.1.2 Methods applying the direct interlacing procedure

The basic implementation of the algorithm is realised as eigsymencouterdirects-
ingleupper, which computes outer approximations for the upper bound of a single
eigenvalue interval. The function contains quite a few parameters, as it allows
for various modes of computation.

If we look at the original algorithms (2 and 3), we will see that the eigenvalues
are meant to be computed sequentially (i.e. the first one, then the second one,
then the third one, etc.) and that we require information about all previously
computed eigenvalues (namely, the indices that were removed or added by the
forward or reverse version of the algorithm for them) in order to compute the
next one. The indexselectionstrategy parameter defines what happens if we
call the function for a given eigenvalue and no (or only partial) information about
the previously removed indices is available. If we set this to ’STEP’, then the
algorithm will be run (but without verification) for all missing indices in order
to obtain the necessary data (this is the default as it is the fastest); ’STEPVER’
is the same, but the bounds for the missing eigenvalues are computed with veri-
fication and returned as a ”by-product” of the algorithm, which can potentially
allow for the improvement of an existing approximation (it is assumed that the
information about the previous indices is missing because the bounds for those
eigenvalues were computed by the indirect method instead of the direct one); in
order not to waste any time, this existing approximation can be provided as the
input argument eb; then a verified computation will occur only for those indices
where there is a real possibility of improvement. Finally, ’ALL’ examines all pos-
sible combinations of indices that can be removed; this means that more matrices
are examined, and therefore it is slower but might potentially yield better results.
All the indices that were removed (or, equivalently, added) by previous runs of

35

the algorithm should be provided in the vector indices. Finally, mode is either
’FORWARD’ or ’REVERSE’, specifying the version of the algorithm to use.

A function computing the upper bounds of a matrix (as in steps 3 and 6 of
the forward and reverse variants respectively) can be provided as upperbound-
method. A function for adding or removing indices can be specified in indexse-
lectormethod. The precise format in which these function must be written (as
pertaining to input and output parameters) is described inside eigsymencouter-
directsingleupper. The default implementations are eigsymencouterdefaultupper-
bound and eigsymencouterdefaultindexselector, respectively.

Computing the upper and lower bounds of all eigenvalue intervals with the
direct interlacing approach is possible via the wrapper method eigsymencouter-
direct. An upper bound and index selection functions which are then passed to
it can be explicitly specified as input parameters; aside from ’FORWARD’ and
’REVERSE’, the mode can also be ’BOTH’, which runs both version of the
algorithm. Since processing the two ”directions” is rather similar, we have de-
fined an auxiliary function within eigsymencouter which sequentially computes
all eigenvalue bounds for us.

4.1.3 Methods applying the indirect interlacing procedure

The main implementing method is eigsymencouterindirectsingleupper, which com-
putes the upper outer approximation for a single eigenvalue interval. As can be
seen from the description of Algorithm 4, one of the steps involves computing
outer bounds for a symmetric interval matrix [−Aδ, Aδ]S, which is done with
the help of the direct interlacing method described above. Generally, we expect
that this matrix will not have been computed beforehand as part of some other
method, and therefore we will have to call the direct method to get the needed
approximation. Therefore the same optional input parameters (mode and index
selector function) as in eigsymencouterdirect are present here as well; if provided,
they are passed to the direct interlacing method call when computing the bounds
of [−Aδ, Aδ]S.

The implementation itself is straightforward, uses no auxiliary functions (save
for the direct interlacing implementation), and the most complicated part is ar-
guably a loop which iterates over a set of indices looking for the best possible
value. In any case, we believe that it warrants no further discussion. The corre-
sponding wrapper function is eigsymencouterindirect.

4.1.4 Choosing between the direct and indirect method

The original article describing the interlacing methods ([3]) mentions that the
relative effectiveness of the two variations (direct and indirect) depends on the
width of the gaps between the eigenvalue intervals of the matrix: namely, that
the direct method is better in the case of narrow or non-existent gaps, and vice
versa. Empirical experiments also confirm that there indeed seems to exist some
sort of relationship of this sort; our attempts at investigating the nature of this
relationship and the experiments performed for this purpose are described in
detail in Chapter 6.

In any case, if we are able to express this relationship as a simple formula

36

or rule and define a criterion based on it for choosing between the direct and
indirect algorithms, we can construct a fast and accurate combination of the
two variants which intelligently attempts to guess which one should be applied
for the computation of each eigenvalue bound. We usually refer to it as a ”gap
criterion”, since it is based on the relative magnitude of the ”gaps” (distance)
between adjacent eigenvalue intervals. The basic logic of this approach is encod-
ed in one of the computation modes of the wrapper function eigsymencouter and
utilises an auxiliary method called interlacingcriterium, which receives a matrix,
a previously computed outer approximation of its eigenvalues and the index of
the eigenvalue we want to compute and returns either ’direct’, ’indirect’ or ’un-
known’ based on which interlacing algorithm should be used. Since we haven’t
yet managed to formulate an accurate enough criterion, the function in question
instead attempts to make a guess about the average relative effectiveness of the
two algorithms on all eigenvalue intervals of the given matrix (this approach is
based on our experimental results from 6.1).

When discussing the implementations of the direct and indirect interlacing
methods earlier in this chapter, we mentioned that the basic methods only com-
pute bounds for a single eigenvalue interval; the potential application of a gap
criterion is precisely the reason for this. We also discussed what options are avail-
able for obtaining the missing information about removed or added indices in the
direct method (the ’STEP, ’STEPVAR’ and ’ALL’ strategies); while they do not
play any role when computing all eigenvalues with the direct method (since no
indices are ”skipped”), a short comparison of these variants is in order, as the
gap criterion will most likely result in missing indices due to the indirect method
being preferred for certain eigenvalues intervals.

Let us assume that we have computed the first k eigenvalues of a symmetric in-
terval matrixAS with the direct interlacing method, and therefore know the prin-

cipal submatrix Ã
S

ofAS of dimension (n−k) which the algorithm has produced.
Furthermore, suppose that the (k+1) eigenvalue was computed with the indirect
algorithm and that now we want to compute the (k+ 2)−nd eigenvalue with the
direct algorithm again. There are, evidently, two possible ways to proceed: either

select an index from Ã
S

using the index selector function provided and then re-

peat the same process for the principal submatrix B̃
S

which would have resulted
from the previous step; or simply select the best matrix (with the same criterion

used in the index selector) of dimension (n−(k+3)) of Ã
S
, essentially ”skipping”

a step. However, this approach is actually more difficult to compute: in the first

case(where we removed one index from Ã
S

and then another from the resulting
matrix) we would need to examine

(
n−k
1

)
+
(
n−k−1

1

)
= n−k+n−k−1 = 2(n−k)−1

matrices. In the second variant(where we skip a matrix and remove two indices

at once) we would have to inspect
(
n−k
2

)
= (n−k)(n−k−1)

2
= n2+k2−2nk+n+k

2
, which

obviously grows much faster than the aforementioned 2(n−k)−1. It is larger for
any k for matrices of dimension at least 6; on the other hand, the difference in
performance will not be so noticeable for smaller matrices, and therefore, assum-
ing that we’re optimising the algorithm for speed, we should always run the index
selector on the matrices we’ve skipped; this has the added advantage of finding
a better approximation in case the prediction of the gap criterion function was

37

incorrect. Unfortunately, it also implies that these eigenvalues will have to be
computed twice, once with both methods. As long as the criterion selects the
indirect one for all eigenvalues from a certain point onward, the direct method
will not be called for these eigenvalues. Furthermore, the indirect approach will
never be used on eigenvalues for which the direct one was chosen by the criterion.
Therefore, it is safe to assume that even with this rather unfortunate obstacle
accounted for, the resulting function will still be significantly faster than always
running both methods, and it will almost certainly be equally or more accurate
than calling only one.

One final note: in the case that the gap criterion function cannot decide which
version of the direct interlacing method to use, we have decided to go with the
indirect one, as our numerical experiments show that it is usually more precise
and it also gives a higher probability of not having to run the direct method on
a sequence of indices.

