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Abstrakt:
V této práci studujeme kooperativńı intervalové hry, zobecněný model kooper-
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valem, reprezentuj́ıćım všechny možné výsledky jejich kooperace.
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speciálńım d̊urazem na selekce, což jsou všechny možné výsledky hry ve kterých
už neńı žádná daľśı neurčitost.

Představujeme nové tř́ıdy her podle vlastnost́ı jejich selekćı a dokazujeme je-
jich charakterizace a vztahy s již existuj́ıćımi tř́ıdami. Ukazujeme nové výsledky
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zkoumáme problém rovnosti dvou r̊uzných typ̊u jader – hlavńıho stabilńıho řešeńı
kooperativńıch intervalových her. Nakonec ukazujeme nová pozorováńı ohledně
Shapleyho hodnoty intervalových her.
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Abstract:
In this thesis, we study cooperative interval games, a generalized model of coop-
erative games in which worth of every coalition corresponds with a closed interval
representing all possible outcomes of their cooperation.

We give a brief introduction into classical cooperative games, interval analysis
and finally introduction to cooperative interval games with focus on selections,
that is on all possible outcomes of interval game with no additional uncertainty.

We introduce new selection-based classes of interval games and prove their
characterizations and relation to existing classes. We show a new results regard-
ing core and imputations. We introduce a definition of strong imputation and
core and examine a problem of equality of two different versions of core – the
main stability solution of cooperative interval games. Finally, we make some new
remarks on Shapley value of interval games.
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1. Introduction

While game theory is well developed field of mathematics, hundreds of new papers
are published every year and many applications exist, its usage in real world
problems is quite limited due to the fact that in reality, we very often do not
know exact data to analyze players’ behavior. To be able to deal with different
types of uncertainty is therefore of high importance.

This thesis is about cooperative games with interval uncertainty. In coopera-
tive interval games, players are allowed to cooperate and every group of players
(coalition) knows worst and best possible outcome of its cooperation. This situ-
ation can be naturally modeled with intervals encapsulating all possibilities that
can occur. Bounds of interval then correspond to optimistic and pessimistic ex-
pectations. To study this interval uncertainty model, we will use results of both
classical cooperative game theory and interval analysis.

Structure of this thesis is as follows: In the second chapter we present basic
definitions and facts on classical cooperative games, their most important solution
concepts – core and Shapley value – and the main classes of cooperative games
together with their properties.

Third chapter is a brief introduction into interval analysis with emphasis on
interval arithmetic, functions and linear algebra.

Second and third chapter can be considered as the preliminaries sections to
the study of cooperative interval games.

Finally, fourth chapter is devoted to cooperative interval games – to moti-
vation, history, applications, definitions, basic facts, open problems and to new
results as well. Our results are presented in Section 4.3, 4.4 and 4.5. See the
beginning of Chapter 4 for more details.

On mathematical notation

• We will use ≤ relation on real vectors. For every x, y ∈ RN we write x ≤ y if
xi ≤ yi holds for every i ∈ N .

• We do not use symbol ⊂ in the thesis. Instead, ⊆ and ( are used for subset
and proper subset, respectively, to avoid ambiguity.
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2. Cooperative game theory

In this chapter our aim is to introduce reader to the theory of cooperative games
(which is sometimes called classical cooperative game theory to distinguish be-
tween another models). Knowledge of this chapter is necessary to understanding
theory of cooperative interval games since many of its concepts are extended
results of classical games.

The structure of this chapter is as follows: In the first section we will briefly say
what game theory is, what do we mean by cooperation and how can we further
divide cooperative games. Next section deals with basic definitions. Third and
fourth section are focused on solutions - namely on core and Shapley value. Last
section presents important classes of cooperative games and discusses some of
their properties.

2.1 History and informal introduction

What is game theory? Perhaps the most elegant answer is Myerson’s [31]: “Game
theory can be defined as the study of mathematical models of conflict and cooper-
ation between intelligent rational decision-makers.” History of this area of math-
ematics goes back to eighteenth century but it was extensively developed mainly
in the second half of the twentieth century thanks to work of John von Neumann
and Oskar Morgenstern who established game theory in a more uniformed way
and gave the basis for future research. Most important and influential was their
book Theory of Games and Economic Behavior [39] published in 1944.

Word “game” can be somewhat misleading, since, as we now know, game
theory is mainly analysis of conflicts and interactions and that includes a lot
more than games only. Term game theory comes from the times when the field
was in its beginnings and when studying strategies for various games was its main
application. In fact, game theory has many applications in many other fields like
biology, politics, economy, psychology etc. Various fields of mathematics like set
theory and combinatorics benefited from game theory research as well. So far,
ten game theorists were awarded with Nobel Prize in Economics.

Game theory can be further divided by game types. Most common division
is to non-cooperative and cooperative games. While non-cooperative game the-
ory does not allow communication and bargaining between players (for example
combinatorial games - chess, go, nim etc), cooperative game theory allows it and
players are therefore able to form into groups (coalitions) and coordinate their
actions in order to achieve higher profit. Applications of cooperative approach
include for example insurance problems [24], games on graphs and matroids [8],
games arising from combinatorial optimization problems [14] or fair division prob-
lems [30].

Cooperative game theory is further divided into two categories by transferabil-
ity of utilities. For simplification, we can think of utility as of reward given to each
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player. Transferability is, informally said, an ability to redistribute players’ gains
inside of coalition. This thesis deals with transferable utility (TU) games only, so
from now on, we will use the term cooperative game or game but we will mean
a transferable utility cooperative game. For further details on non-transferable
utility games (NTU), we recommend the reader to check the comprehensive book
by Peleg and Südholter [32]. This book covers TU games as well.

2.2 Basic definitions

We will start with the formal definition of a cooperative game.

Definition 2.1. (Cooperative game) Cooperative game is an ordered pair (N, v),
where N = {1, 2, . . . , n} is a set of players and v : 2N → R is a characteristic
function of cooperative game. We further assume that v(∅) = 0.

The set of all cooperative games with player set N is denoted by GN .

Subsets of N are called coalitions and N itself is called a grand coalition.

Observe that the characteristic function tells us what payoff is coalition able to
get if all of its members cooperate together as a unit and that all the information
about the game is encoded in its characteristic function.

The central goal of cooperative game theory is to analyze situations in which
grand coalition forms, that is a situation in which all players cooperate together
and receive v(N). The problem is to split reward in such way that no coalition
breaks of, i.e. so the grand coalition is stable situation.

To further analyze players’ gains, we will introduce payoff vector which can be
interpreted as a proposed distribution of reward between players.

