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What are Absolute Value Equations (AVE)?

Ax+ x| =b (AeR™" beR")
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The solution set of AVE Ax + |x| = b

Definition
The solution set of AVE is
> =2(b)={x €R": Ax + |x| = b}.

Proposition

The solution set ¥ forms a convex polyhedron in each orthant.

Proof.
In the orthant described diag(s)x > 0, s € {£1}" we have
|x| = diag(s)x.
So AVE reads (A + diag(s))x = b. O

The solution set of AVE

@ May possess up to 2”7 isolated points
(Example: |x| = e, where e = (1,...,1)7T
Remark: each value between 1 and 2" is attained)
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The solution set of AVE — Example 1

Example

Consider the absolute value equations

(0 2)xri=()

Its solution set:

-4 -3 -2 -10 1 2
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The solution set of AVE — Example 2

Example

Consider the absolute value equations

HE RO

Its solution set:
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Equivalence to LCP (1/3)

The linear complementarity problem (LCP)
y=Mz+gq, y Tz=0, y,z > 0.

@ quadratic programming, bimatrix games, discrete knapsack,. ..

Reduction AVE — LCP.
@ Assume A+ I, is nonsingular (reductions avoiding this exist).
o Write x as x = x* — x~, where x*,x= >0, (x7)"x~ =0.
e Then |x| = xT + x~
e Now, AVE reads A(xt — x~) + x* + x~ = b, or after rearranging,
T=(A+ 1) A= l)x™ 4+ (A+1,) b
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Equivalence to LCP (2/3)

The linear complementarity problem (LCP)
y=Mz+gq, y Tz=0, y,z > 0.

Reduction LCP — AVE (Mangasarian, 2007).
@ Assume M — I, is nonsingular (obtained by scaling M).
@ Observation: ab=10, a,b>0 < a+b=]a—b|.
@ Thus we can write LCP as
z+Mz+q=|z— Mz—gq|.
e Substituting x = z — Mz — g, we have z = (I, — M)~Y(x + q) and
system reads

(M4 1,)(M = 1) x + |x| = 2(I, — M) 1q.
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Equivalence to LCP (3/3)

The linear complementarity problem (LCP)
y=Mz+q, y'z=0, y,z>0.

More than 50 matrix classes. . .

matrix type definition
P-matrix unique solution for each g
principally nondegenerate finitely many solutions (incl. 0) for each g
strictly copositive at least one solution for each g
semimonotone unique solution for each g > 0
column sufficient the solution set is convex (or empty)
Ro-matrix the solution set is bounded
Q-matrix at least one solution for each g
Our goal

@ Similar matrix classes for AVE.
8/23



Solvability and its complexity Ax + |x| = b

Theorem (Mangasarian, 2007)
Checking solvability of AVE is NP-complete.

Proof.

Reduction from Set-Partitioning:

Given a € 7", exists x € {£1}": aTx = 0?

Write it as

x| =e, a”

x = 0.
Equivalently in the canonical form

|X| =6,
a'x+ |xap1| =0,

—a'x + |Xn12| = 0.
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Conditions for unsolvability (1/2)

From Reduction AVE — LCP:
(A+I)xT + (I, —Ax" =b, (x")Tx~ =0, x",x~ >0.

(A+ In)x™ + (I — Ax™ = b, (VTR x T x™ > 0,

Now, apply the Farkas lemma.

Theorem (Mangasarian & Meyer, 2006)
If

—y<ATy<y, bTy<o0

is solvable, then AVE is unsolvable.
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Conditions for unsolvability (2/2)

Theorem
The AVE is unsolvable if

p(JA]) <1 and (I, — |A])~tb is not nonnegative.

Lemma
If p(|A]) < 1, then each solution x of AVE satisfies

xI < (I — |A])2b.
Proof.
For each solution
|x| = —Ax+ b < |A] - |x| + b.
whence
(I = [ADIx] < b.
Eventually, premultiply by (1, — |A])~1 = 3272, |A[% > 0. O
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Condition for 2" solutions

Theorem

If 2|A||b| < b, then the AVE has 2" solutions, lying in the interiors of the
particular orthants.

Proof.
For each s € {£1}", we want to show unique solvability of
(A + diag(s))x = b, diag(s)x > 0.
By substitution y = diag(s)x,
(Adiag(s) + In)y = b, y>0.
From 2|A||b| < b we have p(Adiag(s)) < 3, so
y = (In + Adiag(s)) b = 3250 (~ Adiag(s))*b > 0

This happens if

b> 371 |AkD,

b > (I, — |A])"}Alb. O
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Unique solvability (1/2)

Interval matrices

o [A— I A+ 1] ={BER™: |A—B| <)}
o [A—I,,A+ Iy] is regular if each matrix B € [A— I,, A+ ] is
nonsingular

Theorem (Wu & Li, 2018)

The AVE has a unique solution for each b € R" if and only if
[A— I, A+ 1] is regular.