4.1.5 Filtering methods

The eigsymencouterfiltersingleupper function is a straightforward implementation
of the filtering algorithm (Algorithm 5) which follows its description more or less
to the letter, and so we believe that no detailed elaborations are necessary. The
p and m input parameters define the required precision and maximal number of
iterations (the same as in the algorithm’s description).

Worth noting, however, are the last two input parameters, sr1 and sr2; these
are references to functions that compute an upper bound for the spectral radius of
a given real matrix. By default, we use verspectrad which is a part of the Versoft
package ([7]) and computes the actual spectral radius, with verification. As we
pointed out in the discussion on Algorithm 5, however, using quicker (albeit less
accurate) approximations can lead to dramatic decreases in computation time
(see 6.2 for our experimental results); for this purpose, eigsymencfiltersumnorm,
which computes the maximal column and maximal row sum, can be explicitly
referred to in one or both of the last two parameters. A reference to a function
implementing a possible better approximation can be placed here as well.

The wrapper function, eigsymencouterfilter, which filters all outer approx-
imations from both sides, simply applies the former procedure twice for each
eigenvalue and returns the results. It takes the same input arguments for the
purpose of passing them to eigsymencouterfiltersingleupper.

4.2 Inner bounds

4.2.1 Methods applying the local improvement method

The eigsymencinnerlocimpsingleupper function contains the basic implementation
of the local improvement procedure (Algorithm 6). The implementation contains
no particularly interesting moments, and the description of the algorithm should
be sufficient for understanding how it functions. As with the filtering function
described above, only the upper bound for a single eigenvalue is computed. The
matrix to examine and the index of the eigenvalue are passed to the function as

38

the first two input parameters. Optionally, precomputed eigenvalues and eigen-
vectors of the central matrix of the input matrix can be given as the third and
fourth input parameter respectively. The first output value is the inner approxi-
mation computed by the matrix; the second output value is basically the upper
bound of the verified interval which defined the final (in every step of the algo-
rithm, a verified interval is computed for an eigenvalue of some extremal matrix,
and the lower bound of that interval serves as a potential improvement of the ap-
proximation; the second output value is simply the upper bound of this interval).
This second output may be required by other, more complex methods, such as
the direct submatrix vertex enumeration procedure. More details can be found
in its description further on.

eigsymencinnerlocimp is the corresponding wrapper method, which runs the
above function twice for all eigenvalues to compute upper and lower bounds. As
was already discussed, it is possible (due to verification) that these bounds will
not define correct intervals; for this reason, the function returns the lower and
the upper bounds as separate output parameters (namely, the first and second),
followed by the lower and upper (as third and fourth output parameters) limits
of the corresponding verified intervals (as described in the above paragraph).

4.2.2 Methods applying the vertex enumeration method

The basic implementation of Algorithm 7 can be found in eigsymencinnervertens-
ingleupper, which takes an interval symmetric matrix and an index as input.
Precomputed eigenvalue intervals for the central matrix can be passed to the
function in the third, optional, argument. The only remarkable thing about the
implementation is the use of the auxiliary class vectoriterator for generating all
possible vectors from {±1}n by Algorithm 8. The wrapper function is eigsy-
mencinnerverten.

Otherwise, the majority of the remarks pertaining to the local improvement
algorithm and its implementing functions also applies to vertex enumeration as
well: the results may not necessarily be correct intervals, and so the functions
has two output parameters corresponding to the lower and the upper bounds
respectively.

4.2.3 Methods applying the direct submatrix vertex enu-
meration method

As was discussed in the description of the direct submatrix vertex enumeration
algorithm(9), significant changes need to be made in order to have it perform ver-
ified computations. More importantly, the tests that we performed rather heavily
imply that using the branch and bound version of the algorithm is, in fact, unde-
sirable, as it takes more time to verify the condition for skipping a set of indices
than we gain by actually skipping it (and all of its subset as well). On the other
hand, the original (unverified) algorithm required such a strong condition due to
the fact that one of its main strengths was finding exact bounds for the eigenvalue
intervals in some specific cases; since this property of the algorithm is all but lost
after applying verification to it (see the discussion of the algorithm for details), we
can replace this necessary condition by a faster heuristic, possibly skipping some

39

useful intervals but ultimately attaining a higher speed and still offering a better
accuracy than the local improvement and vertex enumeration methods. Devel-
oping a well balanced criterion for this purpose might prove to be an interesting
question to research, but for our implementation we have chosen a rather simple
one: instead of trying to guarantee that the system in the necessary condition
does not have a solution in order to skip an index set, we instead process it only
if the system is guaranteed to be solvable. According to our experimental data
(see 6.3) this virtually always produces the same results as the version without
branch and bound, but the computation time is shorter (although, admittedly,
not by much). Such a heuristic is implemented in negativecheckcondition; we still
keep our implementation of Algorithm 12 as defaultcheckcondition.

On the other hand, there is still a small possibility that exact eigenvalue
bounds might be computed; if this is the case, we cannot afford to skip even a
single potentially useful index set. If this is the case, it is better (with respect to
computation time) to ignore the necessary condition and simply process all index
sets without branch and bound; this could, of course, be achieved by implementing
a trivial condition check which always fails, but the data structures we use for the
branch and bound may occupy a significant amount of memory for larger matrices;
therefore, it is useful to have a separate implementation of the algorithm without
these data structures as well.

Due to this, we have two basic implementing functions. The first, eigsy-
mencinnerdsveupperbb allows us to use branch and bound (for example, with the
heuristic described above) at the cost of some memory; aside from precomputed
inner and outer approximations of the eigenvalue intervals, its parameters include
ev, a logical value which specifies whether to look for exact bounds or not (which
requires more verified computations and leads to a slower algorithm) and check-
condition which is a reference to a function for accepting or rejecting index sets
(the default is defaultcheckcondition).

The second basic function is eigsymencinnerdsveupper, which takes the same
parameters as the first one sans the function for accepting or rejecting index sets.

Both methods function similarly (the only difference being, of course, due to
the branch and bound and its related data structures); improving inner approx-
imations is done according to Algorithm 11 in both cases. Exact bounds are
determined by counting the number of possible candidates for each eigenvalue
interval; we should note that this is done more to illustrate the idea that was
discussed in the algorithm’s description, and hasn’t been thoroughly tested yet.
In any cases, it doesn’t seem, and neither can it be expected to find exact bounds
except in certain very specific cases.

The wrapper functions are eigsymencinnerdsve and eigsymencinnerdsvebb.
Their implementations are trivial.

4.3 Interface functions

A number of functions do not provide any actual functionality by themselves, but
rather organise and combine the procedures described in the previous sections into
more complex, and more accessible computational mechanisms. We refer to such
functions as ”interface functions” since a hypothetical user of our implementation
is expected to work with them and not with the underlying methods directly.

40

The user will most probably need to find both inner and the outer approxi-
mations of the eigenvalues of a given symmetric interval matrix, and it is to be
expected that our package will contain a single function which he will be able
to call and which will compute and organise all results for him. This function is
called eigsymenc in our implementation, since it does, indeed, provide a complete
encapsulation of all the eigenvalue intervals of symmetric interval matrices. In
essence, this is but a wrapper method: the actual ”work” is done by eigsymencin-
ner and eigsymencouter, which provide a complete calculation of the inner and
outer approximations of the eigenvalue intervals, respectively. These functions
can also be called directly by the user by giving them the interval matrix of
interest.

On several occasions we have mentioned that the speed of a given algorithm
or approach can be increased at the cost of accuracy, and vice-versa (which is, of
course, a basic fact and not surprising in itself). However, a question that remains
open is how to resolve this dilemma, i.e. when to choose precision over efficiency
and when to sacrifice accuracy for the sake of better computation times. Since
this is impossible to say, however, without knowing the specifics of the context
for which the calculations are performed, it is best to leave this choice to the user,
who will be, no doubt, better informed than us. On the other hand, our program
should be accessible and should not require understanding of its internals in order
to use it.

For this purpose, the interface functions use a common convention of five lev-
els for specifying the desired accuracy of the computation: these are FASTEST,
FASTER, EFFECTIVE, TIGHTER and TIGHTEST, and their intuitive mean-
ing should be obvious. One of these values can be supplied as an optional input
argument to any of the interface methods described above. If no such argument
is specified, EFFECTIVE is assumed as default, and this is the mode that we
expect will be used by the user most frequently and for the majority of situations.