Definition 2.2. (Payoff vector) Payoff vector for a cooperative game (N, v) is a
vector x ∈ RN with xi denoting reward given to ith player.

It is quite natural to introduce some restrictions on payoff vectors. The most
important are efficiency and individual rationality. While efficiency ensures that
whole grand coalition surplus is distributed, individual rationality states that the
reward given to ith player is as high as a reward which would ith player achieve
on his own.

Definition 2.3. (Efficiency) A payoff vector is efficient if
∑

i∈N xi = v(N).

Definition 2.4. (Individual rationality) A payoff vector is individually rational
if for every player i we have xi ≥ v({i}).

In some literature, efficiency is also called group rationality.

To distinguish between general payoff vectors and those which satisfy efficiency
or both efficiency and individual rationality, we introduce preimputation and
imputation.

Definition 2.5. (Preimputation) A payoff vector satisfying efficiency is called
preimputation.
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Definition 2.6. (Imputation) A payoff vector satisfying efficiency and individual
rationality is called imputation.

The set of all imputations of a given cooperative game (N, v) is denoted by
I(v)

Note 2.7. Formally, it would be better to write I((N, v)) instead of I(v) but we
will use the latter since it does not cause any confusion. Throughout this thesis,
we will often write only v in place of (N, v) because we can easily identify game
with its characteristic function without loss of generality.

Group and individual rationality are reasonable restrictions but as we will see
in the next section, even imputations do not give us stable payoff distributions.

2.3 Core

One of the most important solution concepts in cooperative game theory is core,
introduced by Gillies in 1959 [17]. It gives us those imputations which are guar-
anteed to be stable in such a way that grand coalition forms and no subcoalition
has an incentive to split off. First let us have a look at an example of game and
an unstable imputation.

Example 2.8. (Unstable imputation) Let us have a game G = ({1, 2, 3}, v)
where v({1}) = v({2}) = v({3}) = 1, v({1, 2}) = v({2, 3}) = v({1, 3}) = 3 and
v({1, 2, 3}) = 4. Then in imputation (1, 1, 2) the coalition {1, 2} has an incentive
to split off since it can achieve 3 on its own, instead of 2 which is imposed by this
imputation.

In the light of this example, it is quite natural to define core in a following
way.

Definition 2.9. (Core) The core of game (N, v) is a subset of imputations of
(N, v) where each element satisfies following condition:

∀S ∈ 2N \ {∅} :
∑
i∈S

xi ≥ v(S).

The core of a given cooperative game (N, v) is denoted by C(v).

Clearly, every subcoalition that would leave grand coalition would not be able
to get greater reward than the reward imposed by the payoff vector from core.

Natural question is to find sufficient and necessary conditions under which the
core is a nonempty set. This characterization is known as Bondareva-Shapley
theorem. It was stated and proved by Shapley [36] and Bondareva [9] indepen-
dently on each other in 1960s. The following formulation of theorem and related
definitions are from [32]. We refer reader to [32, p. 29] for a proof and a sharp
form of the theorem as well.
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Definition 2.10. (Characteristic vector of coalition) Let S ⊆ N . The charac-
teristic vector χS of S is the member of RN which is given by

χi
S =

{
1, if i ∈ S
0, if i ∈ N \ S.

Definition 2.11. (Balanced collection and balancing weights)
A collection B ⊆ 2N , ∅ 6∈ B, is called balanced (over N) if positive numbers δS,
S ∈ B, exist such that ∑

S∈B

δSχS = χN .

The collection (δS)S∈B is called a system of balancing weights.

Theorem 2.12. (Bondareva-Shapley) A necessary and sufficient condition that
the core of a game (N, v) is not empty is that for each balanced collection B and
each system (δS)S∈B of balancing weights

v(N) ≥
∑
S∈B

δSv(S).

Theorem 2.12 motivates us to define balanced game as a game with a nonempty
core.

Example 2.13. (Game with empty core) Let us have a game G = (N, v) where
N = {1, 2, 3} and v is the following characteristic function:

x v(x)
∅ 0
{1} 1
{2} 2
{3} 3
{1, 2} 4
{1, 3} 4
{2, 3} 4
{1, 2, 3} 5

Collection A = {{1, 2}, {2, 3}, {1, 3}} is balanced because there exists system of
balancing weights (1/2 for each coalition in A). However, 1

2
v({1, 2})+ 1

2
v({1, 3})+

1
2
v({2, 3}) = 6 > v(N) = 5 so from Bondareva-Shapley theorem we get that the

core of this game is empty.

2.4 Shapley value

Shapley value, introduced and named by Lloyd Shapley [35] (Nobel Memorial
Prize in Economic Science winner in 2012), is another important solution. Shapley
value is a payoff vector which has two very desired properties. First one is that
it always exists and second is that it gives to players rewards depending on their
importance in coalition forming. Thus it can be considered as an “universal fair
solution”.

Shapley theorem states that such desired function exists and that it is unique.
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Note 2.14. We will use notation fi(v) instead of f((N, v))i.

Theorem 2.15. (Shapley) There exists a unique function f : GN → RN satisfy-
ing following properties for every (N, v) ∈ GN .

(Efficiency) It holds that
∑

i∈N fi(v) = v(N).

(Dummy player) It holds fi(v) = 0 for every i ∈ N such that for every S\{i} ⊆
N equality v(S ∪ {i}) = v(S) holds.

(Symmetry) If for every S ⊆ N with the property that {i, j} 6⊆ S holds v(S ∪
{i})− v(S) = v(S ∪ {j})− v(S), then fi(v) = fj(v).

(Additivity) For every two games (N, a) and (N, b) and for every i ∈ N , equal-
ity fi(a+ b) = fi(a) + fi(b) holds.

It can be shown that the following function φ satisfies these axioms.

Definition 2.16. (Shapley value function) Shapley value function φ : GN → RN

is defined as

φi(v) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)).

Definition of φ can be interpreted as this: We give to each player his average
marginal contribution to each coalition. We consider all orders in which coalition
can be formed equally likely.

As we said, unlike core, Shapley value always exists, which is easily seen. As a
corollary to this, we see that Shapley value does not necessarily has to lie inside
of core (take for example a game with an empty core). But even a game with an
nonempty core does not have to contain its Shapley value in the core.

