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© Application: Numerical Verification for Real LP
© Application: Relaxations in Global Optimization

@ Application: Sensitivity Measure
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Next Section

@ Introduction to Interval Linear Programming
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Interval Linear Programming — Introduction

Consider an LP problem

min ¢’ x subject to Ax < b, x>0
where
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optimal solution:
x* = (4,2)7

optimal value:
cTx* = -22
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Interval Linear Programming — Introduction

Consider an LP problem
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x subjectto Ax< b, x>0
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optimal solution:
x* = (4,2)7

optimal value:
cTx* € —[22,28]
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Interval Linear Programming — Introduction

Consider an LP problem

min ¢’ x
where
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X2
optimal solution: 3|
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optimal value:
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subject to Ax < b, x>0
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Interval Linear Programming — Introduction

Linear programming
_ T c (=)
f(A,b,c) = min ¢’ x subject to Ax = b, (x >0)

Interval data
Given interval matrix

A=[AA] =[Ac — Aa, Ac + Aal
and interval vectors b and c,
Interval linear programming
Family of linear programs with A€ A, b € b, ¢ € c, in short
)

f(A,b,c) = min ¢’ x subject to Ax = b, (x >0).

Main goals
@ determine the optimal value range;

@ determine a tight enclosure to the optimal solution set.
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Interval Linear Programming — Optimal Value Range

Definition
:=min (A, b,c) subjectto A€ A, be b, c €c,
:=max f(A,b,c) subjectto Ac A, beb, ccc.

| =

Theorem (Vajda, 1961)

We have for type (min ¢”x subject to Ax < b, x>0)
f = min ng subject to Ax < b, x >0,
f =min T’ x subject to Ax < b, x > 0.

Theorem (Machost, 1970, Rohn, 1984)

We have for type (min ¢”x subject to Ax=b, x>0)
f=min c'x subject to Ax < b, Ax > b, x >0,
f= R f(Ac — diag(s)Aa, bc + diag(s)ba, ©).
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Interval Linear Programming — Complexity

Summary of complexity of the basic problems (general case)

Ax=b, x>0 Ax<b Ax < b x>0

. f polynomial, f NP-hard, .
optimal value range £ NP-hard 7 polynomial polynomial
strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial NP-hard polynomial
strong unboundedness co-NP-hard polynomial polynomial
weak unboundedness 7 NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial

weak optimality NP-hard NP-hard NP-hard
basis stability co-NP-hard co-NP-hard co-NP-hard
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Interval Linear Programming — Complexity

Summary of complexity of the basic problems (A non-interval)

Ax=b, x>0 Ax<b Ax < b, x>0

f polynomial, £ NP-hard,

optimal value range £ NP-hard 7 polynomial polynomial
strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial polynomial polynomial
strong unboundedness co-NP-hard polynomial polynomial
weak unboundedness polynomial NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality polynomial polynomial polynomial
basis stability polynomial polynomial polynomial
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Interval Linear Programming — Complexity

Summary of complexity of the basic problems (A, b non-interval)

Ax=b, x>0 Ax<b Ax < b, x>0

f polynomial, £ NP-hard,

optimal value range 7 polynomial ¥ polynomial polynomial
strong feasibility polynomial polynomial polynomial
weak feasibility polynomial polynomial polynomial
strong unboundedness polynomial polynomial polynomial
weak unboundedness polynomial NP-hard polynomial
strong optimality polynomial co-NP-hard polynomial
weak optimality polynomial polynomial polynomial
basis stability polynomial polynomial polynomial
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Next Section

© Application: Numerical Verification for Real LP
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Verification — Motivation

Example (Rump, 1988)

Consider the expression

f = 333.756° + a2(11a2b — bS — 121b6% — 2) + 5.56% + —

with a = 77617 and b = 33096.
Calculations from 80's:

single precision

double precision

extended precision

the true value

Ordénez and Freund, 2003

2b’

f~1.172603...

f ~ 1.1726039400531 . . .

f ~ 1.172603940053178 . ..
f =—-0.827386. ..