The interface functions are programmed in such a way that modifying the
existing modes or even adding new ones should be very simple, and within the
capabilities of the average user in the case that the provided five modes are not
flexible enough for some specific application. Both eigsymencouter and eigsy-
mencinner contain a main ”switch” statement which calls different functions
according to the specified computation mode and then selects the best results
from them. Introducing a new mode is as simple as adding a new branch to
this ”switch” statement; reading the documentation of the individual functions
should be enough to understand their input and output parameters, as well as
their basic functionality, without examining the code in detail.

For outer approximations, the fastest mode uses only Rohn’s theorem (Theorem
2) to provide a quick result; in fact, since this is so fast, we use it as an initial
approximation for all modes.

The FASTER mode selects one of the direct and indirect interlacing methods
according to our heuristic developed in the course of the experiment in Section
6.1; this only makes sense for matrices that tend to be centred around 0, but the
function eigsymencoutermethodselector, which is called to choose the method,
can be modified to use a more accurate heuristic or to correspond to specific data
sets (for example, it could be made to always choose the direct method if the

41

user knows it is always preferable for the specific matrices he is working with);
however, instead of modifying the actual method, we recommend defining a new
function in the same format and calling it from eigsymencouter ; multiple criteria
can be defined in this way, and even used to create new user-defined computation
modes for specific classes of matrices.

Finally, we apply the fastest (and least accurate) filtering method, as described
in the corresponding experiment (Section 6.2); it runs very fast (especially com-
pared to the computation time required by the interlacing algorithm) so we don’t
lose too much performance even if it doesn’t improve the found approximation.
We only use the forward direction of the direct algorithm, as it almost always
works better according to our experimental data.

The EFFECTIVE mode attempts to select either the direct or indirect inter-
lacing method for individual eigenvalues based on the outer approximation com-
puted so far; heuristics based, for example, on the experiments described in 6.1,
can be used here; the function which performs the method selection is interlac-
ingcriterium; in the current version it simply calls the method selection function
used in the FASTER mode; in the same way as described above, more complex
criteria can be defined and incorporated into eigsymencouter. The method uses
the ”EI” version of the filtering algorithm as described in Section 6.2; it works
roughly twice as fast as the original filtering method, but usually produces very
good results.

The TIGHTER mode calls both the forward direct and indirect interlacing
algorithms and performs ”EI” filtering.

The most accurate mode, TIGHTEST, additionally uses the reverse direction
of the direct interlacing method as well, and performs the most accurate (but
slowest) filtering (referred to as ”EE” in the experiments). In other words, here
we utilise the most precise versions of all methods at our disposal.

The wrapper method for computing inner approximations, eigsymencinner,
functions in a similar way. Worth noting is that it returns six values representing
the found approximations instead of just one as with the outer approximation.
The first two output parameters represent the lower and upper approximations
found; these are returned separately, as it is possible that they define an improper
interval (this occurs for very ”thin” interval matrices due to verification); if this
happens, we know that the methods used have failed to find a verified inner
approximation.

The third and fourth output arguments are logic vectors that indicate, respec-
tively, which lower and upper bounds are exact; this is indicated by a value of 1
in the corresponding element of the vector.

The last two output arguments are the outer ”limits” of the lower, resp. upper
approximations which are known to be exact; the upper inner approximation of
a given eigenvalue interval is essentially the highest value that is guaranteed to
lie within that interval; the actual value may, of course, be larger. In the case
that an exact bound is computed, the largest value that it can take is listed in
the corresponding position of these last two vectors; in this way, taking the upper
inner approximation of an interval as a lower bound and the ”limit” given in the
corresponding position of the last output vector as an upper bound will yield
a verified interval inside which the exact bound must lie. The same situation

42

applies analogically for the lower approximations. For results that are not known
to be exact (according to the third and fourth output arguments) the values in
these last two vectors should be ignored.

Since some of the inner approximation algorithms required an outer approxi-
mation of the eigenvalue bounds as well, this can be provided as a third, optional
argument, to eigsymencinner ; otherwise, it is computed with eigsymencouter ac-
cording to the specified computation mode.

The last input argument indicates whether we want to search for exact bounds
or not; this concerns only the Direct submatrix vertex enumeration algorithm,
but the probability of getting any results is very small.

Finally, eigsymenc is the most general wrapper function, which calls eigsy-
mencouter and eigsymencinner with a given computation mode and returns the
results in a single matrix for convenience. It also replaces any improper intervals
with ”NaN” (not a number) values.

43

5. User guide

This section explains in some detail how to install and run the software imple-
mentations of the previously described algorithms. A basic familiarity with the
Matlab programming language and environment is assumed.

5.1 Prerequisites

Our functions make use of the Intlab package ([11]) for working with interval
data, which must be correctly installed and set up in order for them to function
correctly. The installation process is very simple and involves adding Intlab’s di-
rectory (the directory to which Intlab’s files were extracted) to the list of paths in
Matlab; the exact way of doing this varies slightly between the different versions
of Matlab, but in general an option named ”Set Path” must be used. The com-
mand ”addpath” might also be used as an alternative. Matlab’s documentation
can be consulted for more information in case of doubt.

It is also necessary to edit the ”startup.m” file (which should be located in
Intlab’s main directory) with a text editor and replace the line ”cd c:\intlab” to
refer to the actual location of Intlab’s directory on the user’s hard drive.

After the two steps described above are completed, Intlab will start and ini-
tialise automatically every time Matlab is run.

Another library which we utilise is Rohn’s Versoft package ([7]) which contains
functions performing differed verified operations. More specifically, we use the
function vereig, which computes verified intervals for the eigenvalues and eigen-
vectors of a given real matrix. Sometimes we also make use of verspectrad for
computing spectral radii of matrices. Aside from downloading and extracting the
library in question to a suitable directory, the only installation required is adding
the path of that directory to Matlab’s list of paths, which is done in the same
way as described above for Intlab.

For the branch and bound version of the direct submatrix vertex enumeration
algorithm we also utilise the functions ilsunsolvablefcr and ilssolvable developed
by Jaroslav Horáček; these do not appear to be published at the time of writing,
and should be included in our software package.

Our own software package is installed in the same way as Versoft: the source
files are copied to the user’s hard drive, and the directory containing them is
added to the list of paths in Matlab.

Note that functions from a certain directory can be called even if that directory
is not in the list of paths, provided that the directory in question is Matlab’s
current working directory. However, this is not particularly convenient.

44

5.2 Working with input data

The Intlab package is used for representing and working with interval data; for
a reminder of the notions used, the reader can refer to the first chapter of the
thesis.

Constructing an interval in Intlab can be done in two ways: either by specify-
ing the interval’s lower and upper bound (infimum and supremum), or by giving
its centre and radius. This is accomplished by using the command infsup and
midrad, which are both quite intuitive to use. As an example, suppose that we
want to create a representation of the real interval [3, 5] and save it to a variable
called ”a”. The following two commands both accomplish this goal:

a = infsup(3,5);

a = midrad(4,1);

Constructing an interval matrix is done in much the same way, except that
the arguments supplied to infsup or midrad are real matrices instead of numbers.
For example, the command

A = infsup([0 1; 2 3], [4 5; 6 7]);

places a representation of the interval matrix

(
[0, 4] [1, 5]
[2, 6] [3, 7]

)
into the variable

”A”. Vectors, as special cases of matrices, are constructed in the same way as
well.

Should we need to determine the lower bound, upper bound, centre and radius
of a given interval, we can accomplish this with the commands inf, sup, mid and
rad respectively. Calling

inf(a)

will return 4, the lower bound, for the real interval defined by the previous few
commands.

The basic arithmetic operations, such as addition, subtraction, multiplication,
etc. can be applied to interval values and their results correspond to the defini-
tions given in Chapter 1. For example, if we first define some intervals and assign
them to variables as follows

a = infsup(3,5); b = infsup(-1,2); c = infsup(-3,-2);

the output of the commands

a + b
a + c
a * b

45

a / c
a / b

will be the intervals [2, 7], [0, 3], [−5, 10], [−2.5,−1] and (−∞,+∞) respectively;
note that the last operation involves division by an interval containing zero, and
is therefore undefined according to the background presented in Chapter 1.