Example 2.17. (Game with nonempty core and Shapley value not contained
in core [16]) Let us have a game G = (N, v) where N = {1, 2, 3} and v is the
following characteristic function:

x v(x)
∅ 0
{1} 0
{2} 0
{3} 0
{1, 2} 100
{1, 3} 150
{2, 3} 0
{1, 2, 3} 150

Shapley payoff vector (φ1(v), φ2(v), φ3(v)) is equal to (912
3
, 162

3
, 412

3
) as one can

verify by inserting numbers into formula. Core of this game can be expressed like
this:

C(v) =
{

(x1, x2, x3) | 100 ≤ x1 ≤ 150, x2 = 0, x3 = 150− x1
}

.

As we can easily check, core is nonempty and Shapley value does not lie in the
core since φ2(v) 6= 0.
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2.5 Special classes of cooperative games

In this section, we will briefly speak about classes of cooperative games with
special characteristic functions. We will also show some relations between them.

Definition 2.18. (Monotonic game) A game (N, v) is monotonic if for every
T ⊆ S ⊆ N holds

v(T ) ≤ v(S).

Informally, in monotonic games, bigger coalitions are stronger.

Definition 2.19. (Superadditve game) A game (N, v) is superadditve if for every
S, T ⊆ N , S ∩ T = ∅ holds

v(T ) + v(S) ≤ v(S ∪ T ).

In superaditive game, coalition has no incentive to divide itself, since together,
they will always achieve at least as much as separated.

Superadditve game is not necessarily monotonic. Conversely, monotonic game
is not necessarily superadditive. However, these classes have a nonempty in-
tersection. Check Caulier’s paper [13] for more details on relation of these two
classes.

We will define subadditive and additive game in a similar manner.

Definition 2.20. (Subadditive game) A game (N, v) is subadditive if for every
S, T ⊆ N , S ∩ T = ∅ holds

v(T ) + v(S) ≥ v(S ∪ T ).

Definition 2.21. (Additive game) A game (N, v) is additive if for every S, T ⊆
N , S ∩ T = ∅ holds

v(T ) + v(S) = v(S ∪ T ).

Observe that additive games lie in the intersection of subadditive and super-
additive games.

Another important type of game is convex game.

Definition 2.22. (Convex game) A game (N, v) is convex if its characteristic
function is supermodular. The characteristic function is supermodular if for every
S ⊆ T ⊆ N holds

v(T ) + v(S) ≤ v(S ∪ T ) + v(S ∩ T ).

Clearly, supermodularity implies superadditivity.

To understand convex games more, let us look on one of its characterizations.

Theorem 2.23. (Characterization of convex games) A game (N, v) is convex if
and only if for every i ∈ N , S ⊆ T ⊆ N \ {i}:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).
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Proof. Proof can be found e.g. in Section V.1 of [15].

Thus we can say that in convex game, player’s contribution to coalition’s
reward grows with the size of coalition. Or, as Shapley says [37]: “The incentives
for joining a coalition increase as the coalition grows.”

Convex games have many nice properties. we show two of them which we
think are the most important.

Theorem 2.24. If a game (N, v( is convex, then its core is nonempty.

Theorem 2.25. If a game (N, v) is convex, then a vector (φ1(v), . . . , φn(v)) is
an element of its core.

Both of these results are due to Shapley and proofs can be found in [37].
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3. Interval analysis

This chapter is intended as an introduction to interval analysis. Tools of this
chapter will be heavily used in studying cooperative interval games. In Section
1 we introduce interval analysis and show the motivation to study it. Next we
introduce interval arithmetic. In the third section, we will present basic terminol-
ogy regarding interval matrices and interval linear systems. Section 4 shows some
basic definitions and facts regarding the use of intervals with functions. The last
section shows how can we compare intervals.

3.1 Introduction and motivation

Interval analysis is a field of mathematics which uses intervals for computing
rigorous bounds on problems dealing with inexact data. It was introduced by R.
E. Moore in the late 1950s during his doctoral studies on Stanford. One of the
first sources on how to work with intervals is Moore’s dissertation [27].

Original motivation to build the theory of interval analysis was to avoid round-
ing errors and inaccuracy following form the fact that irrational and some rational
numbers do not have a finite binary expansion. In general, these problems can-
not be solved by recomputing with higher precision arithmetic and therefore some
other tool is needed. To illustrate this motivation, take a look on a following ex-
ample given by Rump [34].

Example 3.1. Let’s have a variable c defined in a following way:

c = 332.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 + a/(2b)

with a = 77617.0 and b = 33096.0. Computing powers of a and b successively
by multiplications on an IBM 370 using different precisions will yield a following
results:

(single precision) c = 1.17260361 . . .

(double precision) c = 1.17260394005317847 . . .

(extended precision) c = 1.17260394005317863185 . . . .

From these results, one would say that the exact result has to be close to the
number 1.172603 but it is −0.827396 . . ..

However, this is not the only use of interval analysis. Interval analysis cam
also be used to solve problems regarding uncertainty. Suppose we do not know
precise input data but we are able to encapsulate them with intervals that surely
contain input. Then, under some additional conditions and assumptions, we can
count with these intervals instead and get rigorous bounds on solution. This is
in contrast with approach of choosing some concrete approximate value in the
beginning and ending up with results with possibly unknown level of inaccuracy.

13



Interval analysis found applications in global optimization, fluid mechanics,
artificial intelligence, economics, robotics, CSP (constraint satisfaction problems)
and was even used for computer-aided proof of the Kepler conjecture [19]. We
refer reader to Section 4 of [22] for more information on applications.

Of course, interval analysis is not a holy grail and does have its own pitfalls.
We need to work with interval arithmetic carefully. Otherwise, obtained solutions
can be not tight enough. One of the common issues is also an interval dependency
problem which will be described in more detail in Section 3.4.

3.2 Interval arithmetic

Let us first formally define intervals.

Definition 3.2. (Interval) The interval X is a set

X := [X,X] = {x ∈ R : X ≤ x ≤ X}.

With X being the lower bound and X being the upper bound of the interval.

So from now on when we say an interval we mean a closed interval. The set
of all real intervals is denoted by IR.

It is useful to introduce the following definitions as well.

Definition 3.3. (Width) The width w(X) of an interval X is defined as

w(X) := X −X.

Definition 3.4. (Midpoint) The midpoint m(x) of an interval X is defined as

m(X) :=
1

2
(X +X).

It is time to show how to count with intervals. This is how are defined basic
operations.

Definition 3.5. For every X, Y, Z ∈ IR and 0 /∈ Z holds

X + Y := {x+ y : x ∈ X, y ∈ Y } = [X + Y ,X + Y ],

X − Y := {x− y : x ∈ X, y ∈ Y } = [X − Y ,X − Y ],

X · Y := {x · y : x ∈ X, y ∈ Y } = [minS,maxS], S = {XY ,XY ,XY ,XY },
X /Z := {x / z : x ∈ X, z ∈ Z} = [minS,maxS], S = {X/Z,X/Z,X/Z,X/Z}.