@ 72% of real-life LP problems recorded in Netlib repository are
ill-conditioned and many commercial solvers failed to solve them.
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Verification for Linear Equations

Verification of a system of linear equations

Given a real system Ax = b and x* approximate solution, find
x* € x € IR" such that A=!b € x.

Example

X2

/
z
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Verification for Linear Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., ajj = ;75— —1-), and b := Ae.

Then Ax = b has the solution x = e = (1,...,1)".
Solution by Matlab Enclosure by e-inflation method
0.999999999235452 [0.99999973843401, 1.00000026238575]
1.000000065575364 [0.99999843048508, 1.00000149895660]
0.999998607887449 [0.99997745481481, 1.00002404324710]
1.000012638750021 [0.99978166603900, 1.00020478046370]
0.999939734980300 [0.99902374408278, 1.00104070076742]
1.000165704992114 [0.99714060702796, 1.00268292103727]
0.999727989024899 [0.99559932282378, 1.00468935360003]
1.000263042205847 [0.99546972629357, 1.00425202249136]

0.999861803020249 [0.99776781605377, 1.00237789028988]
1.000030414871015 [0.99947719419921, 1.00049082925529]

Overestimation factor about 20; compare x(A) ~ 1.6 - 1013.
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Verification in Linear Programming

Consider a linear program
min ¢’ x subject to Ax = b, x > 0.
Let B* be an optimal basis, f* optimal value and x* optimal solution.

All these are numerically computed.

Verification of the optimal basis (Jansson, 1988)

e confirmation that B* is (unique) optimal basis,

Verification of the optimal value (Neumaier & Shcherbina, 2004)
e finding * € f € IR such that f contains the optimal value,

Verification of the optimal solution

e finding x* € x € IR" such that x contains the (unique) optimum.

Relation

basis — optimal solution — optimal value
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Verification of Optimal Basis

Non-interval case

Basis B is optimal iff

@ Ag is non-singular;

@ Ag'b>0;

@ C,\7,- — CBTAEIAN >0T.

Verification of condition C2
o Compute verification interval xg for Agxg = b,

o check xg > 0 (resp. xg > 0 for uniqueness)

Verification of condition C3
e Compute verification interval y for Agy = cg,
o check ¢ —yTAn > 0 (resp. ¢, — y T Ay > 0 for uniqueness).
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Verification Challenges

Verification challenges and obstacles
@ Verification of degenerate problems
(in particular verification optimal solutions and basis).

e Handling ill-posed LP problems (e.g., matrix A has not full row rank).
Many practical problems, e.g. in NETLIB, are mostly ill-posed
(Keil and Jansson, 2006).
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Next Section

© Application: Relaxations in Global Optimization
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Global Optimization

Example (Find the global minimum of Rastrigin's function)

f(x) = 20 + x? + x3 — 10(cos(2mx1) + cos(27x2))

rastriginsicn([x/10 y/10)

\
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Global optimization ingredients
@ branch & bound

@ lower and upper bounds (linearizations, convexifications,. . .)
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Global Optimization

Lower bounds
@ interval arithmetic

@ convex underestimating functions (BB method)

@ McCormick envelopes: For every y € y € IR and z € z € IR:
yz = max{yz +zy — yz, yz+2y - yz}

@ Reformulation Linearization Technique (RLT)

@ semidefinite programming, ...

interval linear programming
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Interval Linearization

Example (Interval linearization of a nonlinear function)

YA £(a) + £/ (x)(x — a)

f(x)

X a X X

Theorem (Mean value form)
For x € IR and a € x we have

f(x) C f(a) + F(x)(x —a) Vxe x.
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Interval Linearization in Global Optimization

Global optimization problem
min f(x)
subject to hj(x) =0, i€l
0

Interval linearization on a box x around a € x

We get an interval linear program, rigorous outer approximation
min f(a) + VF(x)"(x — a))
subject to  hi(a) + Vhj(x)T(x —a)=0, ie€l,
gj(a) + ng(x)T(X —a)<0, jeld

