Matrix Classes Associated with Absolute Value Equations

Milan Hladík

Interval Methods Group https://kam.mff.cuni.cz/gim

Department of Applied Mathematics, Charles University, Prague, Czech Republic https://kam.mff.cuni.cz/~hladik/

International Conference on Matrix Analysis and its Applications MatTriad 2025, Novi Sad, Serbia June 30 – July 2, 2025

What are Absolute Value Equations (AVE)?

$$|Ax + |x| = b$$
 $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$

Definition

The solution set of AVE is

$$\Sigma = \Sigma(b) = \{x \in \mathbb{R}^n : Ax + |x| = b\}.$$

Proposition

The solution set Σ forms a convex polyhedron in each orthant.

Proof.

In the orthant described $\mathrm{diag}(s)x \geq 0, \ s \in \{\pm 1\}^n$ we have

$$|x| = \operatorname{diag}(s)x.$$

So AVE reads (A + diag(s))x = b.

The solution set of AVE

• May possess up to 2ⁿ isolated points

(Example:
$$|x| = e$$
, where $e = (1, ..., 1)^T$

Remark: each value between 1 and 2^n is attained)

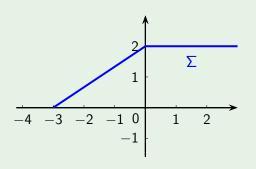
The solution set of AVE – Example 1

Example

Consider the absolute value equations

$$\begin{pmatrix} -1 & 3 \\ 0 & -1 \end{pmatrix} x + |x| = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$

Its solution set:



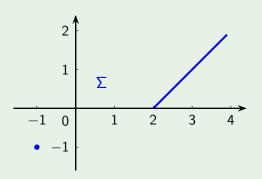
The solution set of AVE – Example 2

Example

Consider the absolute value equations

$$\begin{pmatrix} 0 & -1 \\ 1 & -2 \end{pmatrix} x + |x| = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Its solution set:



The linear complementarity problem (LCP)

$$y = Mz + q, \ y^Tz = 0, \ y, z \ge 0.$$

• quadratic programming, bimatrix games, discrete knapsack,...

Reduction AVE \rightarrow LCP.

- Assume $A + I_n$ is nonsingular (reductions avoiding this exist).
- Write x as $x = x^+ x^-$, where $x^+, x^- \ge 0$, $(x^+)^T x^- = 0$.
- Then $|x| = x^+ + x^-$
- Now, AVE reads $A(x^+ x^-) + x^+ + x^- = b$, or after rearranging,

$$x^{+} = (A + I_n)^{-1}(A - I_n)x^{-} + (A + I_n)^{-1}b.$$

The linear complementarity problem (LCP)

$$y = Mz + q, \ y^Tz = 0, \ y, z \ge 0.$$

Reduction LCP \rightarrow AVE (Mangasarian, 2007).

- Assume $M I_n$ is nonsingular (obtained by scaling M).
- Observation: ab = 0, $a, b \ge 0 \Leftrightarrow a + b = |a b|$.
- Thus we can write LCP as

$$z + Mz + q = |z - Mz - q|.$$

• Substituting $x \equiv z - Mz - q$, we have $z = (I_n - M)^{-1}(x + q)$ and system reads

$$(M+I_n)(M-I_n)^{-1}x+|x|=2(I_n-M)^{-1}q.$$

The linear complementarity problem (LCP)

$$y = Mz + q, \ y^Tz = 0, \ y, z \ge 0.$$

More than 50 matrix classes...

matrix type	definition
P-matrix	unique solution for each q
principally nondegenerate	finitely many solutions (incl. 0) for each q
strictly copositive	at least one solution for each q
semimonotone	unique solution for each $q>0$
column sufficient	the solution set is convex (or empty)
R_0 -matrix	the solution set is bounded
Q-matrix	at least one solution for each q

Our goal

• Similar matrix classes for AVE.

Theorem (Mangasarian, 2007)

Checking solvability of AVE is NP-complete.

Proof.

Reduction from Set-Partitioning:

Given
$$a \in \mathbb{Z}^n$$
, exists $x \in \{\pm 1\}^n : a^T x = 0$?