@ Analogous to nonsingularity of A for Ax = b

@ For LCP the condition is P-matrix property
(all principal minors are positive)

@ Which is NP-hard
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Unique solvability (2/2)

Interval matrices

o [A— I A+ 1] ={BER™: |A—B| <)}
o [A—I,,A+ Iy] is regular if each matrix B € [A— I,, A+ ] is
nonsingular

Theorem (Wu & Li, 2018)

The AVE has a unique solution for each b € R" if and only if
[A— I, A+ 1] is regular.

Sufficient conditions:
p(JA7H) <1 or omin(A) > 1

o AVE is efficiently solvable then
@ Open problem: Is AVE efficiently solvable if [A — I,, A+ 1,] is regular?
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Method for o min(A) > 1

Method for omin(A) > 1 (Mangasarian & Meyer, 2006)

The iterations
Xi41 = =AY x|+ A7h, k=1,... (%)
converge and in polynomial time the right orthant is determined.
Proof.
We have omin(A) > 1 & onax(A71) <1 & A7} < L.
Function f(x) = —A~%|x| + A=1b given by (x) is a contraction:

1£0x) = F)IE = A7 (x| = [y DI
< AT Hllx| = Iyl
< [IA7H] - llx = yl-

By the fixed-point theorem, there is a unique fixed-point. O
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Nonnegative solvability (1/2)

Theorem

The following conditions are equivalent:
@ The AVE system has a unique nonnegative solution for each b > 0;
@ the AVE system has a nonnegative solution for each b > 0;
Q@ (A-I,)t>o.

Theorem (Kuttler, 1971)

An interval matrix [A — I,, A+ I,] is inverse nonnegative if and only if
(A—1,)"'>0and (A+1,)"t>0.

Proposition (One implication)
If [A— Io, A+ 5] is inverse nonnegative, then for each b > 0, the AVE
system has a unique solution, and this solution is nonnegative.

o Effectively computable by the Newton method in at most n iterations.
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Nonnegative solvability (2/2)

Theorem

The following conditions are equivalent:
@ The AVE system has a unique nonnegative solution for each b > 0;
@ the AVE system has a nonnegative solution for each b > 0;
Q@ (A-I,)t>o.

Theorem (Kuttler, 1971)
An interval matrix [A — I,, A+ I,] is inverse nonnegative if and only if
(A—1,)"'>0and (A+1,)"t>0.

Proposition (Second implication)

Let [A— I, A+ I,] be regular. If for each b > 0 the AVE has a unique
solution that is nonnegative, then [A — I,, A+ I,] is inverse nonnegative.

@ This implication needs the regularity assumption (can be relaxed?).
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Finitely and infinitely many solutions Ax +|x| = b

Proposition
There is no AVE such that each orthant contains infinitely many solutions.

Proof.
The matrix A 4 diag(s) cannot be singular for every s € {—1,+1}". O

Example

Consider the system x + |x| = 0. All orthants contain infinitely many
solutions, except for the positive orthant.

Proposition

The set X(b) is finite for each b € R" if and only if A+ diag(s) is
nonsingular for each s € {—1,+1}".

Proposition

Checking whether A + diag(s) is nonsingular for each s € {—1,+1}" is
co-NP-hard on the class of problems with A having rank one.
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Boundedness Ax+|x| = b

Simple observations
o Regularity of [A—I,, A+ I,] implies boundedness of ¥ (b) for every b.

@ The converse implication is not true in general; simply consider A = 0.

Proposition

The set 2(b) is bounded for each b € R" if and only if Ax + |x| = 0 has
only the trivial solution x = 0.

Proposition

Checking whether Ax + |x| = 0 has a non-trivial solution is NP-hard on
the class of problems with A having rank one.
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Convexity Ax+|x|=b

Simple observations

o Regularity of [A — I,, A+ I,] implies uniqueness and thus convexity.

Proposition

The set ¥ is convex if and only if it is located in one orthant only, i.e.,
there is s € {—1,+1}" such that diag(s)x > 0 for each x € X.

Proposition

Checking convexity of X is co-NP-hard on the class of problems with
b =0 and A having rank one.
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Connectedness Ax + |x| = b

Simple observations

o Regularity of [A — I,, A+ I,] implies uniqueness and thus
connectedness.

Proposition
If b =0, then the solution set of AVE is connected.

Proof.
In each orthant, the corresponding solution set is connected and contains
the origin, via which is the overall solution set connected. O

@ No complete characterization known.
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Conclusion Ax + |x| = b

@ Characterization of some matrix classes.

o Classification of computational complexity.

@ Open problems left.
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