Notice that any real number can be associated to a degenerate interval (lower
and upper bound being equal).

It is important to note that while interval addition and multiplication is asso-
ciative and commutative, distributivity does not hold in general. Take for example
intervals A = [1, 2], B = [1, 1] and C = [−1,−1]. Then A(B + C) = [0, 0] but
AB+AC = [−1, 1]. However, we can introduce somewhat weaker property called
subdistributivity.
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Proposition 3.6. (Subdistributivity) For any intervals X, Y and Z holds

X(Y + Z) ⊆ XY +XZ.

Proof. Trivial with use of definitions of arithmetic operations.

Note 3.7. Reader who is already familiar with interval analysis may wonder why
we do not use its standardized notation [23]. It is because papers on cooperative
interval games are not using it and we felt that it is better to be consistent with
existing literature on cooperative interval games.

3.3 Interval linear algebra

In this section, we will briefly discuss generalizing of interval notion to vectors
and matrices.

The following definitions of interval vector and interval matrix are used in
[29].

Definition 3.8. (Interval vector) By interval n-dimensional vector we mean an
ordered n-tuple of intervals:

(X1, . . . , Xn).

We denote set of all interval n-dimensional vectors by IRn.

Definition 3.9. (Interval matrix) By interval matrix we mean matrix whose
elements are intervals. We denote set of all interval n×m matrices by IRn×m.

Definition 3.10. (Realization/selection) Realization (or selection) of an interval
matrix A ∈ IRn×m is a matrix A′ ∈ Rn×m such that

Aij ≤ A′ij ≤ Aij for every i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤ m.

We can use the term of realization and selection for interval vectors in a similar
manner.

Let us now formally define interval linear systems and their properties and
two different kind of solutions.

Definition 3.11. (Interval linear system) Let A ∈ IRk×m, C ∈ IRl×m, b ∈ IRk

and d ∈ IRl. Interval linear system is a system

Ax = b, Cx ≤ d.

Definition 3.12. (Weak solution and weakly solvable interval system) A weak
solution of interval linear system (with notation as in Definition 3.11) is a vector
x ∈ Rm satisfying system

A′x = b′, C ′x ≤ d′

for some A′ ∈ A, b′ ∈ b, C ′ ∈ C and d′ ∈ d. Interval linear system is weakly
solvable if it does have some weak solution.
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Definition 3.13. (Strongly solvable interval system) An interval linear system
is strongly solvable if each of its realizations is solvable.

Definition 3.14. (Strong solution of interval system) A vector x′ ∈ Rm is a
strong solution of interval linear system (with notation as in Definition 3.11) if
it is solution for all realizations of A, b, C and d.

Note that while an existence of a strong solution implies strong solvability,
converse does not hold in general.

3.4 Intervals and functions

Imagine that we have some function f which is mapping from the set of real
numbers. We would like to know what is the image of this function for some
given interval. We will call this image united extension.

Definition 3.15. (United extension) United extension of function f : R → R
over interval X is a set

f(X) = {f(x) | x ∈ X}.

For further discussion, we need to define an interval extension.

Definition 3.16. (Interval extension [29]) We say that F : IR→ R is an interval
extension of f : R → R, if F (X) ⊇ {f(x) | x ∈ X} and for degenerate interval
arguments, F agrees with f (that is F ([x, x]) = f(x)).

The united e tension and the interval extension can be easily extended to
multi-variable functions.

As we said in this chapter’s introduction, one of the problems with the use of
intervals is interval dependency. Take for example functions f : IR → IR and
g : IR→ IR:

f(X) = [0, 0],

g(X) = X −X.

Clearly, f([0, 1]) = [0, 0], but g([0, 1]) = [0, 1]− [0, 1] = [−1, 1].

Overestimation in g is due to fact that in [0, 1]− [0, 1] we take numbers from
first and from second interval independently, e.g. 0 and 1. When dealing with
interval computations, we have to be very careful about this phenomenon.

The function g illustrates an important fact that not all interval extensions of
a real function yield an united extension. A simple replacement of real variables
by intervals might not be a good idea in general.

However, a classical result in interval analysis (see e.g. [28]) states, that an
interval extension F of function f in which every variable appears only once and
only basic arithmetic operations (+, −, ·, /) are used always yields an united
extension of f .
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Note 3.17. In [28], statement and proof of this result and related definitions are
more complicated and more formal. We made a few simplifications in this text,
so the reader is not overwhelmed by formality and by too many definitions.

3.5 Comparing intervals

It will come in handy to be able to compare intervals. There are basically two
ways.

We say that interval X is greater or equal than interval Y if X ≥ Y . We
denote it by X ≥ Y or Y ≤ X. Intervals are equal with respect to this relation
if X = Y and X = Y . Interval X is greater than Y (X > Y ) if X ≥ Y and X is
not equal to Y .

Second way is to use relation weakly better. We say that interval X is weakly
better than Y (X � Y or Y � X) if Y ≤ X and Y ≤ X. Two intervals are equal
with respect to this relation if X � Y and Y � X. Interval X is better than Y
(X � Y ) if X � Y and X is not equal to Y .

We easily see that in both cases equality occurs if and only if X = Y and
X = Y , i.e. when both intervals represent the same set. We denote it by X = Y .

Finally, it is important to note that both of these relations are partial orderings
of IR but not total orderings. As one can see in the following example, it is
possible to have pair of intervals which are not comparable by these relations.

Example 3.18. Consider intervals X, Y , Z and W with X = [1, 4], Y = [3, 6],
Z = [7, 9] and W = [7.5, 8.5]. Figure 3.1 shows their mutual position. Note that
all of these intervals are from IR but for better readability are not drawn on the
same line.

X

Y

Z

W

Figure 3.1: Interval Y is weakly better than X. Interval Z is greater than both X
and Y . Interval W is not comparable with Z by any of two relations.
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4. Cooperative interval games

This chapter has the following structure. In Section 1 we talk about motivation
and history of cooperative interval games. In Section 2 we present necessary basic
definitions and facts. Subsequent sections show our new results.

Section 4.3 is devoted to selection-based special classes of interval cooperative
games which are direct analogy of some special classes in classical cooperative
games. Fourth section aims on new results regarding imputations and core. We
examine a problem stated in [1] which asks for characterization of games for
which set of vectors generated by interval core equals to the selection core. Then
a definition of strong imputation and core is introduced as a new concept in
cooperative interval games. Section 4.5 sheds a new light on interval Shapley
value. Finally, the last section shows some of the open problems.

