Linear Programming Problems with Absolute Values and Interval Uncertainty

Milan Hladík

Interval Methods Group
https://kam.mff.cuni.cz/gim

Department of Applied Mathematics, Charles University, Prague, Czech Republic https://kam.mff.cuni.cz/~hladik/

20th International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations SCAN 2025, Oldenburg, Germany September 22 – 26, 2025

What is Absolute Value Linear Programming?

Absolute value linear programming (AVLP)

Linear programming with absolute values

max
$$c^T x$$
 subject to $Ax - D|x| \le b$

Assumption: $D \ge 0$

Negative coefficients can be reformulated as linear constraints

• Example: $2x + |x| \le 3$ rewrite as $2x + y \le 3$, $-y \le x \le y$

Hard and challenging problem: Reduction from integer programming

Consider a 0-1 integer linear program

max
$$c^T x$$
 subject to $Ax \le b$, $x \in \{0,1\}^n$.

The problem equivalently states

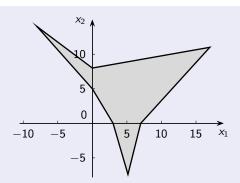
max
$$c^T x$$
 subject to $Ax \le b$, $|2x - e| = e$.

The AVLP problem max $c^T x$ subject to $Ax - D|x| \le b$

- nonconvex and nonsmooth optimization problem
- the feasible set can be disconnected: |x| = e

Proposition

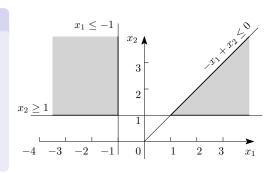
The feasible set is a convex polyhedra set inside each orthant.



Theorem (H., Hartman)

Let $S \subseteq \mathbb{R}^n$ be a polyhedral set and convex in each orthant. Suppose there is no unbounded direction in the boundary of Sthat is orthogonal to an axis. Then S can be described by

$$Ax - D|x| \leq b.$$



Theorem (H., Hartman)

The set

$$S = \bigcup_{i=1}^{m} \{ x \in \mathbb{R}^n \colon A^i x \le b^i \}.$$

can be described as an AVLP system with $\leq \log(m)$ additional variables.

The AVLP problem

$$f^* = \max c^T x$$
 subject to $Ax - D|x| \le b$.

Relation to Interval Linear Programming

• The feasible set is the united solution set of an interval linear system

$$[A-D,A+D]x \le b.$$

That is,

$${x: Ax - D|x| \le b} = \bigcup_{A' \in [A-D, A+D]} {x: A'x \le b}$$

ullet f^* is equal to the best-case optimal value of

max
$$c^T x$$
 subject to $[A - D, A + D]x \le b$.

That is,

$$f^* = \max_{\tilde{A} \in [A-D, A+D]} \max c^T x$$
 subject to $\tilde{A} \le b$.

The interval AVLP problem

max
$$\boldsymbol{c}^T x$$
 subject to $\boldsymbol{A} x - \boldsymbol{D} |x| \leq \boldsymbol{b}$,

where

- $c \in \mathbb{IR}^n$ and $b \in \mathbb{IR}^m$ are interval vectors,
- $A, D \in \mathbb{IR}^{m \times n}$ are interval matrices.

Assumption

<u>D</u> ≥ 0

Our goal: Range of optimal values

 $\overline{f} = \max \ f(A, b, c, D)$ subject to $A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c}, \ D \in \mathbf{D},$ $\underline{f} = \min \ f(A, b, c, D)$ subject to $A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c}, \ D \in \mathbf{D},$

where f(A, b, c, D) is the optimal value of the particular AVLP problem.

Proposition (Reduction to one AVLP problem)

We have

$$\overline{f} = \max c_c^T x + c_{\Delta}^T |x|$$
 subject to $A_c x - (A_{\Delta} + \overline{D})|x| \le \overline{b}$

Proposition (Reduction to 2ⁿ LP problems)

We have

$$\overline{f} = \max_{s \in \{\pm 1\}^n} \max (c_c + \operatorname{diag}(s)c_{\Delta})^T x$$

subject to $(A_c - (A_{\Delta} + \overline{D}) \operatorname{diag}(s))x \leq \overline{b}$, $\operatorname{diag}(s)x \geq 0$.

Corollary

 \overline{f} is the same as the best case optimal value of the interval LP problem max $c^T x$ subject to $A^* x \leq b$,

where
$$\mathbf{A}^* = [A_c - A_\Delta - \overline{D}, A_c + A_\Delta + \overline{D}].$$

Observation

- \underline{f} is attained for $b = \underline{b}$ and $D = \underline{D}$.
- For c and A no reduction can exist.