5.3 Computing inner and outer approximations

Now that we’ve described how to represent and work with interval matrices, we
can demonstrate how to use the functions we’ve developed in order to find inner
and outer approximations. In the following examples, assume that the variable
”A” contains a representation of a symmetric interval matrix.

The simplest way to use our software package is to call

eigsymenc(A)

This utilises a selection of algorithms with a reasonable ratio of computation time
and accuracy to find both an inner and an outer approximation. The output is
displayed in the following format:

[-23.8792, 2.5518] [-21.7612, -2.7955]

[-18.6798, 7.6840] [-10.3685, 1.7928]

[-11.3274, 11.1878] [-3.8650, 5.0872]

[-6.1519, 18.4198] [3.4518, 11.0428]

[-0.4759, 25.2010] [5.3998, 22.8773]

This is essentially a matrix with two columns, containing intervals; the first con-
tains the computed outer approximation and the second contains the inner one.
The eigenvalue intervals are sorted in ascending order. In the case that a verified
inner approximation could not be computed for a given value, the corresponding
element of the second column will contain a ”NaN” (not a number) value.

Usually we will want to save the result to a variable; this can be done, for
example by typing

results = eigsymenc(A)

which will save the matrix produced by the function to a variable called ”results”.
We can access individual elements of any matrix in Matlab by specifying the in-
dices of the row and column that we are interested in. For example, to get the
outer approximation for the second smallest eigenvalue interval, we can use

results(2,1)

Although the default algorithms should work well in most cases, we can speci-
fy a so called ”computation mode” as a second input parameter to eigsymenc.

46

The available options are FASTEST, FASTER, EFFECTIVE, TIGHTER and
TIGHTEST. The computation mode basically tells our program which algorithms
to use for the computation, as some are more precise, but slower than others. The
EFFECTIVE mode is used by default (i.e. if we do not specify a computation
mode), and if we find that the results are unsatisfactory, or the speed of compu-
tation is too slow, we can select a different mode. As an example, we can get the
fastest possible approximations by calling

eigsymenc(A,’FASTEST’)

Perhaps surprisingly, eigsymenc is a simple wrapper method which obtains its
approximations by calling two more specific functions, eigsymencouter and eigsy-
mencinner. It might happen that we want to find only an outer or only an
inner approximation for some given matrix, or that we want to apply different
computation modes for the outer and inner approximation. In this case we can
circumvent eigsymenc and call the two functions mentioned above ourselves.

The first, eigsymencouter, has the same interface as eigsymenc: the first pa-
rameter is the matrix that we want to examine, and the second one (which is
optional) is the desired computation mode. The output is an interval vector
which corresponds to the first column of the matrix returned by eigsymenc.

On the other hand, eigsymencinner is a little more complicated. It has four
input and six output parameters and takes the form

[l, u, el, eu, ll, ul] = eigsymencinner(iA, mode, iouter, e)

The first two input arguments are the same as those of the previous two
functions; the third is an outer approximation of the matrix’s eigenvalue intervals,
and the fourth is a logical value (true or false) indicating whether we want to try
and compute exact bounds. This only works with the TIGHTEST computation
mode, and quite rarely at that, so eigsymenc assumes that we always set e to
false and doesn’t display any results concerning exact bounds. Only the first input
parameter is required. If no outer approximation is supplied, eigsymencinner will
compute one by calling eigsymencouter with the specified computation mode; if
no value of e is given, it is assume to be false.

The first two output arguments are real vectors containing the computed
approximations for the lower and upper bounds, respectively. These are given
separately and not as a single interval vector due to the possibility that the inner
approximation algorithms will produce improper intervals as a result; in this case
eigsymenc outputted an ”NaN” value. The third and fourth output parameters
are logical vectors (containing true and false values) that indicate which lower,
resp. upper bounds are exact. If a given upper bound is known to be exact, the
value in the corresponding field of the u vector is the lower and the value in the
corresponding field of the lu vector is the upper bound of the verified interval
inside which the bound must lie. Analogically, for an exact lower bound, its
verified interval is defined by the corresponding elements of the ll and l vectors.

47

5.4 User-defined computation modes

It is worth noting that eigsymencouter and eigsymencinner are themselves wrap-
per methods as well; the actual ”work” is done by functions implementing differ-
ent variations of the algorithms described in Chapter 3. The user is not required
to understand the functionality and reasoning behind these implementations in
order to be able to use our package (although one can refer to Chapter 4 and
the documentations inside the individual functions to gather more insight), but
the internal workings of eigsymencinner and eigsymencouter are very simple, and
one particular benefit that the user can gain by studying them is the ability to
define custom computation modes.

The motivation for this is more or less obvious: first of all, our classification
of the different combinations of algorithms into five computation modes does not
necessarily have to correspond to the user’s notions, or to the requirements of
a specific application; what we consider to be ”effective” might, in fact, prove
to be too slow, or not accurate enough, depending on the needs and resources
available to the user. Furthermore, we have organised our functions into compu-
tation modes based on their performance for randomly generated matrices. It is
entirely possible that the user might be working with a specific class of matrices,
for which our observations are inaccurate or, conversely, unneeded; according to
our experimental data, for example, in the general case the forward version of
the direct interlacing algorithm almost always performs better than the reverse
direction. Now suppose that a certain project requires computing the eigenvalue
bounds of some very specific class of matrices, for which the forward direction
is, on the contrary, ineffective. Instead of having to resort to one of the slower
modes which run the algorithm in both directions, the user could define a new
mode specifically for these matrices that uses only the reverse direction and saves
time. Naturally, this requires some basic understanding of how eigsymencinner
and eigsymencouter work.

Both wrapper functions contain a single ”switch” statement which calls indi-
vidual algorithm implementations according to the mode specified. In order to
add a new mode, all that the user has to do is add a new case to this statement,
for example between the last existing mode and the ”otherwise” keyword:

...

case ’TIGHTEST’

...

case ’NEWMODE ’

ienc = eigsymencouterdirect(iA, ’reverse’);

otherwise

...

Of course, this requires more detailed knowledge of the functions implementing

48

the individual algorithms. Although we will not go into details here, reading the
documentation inside the source files along with Chapter 4 might prove useful in
this respect.

49

6. Numerical experiments

6.1 Direct and indirect interlacing methods

As the original authors themselves mention in [3], the direct interlacing method
appears to be generally more effective for matrices with narrower (or non-existing)
gaps between their eigenvalue intervals, while the indirect approach is usually
better in the opposite case (when the spaces between the eigenvalue intervals
are larger). While no specific criterion for differentiating between ”narrow” and
”wide” gaps for this purpose is presented in the article, finding one would be very
useful to us, since it could be used to construct a very effective (with respect to
computation time) implementation of the discussed algorithms, as it would, for
a given matrix, pick only one of the two variants (either indirect, or direct), yet
still produce better outer approximations than if only one of the two algorithms
was used for all matrices. Naturally, the more accurate the criterion used, the
better the results will be in the general case.

A lot of experiments were performed with randomly generated matrices in
attempts to gather information about the relationship between the spaces between
the eigenvalue intervals of a matrix and the relative effectiveness of the direct and
indirect interlacing methods. This section presents some of the more eloquent
results.

6.1.1 First experiment

Our first experiment was an attempt to find a criterion for choosing between
the direct and indirect interlacing methods for a specific eigenvalue of a given
symmetric interval matrix. As was mentioned above, the direct method usually
performs well for matrices with eigenvalue intervals that either overlap, or have
narrow ”gaps” between them, while the indirect version generally works better in
the opposite case. Obviously, the first thing that we need to look for is a way to
express the size of a ”gap” more accurately, since words like ”narrow” and ”wide”
do not mean anything in a mathematical context unless they are supported by
exact definitions.