4.1 Introduction

In Chapter 2 we gave a quick overview of classical cooperative game theory. We
will now introduce another model, this time incorporating interval uncertainty. As
we saw, cooperative game is defined as a pair (N, v) with characteristic function
v encoding all information about game. However, in many real world situations,
e.g. in operations research (OR), biology or political sciences, we do not know
precise worths of coalitions. On the other hand, we are very often able to enclose
possible coalition value by its lower and upper bound representing worst and best
case scenario. Therefore, it is natural to to extend characteristic function to the
set of real closed intervals and get the definition of cooperative interval game.

Cooperation under interval uncertainty was first considered by Branzei, Dim-
itrov and Tijs in 2003 to study bankruptcy situations [11] and later further ex-
tensively studied by Gök in her PhD thesis [1] and other papers written together
with Branzei et al. (see the references section of [10] for more).

It is worth noting that there exist other non-classical models of cooperative
games incorporating some kind of uncertainty such as games with random payoffs
[38], games with fuzzy uncertainty [26] or even combination of fuzzy and interval
games – cooperative fuzzy interval games [25].

4.2 Basic facts and definitions

Definition 4.1. (Cooperative interval game) Cooperative game is an ordered
pair (N,w), where N = {1, 2, . . . , n} is a set of players and w : 2N → IR is a
characteristic function of cooperative game. We further assume that w(∅) = [0, 0].

Set of all interval cooperative games on player set N is denoted by IGN .

Note 4.2. We often write w(i) instead of w({i}).
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Remark 4.3. Each cooperative interval game in which characteristic function
maps to degenerate intervals only can be associated with some classical cooperative
game. Converse holds as well.

It will be useful to name the following important games associated with each
element of IGN .

Definition 4.4. (Border games) For every (N,w) ∈ IGN , border games (N,w)
(lower border game) and (N,w) (upper border game) are given by w(S) = w(S)

and w(S) = w(S) for every S ∈ 2N .

Definition 4.5. Length game of (N,w) ∈ IGN is a game (N, |w|) ∈ GN

|w|(S) = w(S)− w(S), ∀S ∈ 2N .

Basic term of our approach will be a selection which is a direct analogy of a
definition of the selection for interval matrices and vectors 3.10.

Definition 4.6. (Selection) Game (N, v) ∈ GN is a selection of (N,w) ∈ IGN if
for every S ∈ 2N holds v(S) ∈ w(S). Set of all selections of (N,w) is denoted by
Sel(w).

With the knowledge of this definition, we can define imputations and core.

Definition 4.7. (Interval selection imputation) Set of interval selection imputa-
tions (or just selection imputations) of (N,w) ∈ IGN is defined as

SI(w) =
⋃{

I(v) | v ∈ Sel(w)
}

.

Definition 4.8. (Interval selection core) Interval selection core (or just selection
core) of (N,w) ∈ IGN is defined as

SC(w) =
⋃{

C(v) | v ∈ Sel(w)
}

.

Gök et al. choose an approach using a weakly better operator (see 3.5). This
was inspired by [33]. Their definition of imputation and core is as follows.

Definition 4.9. (Interval imputation) Set of interval imputations of (N,w) ∈
IGN is defined as

I(w) :=
{

(I1, I2, . . . , Ln) ∈ IRN |
∑
i∈N

Ii = w(N), Ii � w(i), ∀i ∈ N
}

.

Definition 4.10. (Interval core) An interval core of (N,w) ∈ IGN is defined as

C(w) :=
{

(I1, I2, . . . , Ln) ∈ I(w) |
∑
i∈S

Ii � w(S), ∀S ∈ 2N \ {∅}
}

.

Note 4.11. Proposition 2.1 and Theorem 3.1 of [2] show an analogy of Bondareva-
Shapley theorem for SC and C, respectively. As we will not need these results, we
do not show them here.
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Important difference between these four definitions is that selection concepts
yield a payoff vectors from RN , while I and C yield vectors from IRN . That means
that the selection-based approach gives us payoffs with no additional uncertainty.
However, this approach was never systematically studied and very little is known.
This thesis is trying to fix this and we will concentrate almost purely on selections.

Note 4.12. (Notation) Throughout the papers on cooperative interval games,
notation, especially of core and imputations, is not unified. It is therefore possible
to encounter different notation from ours.

Also, in these papers, selection core is called core of interval game. We consider
that confusing and that is why do we use term selection core instead. Term
selection imputation is used because of its connection with selection core.

4.3 Special classes of interval games

4.3.1 Existing classes of interval games

This subsection aims on presenting existing classes of interval games which have
been studied earlier (see e.g. [3]). This is necessary later when we introduce
selection-based classes and show their relations with the existing ones.

Definition 4.13. (Size monotonicity) A game (N,w) ∈ IGN is size monotonic
if for every T ⊆ S ⊆ N holds

|w|(T ) ≤ |w|(S).

That is when its length game is monotonic.

Class of size monotonic games on player set N is denoted by SMIGN .

As we can see, size monotonic games capture situations in which an interval
uncertainty grows with the size of coalition.

Definition 4.14. (Superadditive interval game) A game (N,w) ∈ IGN is super-
additve interval if for every S, T ⊆ N , S ∩ T = ∅ holds

w(T ) + w(S) � w(S ∪ T ).

We denote by SIGN class of superadditive interval games on player set N .

We should be careful with an analogy of convex game, since now supermodu-
larity is not the same as convexity.

Definition 4.15. (Supermodular interval game) An interval game (N, v) is su-
permodular interval if for every S ⊆ T ⊆ N holds

v(T ) + v(S) � v(S ∪ T ) + v(S ∩ T ).

We get immediately that interval game is supermodular interval if and only if
its border games are convex.
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Definition 4.16. (Convex interval game) An interval game (N, v) is convex in-
terval if its border games and length game are convex.

We write CIGN for a set of convex interval games on player set N .

Convex interval game is supermodular as well but converse does not hold in
general.

See [3] for characterizations of convex interval games and discussion on their
properties.

4.3.2 Selection-based classes of interval games

We will now introduce a new classes of interval games based on the properties of
their selections. We think that it is natural way to generalize special classes from
classical cooperative game theory. Consequently, we show their characterizations
and relation to classes from preceding subsection.

Definition 4.17. (Selection monotonic interval game) An interval game (N, v)
is selection monotonic if all its selections are monotonic games. Class of such
games on player set N is denoted by SeMIGN .

