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What is Absolute Value Linear Programming?

Absolute value linear programming (AVLP)

Linear programming with absolute values

max ¢’ x subject to Ax — D|x| < b

Assumption: D > 0
Negative coefficients can be reformulated as linear constraints
@ Example: 2x + |x| <3 rewrite as 2x +y <3, —y < x <y

Hard and challenging problem: Reduction from integer programming
Consider a 0-1 integer linear program

max c'x subject to Ax < b, x € {0,1}".
The problem equivalently states

max ¢’ x subject to Ax < b, [2x —e| =e.
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Basic Properties

The AVLP problem max c”x subject to Ax — D|x| < b
@ nonconvex and nonsmooth optimization problem

o the feasible set can be disconnected: |x| = e

Proposition

The feasible set is a convex polyhedra set inside each orthant.

X2

max c¢"x : Ax — D|x| < b
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More on Geometry max cTx : Ax — D|x| < b

Theorem (H., Hartman) o<1

Q

Let S CR" be a polyhedral set T2 A X@%L/

and convex in each orthant. N Py

Suppose there is no unbounded

direction in the boundary of S 20

that is orthogonal to an axis. 2zl i

Then S can be described by L L
Ax — Dlx| < b. 4 -3 —2 -1l o] 1 2 3

Theorem (H., Hartman)
The set
m . .
S= U{X eR": A'x < b'}.
i=1
can be described as an AVLP system with < log(m) additional variables.
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Relation to Interval Analysis max cx : Ax — D|x| < b

The AVLP problem

T

f*=max ¢’ x subject to Ax — Dl|x| < b.

Relation to Interval Linear Programming
@ The feasible set is the united solution set of an interval linear system
[A—D,A+ D]x < b.
That is,
{x: Ax = D|x| < b} = U {x: A'x < b}
A’€[A—D,A+D]
@ f* is equal to the best-case optimal value of
max c'x subject to [A— D, A+ D]x < b.
That is,

f*=  max max ¢’ x subject to A < b.
Ac[A-D,A+D]
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The interval AVLP Problem

The interval AVLP problem

max ¢’ x subject to Ax — D|x| < b,

where

@ c €¢IR" and b € IR™ are interval vectors,

@ A, D cIR™*" are interval matrices.

Assumption
e D>0

Our goal: Range of optimal values

max f(A, b,c,D) subjectto A€ A,beb,cec,D e D,

f =
f=min f(A,b,c,D) subjectto Ac A,beb,ccc,DeD,

where f(A, b, c, D) is the optimal value of the particular AVLP problem.
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Best Case Optimal Value f

max ¢’ x: Ax — D|x| < b
Proposition (Reduction to one AVLP problem)
We have

f=max ¢/ x+ ck|x| subject to Acx — (Aa+ D)|x| <b

Proposition (Reduction to 2" LP problems)

We have
f= di 4
seTiai<}n max (cc + diag(s)ca) x
subject to (Ac — (Aa + D)diag(s))x < b, diag(s)x > 0.
Corollary

f is the same as the best case optimal value of the interval LP problem
max ¢’ x subject to A*x < b,
where A* = [Ac — Ap — D, Ac + Ap + D).
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Worst Case Optimal Value f max c¢"x: Ax— D|x| < b

Observation
@ f is attained for b= b and D = D.

@ For ¢ and A no reduction can exist.

Proposition (Lower bound)
We have

f>fh
where

L = max CCTX - CK|X| subject to Acx + (Aa — D)|x| < b.
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Worst Case Optimal Value f max c¢"x: Ax— D|x| < b

Example

max xp subjectto —3<x3 <3, xo—|x1| <0, ax3 +x <3

) foraE[O,l]: - N X2 ,a=-1
optimum z! = (—3,3)T, RN AN 1 pd
optimal value 3 q \\\:\4 7 2
z ~\| 7 z
e for a e [-1,0]: o ____:3/*3\_:______3:0
optimum 22 = (3,3)7, 02 Ny ~.
optimal value 3 1t "~ .05
o f(a)=3Vaca=[-1,]] P — A
and f =3 —4,B =2 -1 L2 A5 ox
7/ —1 S g=1l
o however, f- =15

fL = max x» subjectto —3<x3 <3, x» — Ix1] <0, x2 + |x1]| < 3.
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Worst Case Optimal Value f max c¢"x: Ax— D|x| < b

Upper bound iterative method (find a promising realization)
@ Putb=>band D=D.
Q@ Put A=A and ¢ = c..
© Compute
fV = f(A b,c,D).
and let s be the sign of the computed optimal solution.
Q Put
¢ = c. —diag(s)ca, A= Ac+ Aadiag(s).
© Update the upper bound
£V = min{ £V, f(A, b, c,D)}.

@ Iterate this process until the upper bound £V is not improved.
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Worst Case Optimal Value f max c¢"x: Ax— D|x| < b

Example

max xp subjectto —1<x3 <1, —[x3| < -1, 0<x3+x <1,
X2§17 aX1+X2§0’ a:[o’l]

e for a € [0,1): N x2
optimum (1, —a)T, ot il
optimal value —a N

o for a=1: - SN
optimum z! = (—-1,1)7, -
optimal value 1 O~ ~-a=02

@ Thus f = —1, Nl Ca=o0s
but not attained -1t

o Now, fl=Ff=-1 ta=1

Upper bound fY = —0.5: f(ac) = —0.5, s = (1,—1)", update a :== 1.
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Basis Sta blllty max ¢’ x: Ax — D|x| < b

Basis stability of our problem
max ¢’ x: Ax — D|x| < b
means basis stability of the interval LP relaxation
max ¢’ x subject to A*x < b,

where A* = [Ac — Ap — D, Ac + Ap + DJ.
That is, there is a basis B that is optimal for each realization.

@ In interval LP, basis stability simplifies many problems

@ Checking basis stability is co-NP-hard, but sufficient conditions exist
Proposition (Reduction to one LP problem)
Under B-stability, we have

f = max E;y subject to (Ac —Ap — D)Ly <,
(Ac+Ap + D)Ly >c, y>o0.
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Basis Sta blllty max ¢’ x: Ax — D|x| < b

Proposition (Reduction to one AVLP problem)
Under B-stability, we have

f=min ¢/ x—cf|x| subject to (A.)gx + (Aa — D)g|x| > bg.

Theorem (Reduction to one absolute value system)
Under B-stability, the absolute value system

(Ac)sx + (Aa — D)l|x| = bp (%)
has the unique solution x* and

f=ft=clx" —cIx|.

Remarks

o In general, systems of type (x) are NP-hard to solve

@ In our case of unique solvability, the complexity is unknown.
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Basis Sta blllty max ¢’ x: Ax — D|x| < b

Example

=== o

11 12 0
2 4 18 1 1
A=|6 2] b6=13 7C2(2>7D: 1
4 -7 26 1

Assume 5% uncertaipgy in the gepitipint mathii A))

) , basis B = {1,2}.
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Conclusion
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