In order to characterise the magnitude of a ”gap” for some symmetric interval
matrix AS ⊆ IRn×n, n ∈ N with eigenvalue intervals Λ1 = [λ1, λ1] ≤ Λ2 =
[λ2, λ2] ≤ ... ≤ Λn = [λn, λn], we define, for i ∈ {1, 2, ..., n− 1} the gap coefficient
ξi describing the gap between the i-th and the (i+ 1)-st eigenvalue interval as:

ξi =
λi+1 − λi
||AS||

,

where ||AS|| is the application of some matrix norm to the symmetric interval
matrix AS. In the experiment we used ||AS||1 and ||AS||∞, where |Aij| denotes
the magnitude of the interval at row i and column j of the interval matrix; since
we’re working with a symmetric interval matrix, we can assume that Aij = Aji
for i, j ∈ {1, 2, ..., n}.

Note that in the definition above, the gap coefficient can be negative as well;
in this way, it not only denotes whether or not two adjacent intervals overlap,

50

but also describes how much they overlap.
Another thing worth mentioning here is that, while the above definition refers

to the exact bounds of the matrix’s eigenvalue intervals, we are never going to
know them in practice (otherwise there would be no point in running either the
direct or indirect algorithm at all), but we can simply use some already existing
outer approximation as an estimate; for example, Rohn’s theorem is a very good
candidate for such an initial approximation, as it’s very fast to compute and in a
lot of cases is quite accurate.

As a general rule, the direct and indirect method almost always produce the
same result for the supremum of the largest eigenvalue (and therefore the infimum
of the smallest eigenvalue), while their outputs for the rest of the eigenvalues
are usually much more different and correspond to the empirical observations
described above.

In order to gather information about the relation between the examined gap
coefficient and the results of the direct and indirect method, we generate a large
number of random symmetric interval matrices with values in the range [−10, 10],
and assign each of the matrices to a given interval (the number of intervals and
the edges of each interval are variables) according to the magnitude of it’s gap
coefficient in order to get a histogram of the generated matrices; furthermore, for
each matrix we compute its eigenvalue bounds using both the direct and the indi-
rect interlacing methods, and count how many suprema are approximated more
sharply with the direct interlacing method. This way, for every interval in the
histogram, we know what percent of the matrices are better approximated with
the direct method, which basically means that we know what is the approximate
probability of the direct method of providing a better (or at least equal) approx-
imation. For matrices of higher dimensions, separate histograms are constructed
for each individual eigenvalue/gap coefficient pair.

The first phase of the experiment examined matrices of dimension 2, since
they only have one eigenvalue interval and therefore we do not have to take any
”interference” between the individual gaps or intervals into account. The first
few tests (which we do not present in detail here) lead us to the conclusion that
the interval between −1 and 1 (as values of the gap coefficient) is particularly
interesting and should be studied in more detail, as it contains the point for which
the direct and indirect methods perform equally well on average. The following
graph was obtained by generating 10000 random matrices and using a histogram
with intervals of magnitude 0.1:

51

−1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

From the above diagram, we can see that the length of the intersection of two
adjacent intervals appears to be irrelevant, as long as the intervals do overlap; in
this case, there is an estimated probability of about 0.8 that the direct method
will perform better; as the gaps increase, however, its effectiveness gradually
decreases.

Performing a similar experiment for matrices of higher dimensions yields com-
parable results: the histograms for the individual eigenvalues do not differ too
much from each other, and generally look similar. There is one major difference,
though, and that is the fact that the measured relative effectiveness of the direct
method now decreases for negative values of the gap coefficient as well (i.e. it
now matters how much the intervals overlap). The graph obtained for the second
eigenvalue (first gap) of matrices of dimension 3 is given below as an example.
The dotted line describes the distribution of the generated matrices, while the
numbers in the individual columns of the histogram correspond to the total num-
ber of generated matrices that belong to the given column (i.e. the number of
matrices with a gap coefficient in the corresponding range).

52

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

4

33 101 421
983 1657 2101

1937
1269

744
388

189
104

47
17

4

1

It appears that the point (the value of the gap coefficient) at which the direct
method starts being more effective shifts to the left as the matrix dimension
increases. Nonetheless, the distribution of the matrices produced by our matrix
generating function implies that our data is less accurate for very small and very
large gap coefficients; it would therefore be necessary to examine these ”extremal”
intervals more carefully before formulating a general hypothesis.

The new generation method that we use is based on the idea of ”expanding”
the elements of a randomly generated interval matrix with very ”thin” intervals
by multiplying them by a random number from a specified interval with a given
probability.

Using an expansion multiplier interval of [0.05, 0.1] and a probability of 0.5,
and performing the same experiment as above for matrices of dimension 4, we
were able to produce much more interesting results. The plots for the second,
third and fourth eigenvalues of such matrices are reproduced below.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

147

1485

3178
4587

5877 6961

7330
7614

7336 6998
6070 5176 4111 3023

1345
860

53

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

175 1966

4058

5662

7090

7792
8010

7630
7122 6212 5404 4175 3295 2399 1635 1029 646 348

195 80

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

159

1520

3055

4591
5858

6979
7424

7542
7414 6966

6155
5019 4155 3141 2075 1338 814 443

While the plot for the fourth eigenvalue appears to agree with the observations
from the previous tests, the other two graphs suffer from significant ”deforma-
tions”, not only in their shape, but also in the overall magnitude of the direct
algorithm’s effectiveness: the highest measured success rate (in the leftmost in-
terval of the histogram) for the third eigenvalue is a mere 20 percent, while for
the second eigenvalue it is practically zero.

Repeating the same experiment with slightly different values of the matrix
generation function’s parameters (specifically, increasing the amount by which the
initial ”thin” intervals can be expanded), we notice that the results are similar to
the diagrams depicted above, yet the observed ”deformations” are not as severe:
the overall shape of the individual histograms is closer to the one obtained by the
very first experiments, while the maximum success rate of the direct method for
the second eigenvalue is 0.1, as opposed to the 0.03 from the previous experiment.
The direct algorithm’s performance for the third and fourth eigenvalues is also
slightly better.

This leads us to the conclusion that the choice between the direct and indi-
rect interlacing method for a given symmetric interval matrix cannot be made
by approximating the relative magnitude of its interval ”gaps” alone, but other
factors need to be taken into account as well.

54

If no accurate criterion can be developed, and if the user has the capability
of generating a large amount of matrices of the specific type that he is going to
work with, we could suggest implementing a dynamic data structure which will
automatically construct a histogram as the ones we described above and update it
after every computation that involves both the direct and the indirect interlacing
methods; this could then be used to approximate their relative effectiveness for
further computations.

6.1.2 Second experiment

Our second experiment attempted to establish a connection between the magni-
tude of the radial matrix Aδ of a given symmetric interval matrix AS and the
effectiveness of the direct versus the indirect interlacing method. This is a certain
modification of the problem described above, as we are not directly examining
the gaps between the individual eigenvalue intervals; on the other hand, an in-
crease in the magnitude of the radial matrix naturally leads to an ”expansion” of
the eigenvalue intervals of the interval matrix in question, which in turn implies
”smaller” gaps between them. The benefit is that the experiment is simpler, since
we do not need to worry about the sizes of the individual gaps, but can instead
take a single number (the maximal element of the interval matrix’s magnitude)
as a characteristic for a given AS. As we shall see from the results below, this
assumption does indeed produce satisfying results.

In order to generate random interval symmetric matrices, we first generate
two real matrices: the central, and the radial matrix. The elements of the first
are taken to be in a certain range (e.g. between -10 and 10), while the values
of the latter lie between zero and a given number r. Although Matlab does not
include a function for generating symmetric matrices, we can simply ignore the
values in the lower-left half of a generated (non-symmetric) matrix and copy the
numbers from the upper-right half into their respective positions; effectively, we
generate the upper-right half and then ”mirror” it to obtain a full matrix. Such
a method should preserve the random distribution of the generated matrices.
Having generated the central and radial matrix, we then simply combine them
into the final, symmetric interval matrix.

