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What is Absolute Value Linear Programming?

Absolute value linear programming (AVLP)

Linear programming with absolute values

max cT x subject to Ax − D|x | ≤ b

Assumption: D ≥ 0

Negative coefficients can be reformulated as linear constraints

Example: 2x + |x | ≤ 3 rewrite as 2x + y ≤ 3, −y ≤ x ≤ y

Hard and challenging problem: Reduction from integer programming

Consider a 0-1 integer linear program

max cT x subject to Ax ≤ b, x ∈ {0, 1}n .

The problem equivalently states

max cT x subject to Ax ≤ b, |2x − e| = e.
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Basic Properties max cT x : Ax − D|x | ≤ b

The AVLP problem max c
T
x subject to Ax − D|x | ≤ b

nonconvex and nonsmooth optimization problem

the feasible set can be disconnected: |x | = e

Proposition

The feasible set is a convex polyhedra set inside each orthant.
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More on Geometry max cT x : Ax − D|x | ≤ b

Theorem (H., Hartman)

Let S ⊆ R
n be a polyhedral set

and convex in each orthant.

Suppose there is no unbounded

direction in the boundary of S
that is orthogonal to an axis.

Then S can be described by

Ax − D|x | ≤ b.
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Theorem (H., Hartman)

The set

S =
m
⋃

i=1

{x ∈ R
n : Aix ≤ bi}.

can be described as an AVLP system with ≤ log(m) additional variables.
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Relation to Interval Analysis max cT x : Ax − D|x | ≤ b

The AVLP problem

f ∗ = max cT x subject to Ax − D|x | ≤ b.

Relation to Interval Linear Programming

The feasible set is the united solution set of an interval linear system

[A− D,A+ D]x ≤ b.

That is,

{x : Ax − D|x | ≤ b} =
⋃

A′∈[A−D,A+D]

{x : A′x ≤ b}

f ∗ is equal to the best-case optimal value of

max cT x subject to [A− D,A+ D]x ≤ b.

That is,

f ∗ = max
Ã∈[A−D,A+D]

max cT x subject to Ã ≤ b.
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The interval AVLP Problem max cT x : Ax − D|x | ≤ b

The interval AVLP problem

max c
T x subject to Ax −D|x | ≤ b,

where

c ∈ IR
n and b ∈ IR

m are interval vectors,

A,D ∈ IR
m×n are interval matrices.

Assumption

D ≥ 0

Our goal: Range of optimal values

f = max f (A, b, c ,D) subject to A ∈ A, b ∈ b, c ∈ c, D ∈ D,

f = min f (A, b, c ,D) subject to A ∈ A, b ∈ b, c ∈ c, D ∈ D,

where f (A, b, c ,D) is the optimal value of the particular AVLP problem.
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Best Case Optimal Value f max cT x : Ax − D|x | ≤ b

Proposition (Reduction to one AVLP problem)

We have

f = max cTc x + cT∆ |x | subject to Acx − (A∆ + D)|x | ≤ b

Proposition (Reduction to 2n LP problems)

We have

f = max
s∈{±1}n

max (cc + diag(s)c∆)
T x

subject to (Ac − (A∆ + D) diag(s))x ≤ b, diag(s)x ≥ 0.

Corollary

f is the same as the best case optimal value of the interval LP problem

max c
T x subject to A

∗x ≤ b,

where A∗ =
[

Ac − A∆ − D, Ac + A∆ + D
]

.
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Worst Case Optimal Value f max cT x : Ax − D|x | ≤ b

Observation

f is attained for b = b and D = D.

For c and A no reduction can exist.

Proposition (Lower bound)

We have

f ≥ f L,

where

f L = max cTc x − cT∆ |x | subject to Acx + (A∆ − D)|x | ≤ b.
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Worst Case Optimal Value f max cT x : Ax − D|x | ≤ b

Example

max x2 subject to − 3 ≤ x1 ≤ 3, x2 − |x1| ≤ 0, ax1 + x2 ≤ 3

for a ∈ [0, 1]:
optimum z1 = (−3, 3)T ,
optimal value 3

for a ∈ [−1, 0]:
optimum z2 = (3, 3)T ,
optimal value 3

f (a) = 3 ∀a ∈ a = [−1, 1]
and f = 3

however, f L = 1.5
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f L = max x2 subject to − 3 ≤ x1 ≤ 3, x2 − |x1| ≤ 0, x2 + |x1| ≤ 3.
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Worst Case Optimal Value f max cT x : Ax − D|x | ≤ b

Upper bound iterative method (find a promising realization)

1 Put b = b and D = D.

2 Put A := Ac and c := cc .

3 Compute

f U := f (A, b, c ,D).

and let s be the sign of the computed optimal solution.

4 Put

c := cc − diag(s)c∆, A := Ac + A∆ diag(s).

5 Update the upper bound

f U := min
{

f U , f (A, b, c ,D)
}

.

6 Iterate this process until the upper bound f U is not improved.
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Worst Case Optimal Value f max cT x : Ax − D|x | ≤ b

Example

max x2 subject to − 1 ≤ x1 ≤ 1, −|x1| ≤ −1, 0 ≤ x1 + x2 ≤ 1,

x2 ≤ 1, ax1 + x2 ≤ 0, a = [0, 1]

for a ∈ [0, 1):
optimum (1,−a)T ,
optimal value −a

for a = 1:
optimum z1 = (−1, 1)T ,
optimal value 1

Thus f = −1,
but not attained

Now, f L = f = −1
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Upper bound f U = −0.5: f (ac) = −0.5, s = (1,−1)T , update a := 1.
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Basis Stability max c
T x : Ax − D|x | ≤ b

Basis stability of our problem

max c
T x : Ax − D|x | ≤ b

means basis stability of the interval LP relaxation

max c
T x subject to A

∗x ≤ b,

where A∗ =
[

Ac − A∆ − D, Ac + A∆ + D
]

.

That is, there is a basis B that is optimal for each realization.

In interval LP, basis stability simplifies many problems

Checking basis stability is co-NP-hard, but sufficient conditions exist

Proposition (Reduction to one LP problem)

Under B-stability, we have

f = max b
T

B y subject to (Ac − A∆ − D)TB y ≤ c ,

(Ac + A∆ + D)TB y ≥ c , y ≥ 0.
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Basis Stability max c
T x : Ax − D|x | ≤ b

Proposition (Reduction to one AVLP problem)

Under B-stability, we have

f = min cTc x − cT∆ |x | subject to (Ac)Bx + (A∆ − D)B |x | ≥ bB .

Theorem (Reduction to one absolute value system)

Under B-stability, the absolute value system

(Ac)Bx + (A∆ − D)B |x | = bB (⋆)

has the unique solution x∗ and

f = f L = cTc x∗ − cT∆ |x∗|.

Remarks

In general, systems of type (⋆) are NP-hard to solve

In our case of unique solvability, the complexity is unknown.
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Basis Stability max c
T x : Ax − D|x | ≤ b

Example
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, D =




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

 , basis B = {1, 2}.

Assume 5% uncertainty in the constraint matrix A:
A = [A− 0.05|A|,A + 0.05|A|]

14 / 15



Conclusion
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