Definition 4.18. (Selection superadditive interval game) An interval game (N, v)
is selection superadditive if all its selections are superadditive games. Class of such
games on player set N is denoted by SeSIGN .

Definition 4.19. (Selection convex interval game) An interval game (N, v) is
selection convex if all its selections are convex games. Class of such games on
player set N is denoted by SeCIGN .

We see that many properties persist. For example, a selection convex game is a
selection superadditive as well. Selection monotonic and selection superadditive
are not subset of each other but their intersection is nonempty. Furthermore,
selection core of selection convex game is nonempty, which is an easy observation.

We will now show characterizations of these three classes and consequently
show their relations to existing classes presented in Subsection 4.3.1.

Proposition 4.20. An interval game (N,w) is selection monotonic if and only
if for every S, T ∈ N , S ( T holds

w(S) ≤ w(T ).

Proof. For the “only if” part, suppose that (N,w) is a selection monotonic and
w(S) > w(T ) for some S, T ∈ 2N , S ( T . Then selection (N, v) with v(S) = w(S)
and v(T ) = w(T ) clearly violates monotonicity and we arrive at a contradiction
with assumptions �.

Now for the “if” part. For any two subsets S, T of N , one of the situations
S ( T , T ( S or S = T occur. For S = T , in every selection v, v(S) ≤ v(S)
holds. As for the other two situations, it is obvious that monotonicity cannot be
violated as well since v(S) ≤ w(S) ≤ w(T ) ≤ v(T ).
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Note 4.21. Notice the importance of using S ( T in the formulation of Propo-
sition 4.20. It is because using of S ⊆ T (thus allowing situation S = T ) would
imply w(S) ≤ w(S) for every S in selection monotonic game which is obviously
not true in general. In characterizations of selection superadditive and selection
convex games, similar situation arises.

Proposition 4.22. An interval game (N,w) is selection superadditve if and only
if for every S, T ∈ 2N such that S ∩ T = ∅, S 6= ∅, T 6= ∅ holds

w(S) + w(T ) ≤ w(S ∪ T ).

Proof. Similar to proof of Proposition 4.20.

Proposition 4.23. An interval game (N,w) is selection convex if and only if for
every S, T ∈ 2N such that S 6⊆ T , T 6⊆ S, S 6= ∅, T 6= ∅ holds

w(S) + w(T ) ≤ w(S ∪ T ) + w(S ∩ T ).

Proof. Similar to proof of Proposition 4.20.

Now let us look on relation with existing classes of interval games.

For selection monotonic and size monotonic games, their relation is obvious.
For nontrivial games (that is games with player set size greater than one), se-
lection monotonic game is not necessarily size monotonic. Converse is the same.
Finding of counterexamples is left as an exercise.

Proposition 4.24. For every player set N with |N | > 1, following assertions
hold.

(i) SeSIGN 6⊆ SIGN .

(ii) SIGN 6⊆ SeSIGN .

(iii) SeSIGN ∩ SIGN 6= ∅.

Proof. In (i), we can construct the counterexample in the following way.

Let us construct game (N,w). For w(∅), interval is given. Now for any
nonempty coalition, set w(S) := [2|S| − 2, 2|S| − 1]. For any S, T ∈ 2N with S
and T being nonempty, the following holds with the fact that |S|+ |T | = |S ∪ T |
taken into account.

w(S) + w(T ) = (2|S| − 1) + (2|T | − 1)

= 2|S|+ 2|T | − 2

≤ 2|S ∪ T | − 2

= w(S ∪ T )

So (N,w) is selection superadditive. Its length game, however, is not supper-
additive, since for any two nonempty coalitions with the empty intersection
|w|(S) + |w|(T ) = 2 6≤ 1 = |w|(S ∪ T ).
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In (ii), we can construct the following counterexample (N,w′). Set w′(S) =
[0, |S|] for any nonempty S. Lower border game is surely superadditive, since
0 + 0 ≤ 0. For the upper game, w′(S) +w′(T ) = |S|+ |T | = |S ∪ T | = w′(S ∪ T )
for any S, T with the empty intersection, so the upper game is superadditive.
Observe that length game is the same as upper border game. This shows an
interval superadditivity.

However, (N,w′) is clearly not selection superadditve because of nonzero upper
bounds, zero lower bounds of nonempty coalitions and the characterization of
SeSIGN taken into account.

(iii) Nonempty intersection can be argumented easily by taking some superad-
ditve game (N, c) ∈ GN . Then we can define corresponding game (N, d) ∈ IGN

with
d(S) = [c(S), c(S)], ∀S ∈ 2N .

Game (N, d) is selection superadditive since its only selection is (N, c). And it
is superadditive interval game since border games are supermodular and length
game is |w|(S) = 0 for every coalition, which trivially implies its superadditivity.

Proposition 4.25. For every player set N with |N | > 1, following assertions
hold.

(i) SeCIGN 6⊆ CIGN .

(ii) CIGN 6⊆ SeCIGN .

(iii) SeCIGN ∩ CIGN 6= ∅.

Proof. For (i), take a game (N,w) assigning to each nonempty coalitions S inter-
val [2|S|−2, 2|S|−1]. From the characterization theorem, we get that in inequalities
which must hold in order to meet necessary conditions of game to be selection
convex, |S| < |S ∪ T | and |T | < |S ∪ T | must hold. This yield the following
inequality.

w(S) + w(T ) ≤ (2|S∪T |−1 − 1) + (2|S∪T |−1 − 1)

= 2|S∪T | − 2

= w(S ∪ T )

≤ w(S ∪ T ) + w(S ∩ T )

This concludes that (N,w) is selection convex. We see that border games and
length game are convex too. To have a game so that it is selection convex and
not convex interval game, we can take N, c) and set c(S) := w(S) for S 6= N
and v(N) := [w(S), w(S)]. Now the game (N, c) is still selection convex, but its
length game is not convex, so (N, v) is not convex interval game, which is what
we wanted.

In (ii), we can take a game (N,w′) from Proposition 4.24. From the fact
that |S| + |T | = |S ∪ T | + |S ∩ T |, it is clear that w′ is convex. Lower border
game is trivially convex and the length game is the same as upper. However, for
nonempty S, T ∈ 2N such that S 6⊆ T , T 6⊆ S, S 6= ∅, T 6= ∅, convex selection
games characterization is clearly violated.
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As for (iii), we can use the same steps as in (iii) of Proposition 4.24 or we can
use a game (N,w) from (i) of this theorem.