The experiment was conducted by generating matrices of given dimensions
(between 3 and 10) and with given magnitudes of the radial matrices (1, 5, 10,
15, 20, 25 and 30), computing an outer approximation of their eigenvalues in four
different ways (using the direct and indirect method, each one utilising only the
forward or only the reverse direction of the direct approach) and then calculating
a table of quotients (for each combination of a dimension and a magnitude)
obtained by dividing the length of the outer approximation from each of the four
methods by the length of the ”optimal” approximation (the combination of the
best results from all methods). Basically, the lower the quotient, the better the
performance of the method in question (if the quotient is 0, then the length of
the approximation matches that of the optimal one). Obviously, we’ve made
the assumption that the quality of a given approximation depends not only the
amount that it ”cuts off”, but on the relative size of that amount with respect to
the size of the whole approximation.

Having computed the coefficients for all generated matrices with a given di-

55

mension and magnitude of the radius, we can take their mean, minimum and
maximum values and use them as a representation for all matrices with the given
characteristics, although in practice we only use the mean values. As a useful
by-product of the experiment, we can measure the average times for computing
the outer approximation as well. Having computed such ”representative values”
for all radius magnitudes of matrices of a given dimension, we use cubic spline
interpolation in order to approximate the functions mapping the magnitude of
the radial matrix to the quotient for one of the four methods. We then graph the
computed approximations.

The experimental data shows that the forward direction of the direct inter-
lacing method almost always produces better results than the reverse direction,
while their running time is essentially the same; therefore, we only examine the
forward direction of the direct method in our experiment. The effectiveness of
the two directions of the indirect approach, on the other hand, differ between
individual cases (although usually not by much), so we use their average as a
general measure of the indirect method’s accuracy.

The following image is a graph we obtained for matrices of dimension 3:

The decreasing function (resembling e−x) is the one mapping radius magni-
tude to quotients for the direct forward method, while the second one (which
initially increases and then begins decreasing) is the same function, but for the
indirect method. What we see generally agrees with the observations in the orig-
inal article: the direct method performs very poorly for matrices with smaller
radii (and, therefore, with larger gaps between their eigenvalue intervals), but
quickly improves in performance as the radius increases. The indirect method,
on the other hand, performs very well for matrices with a small radius, and its
performance does not change too gradually for larger radii, remaining more or
less constant and relatively satisfying as well. This immediately leads us to the
conclusion that the indirect method should always be preferred in the case that
no additional information is available about a given matrix.

The intersection of the two graphs (which in this case is for a magnitude of
about 4.2) is the point at which the direct method begins to be more effective.
Performing the experiment for matrices of higher dimensions (but with the same
parameters for generating the central and radial matrices), we can see that the

56

magnitude corresponding to this point shifts to the right; it is (approximately)
4.5 for matrices of dimension 4 and 5, 5.5 for matrices of dimension 5, 5.8 for
dimension 6, 6 for dimension 8, 6.2 for dimension 9 and 6.5 for dimension 10.
Otherwise, the overall ”shape” of the combined graph is always the same; the
graphs for dimensions 6 and 10 are presented below for comparison.

Notice that the graph of the direct method’s effectiveness closely resembles
the exponential function; indeed, it can be rather accurately approximated by
plotting aebx for some a, b ∈ R; the following diagram illustrates this method
for matrices of dimension 5, where we chose the numbers a and b such that the
exponential would pass through the first two known points of the approximated
function:

This implies that if we can estimate how the values a and b change with

57

respect to the matrix’s dimension and other parameters, we can develop a simple
heuristic which will choose the direct method in the case that the constructed
exponential yields a value that is not greater than a certain threshold, and select
the indirect approach otherwise. However, our attempts to predict the changes
of the a and b parameters did not prove to be successful, as these numbers do not
change in a consistent way (for example, increasing the range of the radial matrix
might cause one of them to increase in one case, and to decrease in another).
Therefore, we take a different approach, based on trying to predict the point of
the intersection between the direct and indirect method’s effectiveness function.

Table 6.1 presents the results obtained for matrices of different dimensions and
different ranges for the values of the central and radial matrix. Here the columns
(0, 2.5, etc.) describe the ”centre” and the rows (10, 20, etc.) describe the
”range” used to generate the central matrices in each experiment. For example,
to generate a central matrix with a centre at 2.5 and a range of 10 is to select its
values from the interval [−2.5, 7.5]. The numbers in the individual cells represent
the values of r (the maximal magnitude of the radial matrix) for which the graphs
of the effectiveness function of the direct and the indirect methods intersect.

Note that we only shift the ”centre” to the right in the experiment, as previ-
ous tests showed that if we are to move it the same distance to the left, e.g. to
-2.5 instead of 2.5, we get the same results (in other words, the output of the ex-
periment depends only on the amount and not the direction of the displacement).
This is actually rather obvious, as a negative shift would theoretically produce
the same matrices as the positive one but with opposite signs.

From the table, we can see that increasing the dimension of the matrix shifts
the intersection point for matrices centred at zero slightly to the left, although
not by much. Increasing the range from which the values of the central matrix
are picked, on the other hand, shifts the intersection point to the right and has
a much more pronounced effect; intuitively, this is because a given magnitude of
the radial matrix is relatively smaller with respect to a central matrix, the values
of which are farther apart.

If we examine the rate at which the coordinate of the intersection point in-
creases for broader ”ranges” (centred at 0) of the central matrix, we will notice
that if we double the range, the coordinate roughly doubles as well. For example,
if we look at the results for matrices of dimension 10 and divide the coordinate of
each row by that of the previous one, e.g. divide 2.5 for range 20 by 1.6 for range
10, we will get the quotients 1.5625, 1.92, 1.9375, 1.9882; these are all numbers
that are very close to two. Similar values can be obtained from the data concern-
ing the other two dimensions. Still, these quotients are somewhat inconsistent;
furthermore, if we try to find quotients for rows that are farther apart (e.g. for
ranges 160 and 20), we usually get a number which does not correspond to the
intuitive hypothesis that the quotient should be two to the power of the rows
in-between; if we divide (for dimension 10) 18.5 by 2.5, for example, we get 7.4,
which is close enough to 8, but is still somewhat inaccurate; furthermore, the
distance between the actual quotient and the power of 2 will obviously be larger,
the bigger the number of rows that we ”skip”.

On the other hand, imagine that the biggest possible distance between two
elements of a central matrix is 2a for a ∈ R, i.e. it is generated with values in the

58

range [−a, a]. If the radial matrix has a maximal magnitude of r for r ∈ R, r ≥ 0,
then we can reduce this ”gap” by at most r from each side, leaving us with a gap
of length 2a − 2r. Doubling the range of values of the central matrix, i.e. going
from [−a, a] to [−2a, 2a], effectively makes our radial matrix twice less effective
at bridging the gap, and therefore we need to increase the radius from r to r′ such
that the reduced gap is twice as large (in other words, the same size as before
relative to the matrix’s range) in order for it to have the same effect. In other
words, we want to find an r′ such that 4a−2r′

2a−2r = 2 ⇐⇒ 2a−r′
a−r = 2. The solution

is obviously r′ = 2r; however, if we look at the quotients 2a−r′
a−r obtained from the

experiment data, we will see that they are actually closer to 2 than the ones we
get by simply dividing the r′ by r; for dimension 10 we get 2.08, 2.01, 2.009, 2.001
(compare with the directly computed quotients above). Using the same approach
for more ”distant” rows, we get more accurate results as well: 160−18.5

20−2.5 = 8.09,
which is evidently better than the 7.4 computed above. If we now know that the
direct and indirect effectiveness functions intersect at 1.6 for range 10, and want
to know their intersection for range 80, we can do it using the above observations
by multiplying (10 − 1.6) = 8.4 by (2.01)3 and subtracting the result from 80;
this yields 11.78, which is a more accurate result than 1.6 × 8 = 12.8, at least
according to our data. We use 2.01 instead of 2, as the quotients we got above
are somewhat larger than 2 as well (but appear to tend towards it with increasing
range). If we want to compute the intersection point for a range which is not an
exact power of 2 using this method, we can simply use a logarithm with base 2,
e.g. 15 can be represented as 2log2(15), so we will multiply by (2.01)log2(15).