Questions: Selection of a € x
o Case a = x (or any other vertex of x): leads to LP
o General case: piecewise linear
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Interval Linearization in Global Optimization

Example
Typical situation when choosing a to be vertex:

a
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Interval Linearization in Global Optimization

Example
Typical situation when choosing a to be the opposite vertex:
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Interval Linearization in Global Optimization

Example
Typical situation when choosing a = xc:
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Interval Linearization in Global Optimization

Example

Typical situation when choosing a = x. (after linearization):
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Interval Linearization in Global Optimization

Example
Typical situation when choosing all of them:
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Next Section

@ Application: Sensitivity Measure
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Sensitivity Measure — Definition

Setup

Consider real LP problem

f(A,b,c) =min c’x subject to Ax = b, x >0,
and intervals
A, = [A— aAp, A+ aAal,
b, = [b— aba, b+ aba],
Co = [c — acp, ¢ + acal,

depending on a > 0.

Sensitivity measure

do e tim [Aabaca) ~ F(AbC)
a—0t (e

1 d
(A, ba, ca)llF "

d, =
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Sensitivity Measure — Computation

Proposition

If the LP problem has the unique nondegenerate optimal solution x*, and
if y* is a dual optimal solution, then

dw = |y*|T Aax™ + bA|y*| + L x*.
Degenerate case assumptions

@ Matrix A has full row rank and there is a primal feasible x° > 0.

@ The dual feasible set has nonempty interior.
Proposition
We have
dw = dw(B) = |y*(B)|" Aax*(B) + bAly*(B)| + cAx*(B)

for certain optimal basis B.

@ Corollary: lower and upper bounds on d,,.
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Sensitivity Measure — Computation

Computational complexity
@ It is NP-hard to check if d,, > 1.
o It is NP-hard to check maxgep dyw(B) > 1.

Special cases for the nondegenerate
o If Ax =0, bpo =0 and ca = ¢, then d,, :xjf“.
o If AA =0, bao =€ and cp =0, then d,, = |y|.

o If Ap = e,-eJ-T, ba =0 and ca =0, then d,, = \y,-*xj‘\.
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Sensitivity Measure — Examples

Example
Consider

max ¢! x subjectto —e < Ax<e.

with Ap = |A|, ba = |b| and ca = |c|.

n A=1, random Vandermonde Hilbert
dy d, dy d, dy d, dy d,

2.545 0876 3.953 1.338 2335 8287 1443 52.13
7.055 1.894 0.747 2.693  56.67 9.801 1.2-10* 3468
5392 1.308 26.60 6.295 2034 78.66 1.4-107 3.7-10°
6.646 1436 152.3 30.36 1.2-10° 641.7 3.6-101° 9.0-10°
106.0 17.75 2.9-10° 1457 4.8-10'% 1.1.10%3
13.76 2.468 27.09 3.777 8.0-10" 3063 8.7-10'° 1.8-10
9683 1666 92.10 1220 5.5-107 136.3 - -
14.66 2.342 205.8 2359 2.8-10° 376.2 - -
5251 5752 1.9-10% 1205 = =
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Sensitivity Measure — Examples

Example (Netlib data)

name vars  constr dw(B) d-(B) f(A, b, c)
BANDM 472 305 4686 4.128 —158.6
7584 6.707 —78.44
CAPRI 353 271 1.5-10° 20.4 2690
1.5-10° 20.39 2690

GREENBEB 5405 2392 1.7-10° 12650 —4.3-10°
24-10° 17990 —4.3-10°

MAROS 1443 846 2.4-10° 15.7 —58060
24-10%  15.77 —58060
PILOT 3652 1441 13140 1.654 —557.5
13130 1.652 —557.5
SCSD1 760 77 50.42 0.6369 8.667
66 0.8337 8.667

SHIPO4L 2118 402 8.8-10° 3205 1.8-10°
8.8-10° 320.5 1.8-10°
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Sensitivity Measure — Challenges

Challenges and obstacles — degenerate problems
o Efficient upper bounds

o Computational complexity
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