4.4 New results on imputations and core

4.4.1 Core coincidence

In Gök’s PhD thesis [1], the following topic is suggested: “A difficult topic might
be to analyze under which conditions the set of payoff vectors generated by the
interval core of a cooperative interval game coincides with the core of the game
in terms of selections of the interval game.”

We decided to examine this topic. We call it a core coincidence problem. This
subsection shows our results.

Note 4.26. We remind the reader that whenever we talk about relation and max-
imum/minimum/maximal/minimal vectors, we mean relation ≤ on real vectors
unless we say otherwise.

Main thing to notice is that while the interval core gives us a set of interval
vectors, selection core gives us a set of real numbered vectors. To be able to
compare them, we need to assign to set of interval vectors a set of real vectors
generated by these interval vectors. That is exactly what the following function
gen does.

Definition 4.27. A function gen maps to every set of interval vectors a set of
real vectors. It is defined as

gen(S) =
⋃
s∈S

{
x | x is a realization of s

}
.

Core coincidence problem can be formulated as this: What are the necessary
and sufficient condition to satisfy gen(C(w)) = SC(w)?

Note 4.28. Because of incomparability of sets of C and SC, it is not formally
right to speak about the coincidence of these two sets. However, we will use that
wording from time to time, since it is clear what it says from the context.

The main result of this subsection are two following theorems which give an
answer to aforementioned question.

Note 4.29. In the following text, by mixed system we mean a system of equalities
and inequalities.

Theorem 4.30. (Core coincidence characterization) For every interval game
(N,w) holds gen(C(w)) = SC(w) if and only if for every x ∈ SC(w) exist non-
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negative vectors l(x) and u(x) such that∑
i∈N

xi − l(x)i = w(N), (4.1)∑
i∈N

xi + u
(x)
i = w(N), (4.2)∑

i∈S

xi − l(x)i ≥ w(S), ∀S ∈ 2N \ {∅}, (4.3)∑
i∈S

xi + u
(x)
i ≥ w(S), ∀S ∈ 2N \ {∅}. (4.4)

Proof. Idea: We will first prove, that for any game, gen(C(w)) ⊆ SC(w) holds.
So for equality, we will only need to take care of gen(C(w)) ⊇ SC(w).

For any x′ ∈ gen(C(w)), inequality v(N) ≤
∑

i∈N x
′
i ≤ v(N) obviously holds.

Furthermore, x′ is in core for any selection of interval game (N, s) with s given
by

s(S) =

{ [∑
i∈N x

′
i,
∑

i∈N x
′
i

]
if S = N[

w(S),min(
∑

i∈S x
′
i, w(S))

]
if otherwise.

Clearly, Sel(s) ⊆ Sel(w) and Sel(s) 6= ∅. That concludes gen(C(w)) ⊆ SC(w).

As for gen(C(w)) ⊇ SC(w), we have some x ∈ SC(w). For this vector, we need
to find some interval X form C(w) so that x ∈ gen(X). This is equivalent to the
task of finding two nonnegative vectors l(x) and u(x) such that

([x′1 − l
(x)
1 , x′1 + u

(x)
1 ]), [x′2 − l

(x)
2 , x′2 + u

(x)
2 ], . . . , [x′n − l(x)n , x′n + u(x)n ]) ∈ C(w).

From the definition of interval core, we can see that these two vectors have to
satisfy exactly the mixed system (4.1)− (4.4). That completes the proof.

Example 4.31. Consider an interval game with N = {1, 2} and w({1}) =
w({2}) = [1, 3] and w(N) = [1, 4]. Then vector (2, 2) lies in core of selection
with v({1}) = v({2}) = 2 and v(N) = 4. However, to satisfy equation (4.1), we
need to have

∑
i∈N li = 3 which means that either l1 or l2 has to be greater than

1. That means we cannot satisfy (4.3) and we conclude that gen(C(w)) 6= SC(w).

The following theorem shows that it suffices to check only minimal and maxi-
mal vectors of SC(w).

Theorem 4.32. For every interval game (N,w) and x ∈ RN holds x ∈ gen(C(w))
if there exist vectors q, r ∈ RN such that q, r ∈ gen(C(w)) and qi ≤ xi ≤ ri for
every i ∈ N .

Proof. Let l(r), u(r), l(q), u(q) be the corresponding vectors in the sense of Theorem
4.30. We need to find vectors l(x) and u(x) satisfying (4.1) − (4.4) of Theorem
4.30.

Let’s define vectors dq, dr ∈ RN :

dqi = xi − qi,

dri = ri − xi.
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Finally, we define l(x) and u(x) like this:

l
(x)
i = dqi + l

(q)
i ,

u
(x)
i = dri + u

(r)
i .

Now we will check if we can satisfy (4.1)− (4.4).

For example (4.2): ∑
i∈N

xi − l(x)i =
∑
i∈N

xi − dqi − l(q)i

=
∑
i∈N

xi − xi + pi − l(q)i

=
∑
i∈N

pi − l(q)i

= w(N).

The last equality holds because of assumptions on q and l(q).

Other three are similar and obviously hold, so we omit their proof.

Theorem 4.33. For an interval game (N,w) with additive border games (see
Definition 2.21) a payoff vector (w(1), w(2), . . . , w(n)) ∈ gen(C(w)).

Proof. First, let us look on an arbitrary additive game (A, vA). From additivity
condition and fact that we can write any subset of A as a union of one-player sets
we conclude that vA(A) =

⋃
i∈A vA({i}) for every coalition A′. This implies that

vector a with ai = vA({i}) is in the core.

Now described argument can be applied to border games of (N,w). Vector
q ∈ RN with qi = w(i) is an element of core of (N,w) and an element of SC(w).

For vector q we want to satisfy mixed system (4.1)-(4.4) of Theorem 4.30.

Take a vector l containing zeros only and vector u with ui = |w|(i). From the
additivity, we get that

∑
b i ∈ Nqi − li = w(N) and

∑
i∈N qi + ui = w(N).

Additivity further implies that inequalities (4.3) and (4.4) hold for q, l and u.
Therefore, q is an element of gen(C(w)).

Theorem implicates that for games with additive border games, we need to
check the existence of vectors l and u from (4.1) − (4.4) of Theorem 4.30 for
maximal vectors of SC only. We need to check only the maximal vectors, because
for any vector y ∈ SC(w) holds (w(1), w(2), . . . , w(n)) ≤ y. In other words,
(w(1), w(2), . . . , w(n)) is a minimum vector of SC(w).