Predicting what will happen with the intersection point as a result of shifting
the central matrix range to the right, on the other hand, is more complicated,
as the experimental data does not indicate as clear a dependency; using cubic
spline interpolation and examining the resulting graphs leads us to the conclusion
that the functions mapping the magnitude of the shift to the intersection point
could possibly resemble an exponential function. There seems to be some initial
”hesitation” for the first shift, but after that doubling the magnitude of the
displacement roughly doubles the intersection radius as well; the amount by which
we multiply for further shifts gradually decreases. We could attempt to model
a function of the type f(x) = 1 + ea−bx or similar (with an initial value of 2
and tending towards 1), giving the amount by which we have to multiple the
intersection magnitude at x in order to get the one at 2x. Finding the approximate
value for a shift of magnitude 2nx given the value for a shift of magnitude x would
then involve finding the product of the values of the function for all arguments
x, 2x, 4x, ..., 2nx; if we ignore the constant in the function’s definition, we can
compute this product by exponentiating the sum of (a− bx) for all arguments x;
this can be done in constant time by using the well-known formula for the sum
of an arithmetic series.

Within the scope of our current project, however, we will content ourselves
with the heuristic we have found for matrices centred at zero. A more detailed
analysis of the behaviour of the functions described above might prove to be a
very interesting and productive topic for further research.

59

Dimension 3 0 2.5 5 7.5 10 12.5 15
10 2.1 2.1 4.2 6.6 11 13.9 16.15
20 3 3.5 3.9 5.4 7.5 12.4 13.6
40 6.1 6 5.7 6 7.4 8.2 12
80 12
160 24.8

Dimension 5 0 2.5 5 7.5 10 12.5 15
5 0 2.5 6.6 11.5 14.9 19.2 23.3
10 1.8 2.3 5 8.34 13.4 17.5 21.6
20 2.9 3 4 5.4 9.5 15.1 18
40 5.6
80 11.5
160 22.35

Dimension 10 0 2.5 5 7.5 10 12.5 15
10 1.6 2.2 6.3 12.5 17.3 23 27.5
20 2.5 2.7 4.3 7 14.2 19.1 24
40 4.8 4.8 5 6 7.5 11.2 18
80 9.3
160 18.5

Table 6.1: Direct vs indirect algorithm

In order to judge whether the heuristic developed above have any practical
value, we conducted several simple tests in which we allowed it to choose between
the direct and indirect interlacing method. For radial matrices with a magnitude
within a certain range (between 1 and 100), the results were very good: our
method was able to identify the better approach in about 75 percent of all cases,
which varied between 61 and 86 percent for different classes of matrices (individual
eigenvalues and their lower and upper bounds were considered separate cases) and
was able to minimise the total precision lost in the majority of cases as well. For
larger magnitudes, the results were less satisfactory, which is without doubt due
to the inexact data and approximations we used for constructing the criterion.
Gathering additional data (for example, for very large and very small magnitudes)
and ”fine-tuning” the method could make it very valuable for performing quick
and efficient computations.

6.2 Faster filtering methods

As was discussed in the description of Algorithm 5 (the filtering algorithm), an
upper bound for the spectral radius of a matrix can be used in place of its exact
computation in order to speed up the implementation; naturally, this results in a
loss of precision, but might be the better option if time is more important than
accuracy for a certain application. The main question that needs to be answered
is, how much time we gain and how much precision we lose when using such
approximations. The experiment described in this section is meant to provide an

60

0.01 EE EI IE II
2 1.0189 0.0188 1.0064 1.0064
3 1.0255 1.0253 1.0086 1.0085
4 1.0136 1.0134 1.0024 1.0023
5 1.0066 1.0065 1.0006 1.0005
10 1.0001 1.0000 1 1
25 1 1 1 1

0.1 EE EI IE II
2 1.0266 1.0265 1.0101 1.0100
3 1.0256 1.0253 1.0072 1.0071
4 1.0112 1.0111 1.0014 1.0013
5 1.0058 1.0057 1.0004 1.0003
10 1.0000 1.0000 1 1
25 1 1 1 1

1 EE EI IE II
2 1.0198 1.0196 1.0065 1.0064
3 1.0226 1.0224 1.0064 1.0063
4 1.0118 1.0116 1.0018 1.0017
5 1.0075 1.0074 1.0008 1.0007
10 1.0000 1.0000 1 1
25 1 1 1 1

Table 6.2: Efficacy of filtering methods

answer to precisely this question.
We compared the performance of four different variants of the filtering al-

gorithm (one which computes both spectral radii exactly, one which uses ap-
proximations for both, and two which approximate either the first or the second
spectral radius while computing the other one from the definition) on matrices
of varying dimensions and with different magnitudes of their radial matrices. For
each combination of dimension and magnitude, we generated 250 random ma-
trices, applied the direct and indirect interlacing methods on them to obtain an
initial outer approximations, and then attempted to improve them with the four
different versions of the filtering algorithm described above, evaluating the quali-
ty of the results by finding the quotient of the initial and filtered approximation’s
magnitudes (the larger the quotient, the more the interval was reduced).

Table 6.2 contains the quotients we obtained from our experiments. Here
”EE”, ”EI”, ”IE” and ”II” stand for the four different methods described above,
”E” and ”I” signifying, respectively, exact and inexact computation of the two
spectral radii in the filtering algorithm; for example ”EI” is the method where
we use an exact computation for the spectral radius in the numerator and an
approximation for the denominator. Our experiment uses the better of ||A||1 and
||A||∞ as an approximation for the spectral radius. The three parts of the table
present the results for three possible maximal magnitudes of the radial matrix,
and the columns in each of these parts represent the size of the examined matrices.

61

0.01 EE EI IE II
2 0.0651 0.0370 0.0290 0.0028
3 0.1007 0.0557 0.0440 0.0028
4 0.1265 0.0671 0.0571 0.0025
5 0.1579 0.0818 0.0743 0.0024
10 0.4166 0.2101 0.2091 0.0025
25 2.1332 1.0239 1.1182 0.0027

0.1 EE EI IE II
2 0.0672 0.0378 0.0296 0.0029
3 0.0996 0.0547 0.0415 0.0026
4 0.1228 0.0652 0.0558 0.0025
5 0.1572 0.0815 0.0740 0.0024
10 0.4275 0.2157 0.2146 0.0025
25 2.1323 1.0276 1.1048 0.0027

1 EE EI IE II
2 0.0750 0.0430 0.0328 0.0033
3 0.0987 0.0538 0.0426 0.0027
4 0.1241 0.0652 0.0569 0.0025
5 0.1604 0.0833 0.0748 0.0025
10 0.4275 0.2157 0.2146 0.0025
25 2.1136 1.0224 1.0956 0.0027

Table 6.3: Speed of filtering methods

62

A value of 1.000 indicates that the quotient in question is very close to but not
equal to 1 (in other words, there was some minimal improvement done by the
algorithm), whereas a value of 1 means that either no improvement was made at
all, or it was so insignificant that it could no be stored in the computer’s memory.
Once again, we used the mean value of the quotient for all matrices in a given
class and for all the eigenvalue intervals of those matrices.

Table 6.3 is structured in much the same way, and contains the average run-
ning times of the algorithms.

We can immediately see that the method which approximates the spectral
radius in the denominator but computes the first one exactly gives results com-
parable to the original method (which computes both radii precisely), but works
almost twice as fast (which was to be expected, considering that we avoid one
verified computation at the cost of finding the sums of the rows and columns of
the matrix). Therefore, it can safely be used as a quicker substitute for almost all
practical applications. Substituting both spectral radius computations by esti-
mates yields the worst results of all, but the time required for the computation is
negligible, and some improvement can occur, so it could be used at practically no
additional cost if time is of the essence. Indeed, the only variant which appears
to have no useful application in the general case is ”IE”, i.e. approximating the
spectral radius in the numerator and computing the one in the denominator; this
version of the algorithm takes roughly as much time as ”EI”, but produced results
only slightly better than the least precise ”II”.

6.3 Sample results

In order to illustrate the relative computation time and accuracy of the modes
provided by the wrapper methods for outer and for inner approximations, we
conducted several simple experiments which involved generating random matrices
of given dimensions and measuring their mean time and performance; precision
was measured relatively, by finding the quotient of the length of the interval
produces by a given mode and the one obtained from using the TIGHTEST
computation mode. The experiment was run for 100 matrices of each dimension,
the values of the central matrices where taken between -10 and 10, and the
magnitude of the radial matrices was generated randomly.