Write it as

$$|x| = e, \ a^T x = 0.$$

Equivalently in the canonical form

$$|x| = e,$$

 $a^{T}x + |x_{n+1}| = 0,$
 $-a^{T}x + |x_{n+2}| = 0.$

From Reduction AVE \rightarrow LCP:

$$(A + I_n)x^+ + (I_n - A)x^- = b, (x^+)^T x^- = 0, x^+, x^- \ge 0.$$

$$(A + I_n)x^+ + (I_n - A)x^- = b, \text{ (A)}/\sqrt[n]{x}/\sqrt[n]{x}/\sqrt[n]{x}, x^+, x^- \ge 0.$$

Now, apply the Farkas lemma.

Theorem (Mangasarian & Meyer, 2006)

lf

$$-y \le A^T y \le y, \quad b^T y < 0$$

is solvable, then AVE is unsolvable.

Ax + |x| = b

Theorem

The AVE is unsolvable if

$$\rho(|A|) < 1$$
 and $(I_n - |A|)^{-1}b$ is not nonnegative.

Lemma

If $\rho(|A|) < 1$, then each solution x of AVE satisfies

$$|x| \leq (I_n - |A|)^{-1}b.$$

Proof.

For each solution

$$|x| = -Ax + b \le |A| \cdot |x| + b.$$

whence

 $(I_n-|A|)|x|\leq b.$

Eventually, premultiply by
$$(I_n - |A|)^{-1} = \sum_{k=0}^{\infty} |A|^k \ge 0$$
.

Theorem

If 2|A||b| < b, then the AVE has 2^n solutions, lying in the interiors of the particular orthants.

Proof.

For each $s \in \{\pm 1\}^n$, we want to show unique solvability of

$$(A + \operatorname{diag}(s))x = b$$
, $\operatorname{diag}(s)x > 0$.

By substitution $y \equiv \operatorname{diag}(s)x$,

$$(A \operatorname{diag}(s) + I_n)y = b, y > 0.$$

From 2|A||b| < b we have $\rho(A \operatorname{diag}(s)) < \frac{1}{2}$, so

$$y = (I_n + A \operatorname{diag}(s))^{-1}b = \sum_{k=0}^{\infty} (-A \operatorname{diag}(s))^k b > 0$$

This happens if

$$b > \sum_{k=1}^{\infty} |A|^k b,$$

 $b > (I_n - |A|)^{-1} |A| b.$

Interval matrices

- $[A I_n, A + I_n] = \{B \in \mathbb{R}^{n \times n} : |A B| \le I_n\}$
- $[A I_n, A + I_n]$ is regular if each matrix $B \in [A I_n, A + I_n]$ is nonsingular

Theorem (Wu & Li, 2018)

The AVE has a unique solution for each $b \in \mathbb{R}^n$ if and only if $[A - I_n, A + I_n]$ is regular.

- Analogous to nonsingularity of A for Ax = b
- For LCP the condition is P-matrix property (all principal minors are positive)
- Which is NP-hard

Interval matrices

- $\bullet [A I_n, A + I_n] = \{B \in \mathbb{R}^{n \times n} : |A B| \le I_n\}$
- $[A I_n, A + I_n]$ is regular if each matrix $B \in [A I_n, A + I_n]$ is nonsingular

Theorem (Wu & Li, 2018)

The AVE has a unique solution for each $b \in \mathbb{R}^n$ if and only if $[A - I_n, A + I_n]$ is regular.

Sufficient conditions:

$$\rho(|A^{-1}|) < 1$$
 or $\sigma_{\min}(A) > 1$

- AVE is efficiently solvable then
- Open problem: Is AVE efficiently solvable if $[A I_n, A + I_n]$ is regular?

Method for $\sigma_{\min}(A) > 1$ (Mangasarian & Meyer, 2006)

The iterations

$$x_{k+1} := -A^{-1}|x_k| + A^{-1}b, \quad k = 1, \dots$$
 (*)

converge and in polynomial time the right orthant is determined.

Proof.

We have $\sigma_{\min}(A) > 1 \Leftrightarrow \sigma_{\max}(A^{-1}) < 1 \Leftrightarrow ||A^{-1}|| < 1$.

Function
$$f(x) = -A^{-1}|x| + A^{-1}b$$
 given by (\star) is a contraction:

$$||f(x) - f(y)|| = ||A^{-1}(|x| - |y|)||$$

$$\leq ||A^{-1}|| \cdot ||x| - |y|||$$

$$\leq ||A^{-1}|| \cdot ||x - y||.$$

By the fixed-point theorem, there is a unique fixed-point.