4.4.2 Strong imputation and core

In this subsection, our aim will be on a new concept of strong imputation and
strong core.
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Definition 4.34. (Strong imputation) For a game (N,w) ∈ IGN a strong im-
putation is a vector x ∈ RN such that x is an imputation for every selection of
(N,w).

Definition 4.35. (Strong core) For a game (N,w) ∈ IGN a strong core is a
union of vectors x ∈ RN such that x is an element of core of every selection of
(N,w).

We show the following four quick facts about the strong core.

Remark 4.36. For every interval game with nonempty strong core w(N) is a
degenerate interval.

Proof. Easily by the fact that the element c of strong core must be efficient for
every selection and therefore

∑
i∈N ci = w(N) = w(N).

Remark 4.37. For every element c of strong core holds
∑

i∈N ci = w(N) and∑
i∈S ci ≥ w(S), ∀S ∈ 2N \ ∅.

Remark 4.38. For every element c of strong core of (N,w), c ∈ gen(C(w)).

Proof. Vector c has to satisfy mixed system (4.1)-(4.4) of Theorem 4.30 for some
l, u ∈ IRN . We show that li = ui = 0 will do the thing.

Equalities (4.1) and (4.2) are satisfied by taking Remark 4.36 into account.
Inequalities (4.3) and (4.4) are satisfied as a consequence of Remark 4.37.

Remark 4.39. An interval game (N,w) has an nonempty strong core if and only
if w(N) is a degenerate interval and the upper game w has an nonempty core.

Proof. Combination of Remark 4.36 and 4.37.

Note 4.40. All of the remarks mentioned her can be proved by constructing a
corresponding interval matrix A and b for an interval game and by applying a
characterization results of Hlad́ık’s paper [21]. Because it is more straightforward
to show these remarks in a way as we did, we do not show how to build these
interval matrices. However, reader is invited to do so.

Note 4.41. The reason behind the using of name strong core and strong imputa-
tion comes form the interval linear algebra. This is more apparent after reading
a text in Section 3.3.

Note 4.42. One could say why we did not introduce a strong game as game in
which each of its selection does have an nonempty core. This is because such
games are already defined as strongly balanced games (see e.g. [2]).

4.5 Shapley value

The purpose of this section is to only quickly remark a fact about interval exten-
sion of Shapley value which was never stated before.
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Definition 4.43. (Shapley interval extension) By Shapley interval extension we
mean a function φI : IGN → IRN defined as

φIi (w) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(w(S ∪ {i})− w(S)).

In existing papers on the Shapley value for interval games [4] [7], Shapley
interval extension is ignored because it does not satisfy an efficiency in general.
Authors further restrict themselves only to size-monotonic games on which the
efficiency is guaranteed.

We remark an important fact, that while the Shapley interval extension does
not satisfy efficiency in general, each φIi (w) contains all Shapley values for any
selection. This easily follows from the classical result of interval analysis about
which we talked in Section 3.4.

4.6 Open problems

Aim of this section is to present some of the open problems we discovered or
encountered. We hope that it will stimulate research in the area of cooperative
interval games.

Partially fixed interval Shapley value

Suppose that uncertainty of Shapley value of some players is settled. What effect
has this on other players? How do their lower and upper bounds of Shapley
interval extension change?

More applications

There are already some papers on applications of cooperative interval games
(see [5] [18] [6] for applications to mountain situations, airport games and forest
situations, respectively). For researchers with stronger background in economy
or other social science, it could be easier to find some new applications.

Relation with a new approach

Weibin Han, Hao Sun and Genjiu Xu studied a new approach [20] to interval
games based on introducing a total order on IR. It could be interesting to find
the relation with the existing results.

Stable sets from selection-based approach

Stable set is, next to the core and Shapley value, another important solution
concept and is especially useful in situations when core is empty. Stable set for
classical game can be defined as follows (definitions are from [12, p. 18]).
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Definition 4.44. (Domination of imputation) Let (N, v) ∈ GN and x, y ∈ I(v).
We say that x dominates y, and denote it by x dom y if there exists S ∈ 2N \ {∅}
such that

(i) xi > yi for all i ∈ S,

(ii)
∑

i∈S xi ≤ v(s).

Definition 4.45. (Stable set) For (N, v) ∈ GN a subset K of I(v) is called a
stable set if the following conditions hold:

(i) (Interval stability) K ∩ dom(K) = ∅,

(ii) (External stability) I(v) \K ⊆ dom(K),

where by dom(A) we denote the set consisting of all imputations that are domi-
nated by some element in A.

For example, one could examine a union or an intersection of sets of stable
sets for each selection.

In [2] Gök et al. studied stable set analogy for interval games, defined with
� relation. In the concluding remarks, authors suggest to study stable sets from
the selection point of view as well.

Games with coincident cores

Interesting, yet as it seems a quite difficult question is what ’nice’ classes and type
of games do have a coincident cores. Games with degenerate intervals are quite
clear example, but they are too simple, since in fact, they contain no uncertainty.
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5. Conclusion

The main task of this thesis was to examine existing model of cooperative interval
games, extend it and to find the characterizations of some of their solutions and
properties. Subsequent section summarizes these efforts.

5.1 Results of this thesis

We extended interval cooperative games with the definitions of strong core and
strong imputation and showed some of their properties.

We introduced new classes of interval games based on their selections, charac-
terized these classes and showed their relation to corresponding existing classes
of interval games. We emphasize the implications of Proposition 4.24 and 4.25.
They show that studying the selection-based classes gives more sense, since ex-
isting classes have two major drawbacks:

• Classes based on weakly better operator may contain games with selections that
do not have any link with the properties of their border games and consequently
no link with the name of the class. For example, superadditive interval games
may contain a selection that is not superadditive.

• Selection-based classes are not contained in corresponding classes based on
weakly better operator. Therefore, all the results on existing classes are quite
useless for selection-based classes.

We also examined the core coincidence problem and proved that it suffices to
find for every selection core element a two special vectors. These vectors have to
satisfy a mixed system (4.1)− (4.4) of Theorem 4.30.

We further show that checking minimal and maximal elements of selection
core for existence of these vectors is enough to show the coincidence. On the top
of that, we proved a statement saying that for interval game with border games
(w and w) being additive, it suffices to check maximal vectors only.

Thesis further summarizes struggles to find interval analogy of Shapley value
and makes remark about bounds on possible Shapley values of players in interval
game.

5.2 Future work

Section 4.6 presents several open problems. We think that theory of cooperative
interval games is promising area of mathematics with many open problems and
high potential of applicability in real world problems. Author of this thesis plans
to attack some of the open problems in the near future.
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