Table 6.4 lists the results for the outer approximations; the first part contains
the average quotients (lower is better), the second one the average times. The
modes FASTEST and EFFECTIVE give very similar results due to the fact
that they both utilise the same interlacing method in the current implementation
(the difference is in the filtering used). The TIGHTER mode produces much
sharper approximations for a few of the tested matrices, but the average quotient
is the same due to the fact that this happened quite rarely; in these cases the
approximations were equal to the one obtained by the TIGHTEST mode. In
practice, this means that one should only use the last two methods if computation
time is not a concern, or if accuracy is crucial.

63

Accuracy Fastest Faster Effective Tighter Test
3 1.1933 1.0020 1.0000 1.0000 1.000
5 1.2312 1.0094 1.0032 1.0022 1.000
10 1.2742 1.0025 1.0024 1.0023 1.000

Time Fastest Faster Effective Tighter Test
3 0.0333 0.2481 0.4637 0.8486 1.2053
5 0.0664 0.6499 1.2098 2.1501 3.1190
10 0.1988 3.1436 6.4416 9.9883 14.7495

Table 6.4: Comparison of the outer approximation modes

The same experiment was conducted for eigsymencinner.m, with the difference
that the quotient was inverted (in other words, the magnitude of the approxima-
tion produced by TIGHTEST was divided by the magnitude of each method’s
approximation in order to preserve the convention that lower quotients corre-
spond to better results). Additionally, since there is a chance that the methods
might fail to find an inner approximation, we also count the number of such
failures for each method. Quotients were obviously not computed in these cas-
es. Computation times always include finding all required data, such as outer
approximations.

Table 6.5 illustrates the result of our experiment; note that the last part lists
the total number of failures (out of a total of 100 examined matrices) instead of
an arithmetic mean. Due to the exponential complexity of the direct submatrix
vertex enumeration algorithm, computing its results for dimension 10 required so
much computation time that we weren’t able to complete the experiment for it;
therefore we only provide data for the three fastest computation modes.

We should note that introducing a maximal number of steps to the vertex
enumeration algorithm (and, possibly, some sort of method for randomly selecting
different extremal matrices) might make it faster for practical applications while
still more accurate than the local improvement method.

64

Accuracy Fastest Faster Effective Tighter Test
3 1.0640 1.0640 1.0251 1.0000 1.0000
5 1.2425 1.2425 1.0370 1.0000 1.0000
10 ? ? ? ? ?

Time Fastest Faster Effective Tighter Test
3 0.1952 0.1989 0.4228 1.6161 2.0197
5 0.0675 0.9952 5.5656 22.9795 26.1576
10 4.1444 4.2011 990.6110 ? ?

Failures Fastest Faster Effective Tighter Test
3 1 1 1 1 1
5 6 0 0 0 0
10 2 0 0 0 0

Table 6.5: Comparison of the inner approximation modes

65

Conclusion

We have introduced the main principles of interval arithmetic and verification,
and have presented a collection of theorems and algorithms that can be used to
find approximations for the eigenvalue intervals of symmetric interval matrices.
We saw that for most of the presented approaches a verified version could be con-
structed quite easily, but in some cases (namely, the computation of exact bounds
using the Direct submatrix vertex enumeration algorithm for inner bounds) this
conversion can be quite problematic.

The main result is, of course, the actual software implementation of the ver-
ified algorithms in the Matlab programming language, which can be used to
compute verified approximations for the individual eigenvalue intervals, or the
eigenvalue set as a whole, of any real symmetric interval matrix. In some degen-
erate cases, an inner approximation may not be found, but this is not due to a
problem in the algorithms, but rather because of the nature of verification itself.

There is a lot of room for further work and a lot of potential improvements
can be made to the project. Additional methods and modifications of the existing
ones that might provide either faster or more precise computations can, of course,
always be added to the implementation. Aside from that, a more careful study
of the dependency between the characteristics of a given interval matrix and
the relative efficiency of the direct versus the indirect interlacing methods (and,
possibly, other methods as well) and the development of a more accurate criterion
with which to select between the two methods can also be very useful, as it will
increase the accuracy of the faster modes of computation. Finally, the direct
submatrix vertex enumeration algorithm might be worthy of a deeper theoretical
analysis for the purpose of finding a way to add verification to it while leaving
the exact bound check intact; indeed, one of the most important features of the
algorithm was its capability of finding (or confirming) exact bounds in certain
cases; unfortunately, this promises to be a rather difficult task.

We will conclude by remarking that, as mentioned above, all the functions
from our software library were written with flexibility in mind, so that a poten-
tial user might easily replace a ”piece” of the program’s logic with something
else (for example, a better direct versus indirect criterion might be found, or a
different index selector might be desired for the interlacing methods, either in
general, or for working with a specific class of matrices) without modifying (or
even having to understand) the rest of the program. This is especially relevant
for the wrapper methods for outer and inner approximations, since the user can
”fine-tune” the accuracy versus speed ratio of the different computation modes
if the existing settings do not match his requirements for some reason. On the
other hand, no changes are necessary, and the functions can be used immediately
after installation.

66

Bibliography

[1] Götz Alefeld and Jürgen Herzberger. Introduction to Interval Computations.
Computer Science and Applied Mathematics. Academic Press, New York,
1983.

[2] D. Hertz. The extreme eigenvalues and stability of real symmetric interval
matrices. Automatic Control, IEEE Transactions on, 37(4):532–535, April
1992.

[3] Milan Hlad́ık, David Daney, and Elias Tsigaridas. Bounds on real eigenval-
ues and singular values of interval matrices. SIAM J. Matrix Anal. Appl.,
31(4):2116–2129, 2010.

[4] Milan Hlad́ık, David Daney, and Elias P. Tsigaridas. Characterizing and ap-
proximating eigenvalue sets of symmetric interval matrices. Comput. Math.
Appl., 62(8):3152–3163, 2011.

[5] Milan Hlad́ık, David Daney, and Elias P. Tsigaridas. A filtering method for
the interval eigenvalue problem. Appl. Math. Comput., 217(12):5236–5242,
2011.

[6] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to
Interval Analysis. SIAM, Philadelphia, PA, 2009.

[7] J. Rohn. Versoft: Guide. http://www.nsc.ru/interval/Programing/

versoft/guide.html.

[8] J. Rohn. Bounds on eigenvalues of interval matrices. ZAMM - Journal of Ap-
plied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik
und Mechanik, 78(S3):1049–1050, 1998.

[9] J. Rohn. Solvability of systems of interval linear equations and inequalities.
In Linear Optimization Problems with Inexact Data, pages 35–77. Springer
US, 2006.

[10] Jǐŕı Rohn. A handbook of results on interval linear problems. 2005.

[11] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Pub-
lishers, Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

67

http://www.nsc.ru/interval/Programing/versoft/guide.html
http://www.nsc.ru/interval/Programing/versoft/guide.html
http://www.ti3.tuhh.de/rump/

	Introduction
	Interval arithmetic
	Real intervals
	Interval matrices
	Eigenvalues of interval matrices
	Outer and inner approximations
	Further reading

	Theoretical foundations
	Outer approximations
	Inner approximations

	Algorithms
	Simple bounds
	Direct interlacing algorithm
	Indirect interlacing algorithm
	Improving outer approximations by filtering
	Speeding up the filtering algorithm

	Local improvement algorithm
	Vertex enumeration algorithm
	Submatrix vertex enumeration

	Implementation details
	Outer bounds
	Simple methods
	Methods applying the direct interlacing procedure
	Methods applying the indirect interlacing procedure
	Choosing between the direct and indirect method
	Filtering methods

	Inner bounds
	Methods applying the local improvement method
	Methods applying the vertex enumeration method
	Methods applying the direct submatrix vertex enumeration method

	Interface functions

	User guide
	Prerequisites
	Working with input data
	Computing inner and outer approximations
	User-defined computation modes

	Numerical experiments
	Direct and indirect interlacing methods
	First experiment
	Second experiment

	Faster filtering methods
	Sample results

	Conclusion