Theorem

The following conditions are equivalent:

- The AVE system has a unique nonnegative solution for each $b \ge 0$;
- ② the AVE system has a nonnegative solution for each $b \ge 0$;
- $(A I_n)^{-1} \ge 0.$

Theorem (Kuttler, 1971)

An interval matrix $[A - I_n, A + I_n]$ is inverse nonnegative if and only if $(A - I_n)^{-1} \ge 0$ and $(A + I_n)^{-1} \ge 0$.

Proposition (One implication)

If $[A - I_n, A + I_n]$ is inverse nonnegative, then for each $b \ge 0$, the AVE system has a unique solution, and this solution is nonnegative.

ullet Effectively computable by the Newton method in at most n iterations.

Theorem

The following conditions are equivalent:

- The AVE system has a unique nonnegative solution for each $b \ge 0$;
- ② the AVE system has a nonnegative solution for each $b \ge 0$;
- $(A I_n)^{-1} \ge 0.$

Theorem (Kuttler, 1971)

An interval matrix $[A - I_n, A + I_n]$ is inverse nonnegative if and only if $(A - I_n)^{-1} \ge 0$ and $(A + I_n)^{-1} \ge 0$.

Proposition (Second implication)

Let $[A - I_n, A + I_n]$ be regular. If for each $b \ge 0$ the AVE has a unique solution that is nonnegative, then $[A - I_n, A + I_n]$ is inverse nonnegative.

• This implication needs the regularity assumption (can be relaxed?).

Proposition

There is no AVE such that each orthant contains infinitely many solutions.

Proof.

The matrix $A + \operatorname{diag}(s)$ cannot be singular for every $s \in \{-1, +1\}^n$. \square

Example

Consider the system x + |x| = 0. All orthants contain infinitely many solutions, except for the positive orthant.

Proposition

The set $\Sigma(b)$ is finite for each $b \in \mathbb{R}^n$ if and only if $A + \operatorname{diag}(s)$ is nonsingular for each $s \in \{-1, +1\}^n$.

Proposition

Checking whether A + diag(s) is nonsingular for each $s \in \{-1, +1\}^n$ is co-NP-hard on the class of problems with A having rank one.

Simple observations

- Regularity of $[A I_n, A + I_n]$ implies boundedness of $\Sigma(b)$ for every b.
- The converse implication is not true in general; simply consider A = 0.

Proposition

The set $\Sigma(b)$ is bounded for each $b \in \mathbb{R}^n$ if and only if Ax + |x| = 0 has only the trivial solution x = 0.

Proposition

Checking whether Ax + |x| = 0 has a non-trivial solution is NP-hard on the class of problems with A having rank one.

Simple observations

• Regularity of $[A - I_n, A + I_n]$ implies uniqueness and thus convexity.

Proposition

The set Σ is convex if and only if it is located in one orthant only, i.e., there is $s \in \{-1, +1\}^n$ such that $\operatorname{diag}(s)x \geq 0$ for each $x \in \Sigma$.

Proposition

Checking convexity of Σ is co-NP-hard on the class of problems with b=0 and A having rank one.

Simple observations

• Regularity of $[A - I_n, A + I_n]$ implies uniqueness and thus connectedness.

Proposition

If b = 0, then the solution set of AVE is connected.

Proof.

In each orthant, the corresponding solution set is connected and contains the origin, via which is the overall solution set connected.

No complete characterization known.

Conclusion Ax + |x|

- Characterization of some matrix classes.
- Classification of computational complexity.
- Open problems left.

References

M Hladík

Properties of the solution set of absolute value equations and the related matrix classes.

SIAM J. Matrix Anal. Appl., 44(1):175-195, March 2023.

M. Hladík, H. Moosaei, F. Hashemi, S. Ketabchi, and P. M. Pardalos.

An overview of absolute value equations: From theory to solution methods and challenges.

preprint arXiv: 2404.06319, 2024.

O. L. Mangasarian.

Absolute value programming. Comput. Optim. Appl., 36(1):43-53, 2007

O. L. Mangasarian and R. R. Meyer. Absolute value equations. Linear Algebra Appl., 419(2):359-367, 2006

S.-L. Wu and C.-X. Li.

The unique solution of the absolute value equations.

Appl. Math. Lett., 76:195-200, 2018.

Interval Methods Group

Group on Interval Methods

https://kam.mff.cuni.cz/gim