Proposition (Lower bound)

We have

$$\underline{f} \geq \underline{f}^L$$
,

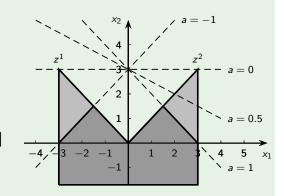
where

$$\underline{f}^L = \max \ c_c^T x - c_{\Delta}^T |x| \ \ \text{subject to} \ \ A_c x + (A_{\Delta} - \underline{D}) |x| \leq \underline{b}.$$

Example

max
$$x_2$$
 subject to $-3 \le x_1 \le 3$, $x_2 - |x_1| \le 0$, $ax_1 + x_2 \le 3$

- for $a \in [0,1]$: optimum $z^1 = (-3,3)^T$, optimal value 3
- for $a \in [-1, 0]$: optimum $z^2 = (3, 3)^T$, optimal value 3
- $f(a) = 3 \ \forall a \in a = [-1, 1]$ and $\underline{f} = 3$
- however, $f^L = 1.5$



 $\underline{f}^{L} = \max x_2 \text{ subject to } -3 \le x_1 \le 3, \ x_2 - |x_1| \le 0, \ x_2 + |x_1| \le 3.$

Upper bound iterative method (find a promising realization)

- Put $b = \underline{b}$ and $D = \underline{D}$.
- 2 Put $A := A_c$ and $c := c_c$.
- Compute

$$\underline{f}^U := f(A, \underline{b}, c, \underline{D}).$$

and let s be the sign of the computed optimal solution.

Put

$$c := c_c - \operatorname{diag}(s)c_{\Delta}, \quad A := A_c + A_{\Delta}\operatorname{diag}(s).$$

Update the upper bound

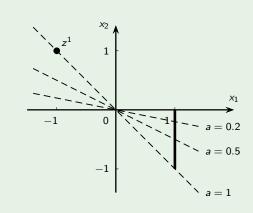
$$\underline{f}^U := \min \{\underline{f}^U, f(A, \underline{b}, c, \underline{D})\}.$$

1 Iterate this process until the upper bound \underline{f}^U is not improved.

Example

max
$$x_2$$
 subject to $-1 \le x_1 \le 1$, $-|x_1| \le -1$, $0 \le x_1 + x_2 \le 1$, $x_2 \le 1$, $ax_1 + x_2 \le 0$, $a = [0, 1]$

- for $a \in [0,1)$: optimum $(1,-a)^T$, optimal value -a
- for a = 1: optimum $z^1 = (-1, 1)^T$, optimal value 1
- Thus $\underline{f} = -1$, but not attained
- Now, $\underline{f}^L = \underline{f} = -1$



Upper bound $\underline{f}^U = -0.5$: $f(a_c) = -0.5$, $s = (1, -1)^T$, update a := 1.

Basis stability of our problem

$$\max \; \boldsymbol{c}^T x : \boldsymbol{A} x - \boldsymbol{D} |x| \leq \boldsymbol{b}$$

means basis stability of the interval LP relaxation

max
$$\boldsymbol{c}^T x$$
 subject to $\boldsymbol{A}^* x \leq \boldsymbol{b}$,

where
$${\pmb A}^*=\left[A_c-A_\Delta-\overline{D},\,A_c+A_\Delta+\overline{D}
ight].$$

That is, there is a basis B that is optimal for each realization.

- In interval LP, basis stability simplifies many problems
- Checking basis stability is co-NP-hard, but sufficient conditions exist

Proposition (Reduction to one LP problem)

Under B-stability, we have

$$\overline{f} = \max \ \overline{b}_B^T y \ subject \ to \ (A_c - A_\Delta - \overline{D})_B^T y \le \overline{c},$$

$$(A_c + A_\Delta + \overline{D})_B^T y \ge \underline{c}, \ y \ge 0.$$

Proposition (Reduction to one AVLP problem)

Under B-stability, we have

$$\underline{f} = \min \ c_c^T x - c_\Delta^T |x| \ \ \text{subject to} \ \ (A_c)_B x + (A_\Delta - \underline{D})_B |x| \geq \underline{b}_B.$$

Theorem (Reduction to one absolute value system)

Under B-stability, the absolute value system

$$(A_c)_B x + (A_\Delta - \underline{D})_B |x| = \underline{b}_B \tag{*}$$

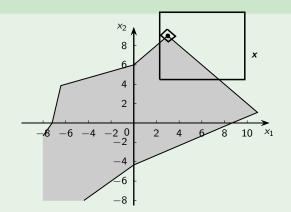
has the unique solution x^* and

$$\underline{f} = \underline{f}^{L} = c_c^T x^* - c_{\Delta}^T |x^*|.$$

Remarks

- In general, systems of type (*) are NP-hard to solve
- In our case of unique solvability, the complexity is unknown.

Example



$$A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \\ -6 & 2 \\ 4 & -7 \end{pmatrix}, \ b = \begin{pmatrix} 12 \\ 18 \\ 36 \\ 26 \end{pmatrix}, \ c = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}, \text{ basis } B = \{1, 2\}.$$

Assume 5% uncertaint in the constant metris A

Conclusion

Group on Interval Methods

https://kam.mff.cuni.cz/gim

