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Interval Linear Programming – Introduction

Consider an LP problem

min cT x subject to Ax ≤ b, x ≥ 0

where

A =

(

−3 7
7 −5
1 1

)

, b =

(

15
18
6

)

, c =

(

−5
−1

)

.
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optimal solution:

x∗ = (4, 2)T

optimal value:

cT x∗ = −22
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Interval Linear Programming – Introduction

Consider an LP problem

min cT x subject to Ax ≤ b, x ≥ 0

where

A ∈

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

, b ∈

(

[15, 16]
[18, 19]
[6, 7]

)

, c ∈

(

−[5, 6]
−[1, 2]

)

.
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optimal solution:

dotted area

optimal value:

cT x∗ ∈ −[21.27, 33.64]

6 / 36



Interval Linear Programming – Introduction

Linear programming

f (A, b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0)

Interval data

Given interval matrix

A = [A,A] = [Ac − A∆,Ac + A∆]

and interval vectors b and c ,

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c , in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

Main goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.
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Interval Linear Programming – Optimal Value Range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c .

Theorem (Vajda, 1961)

We have for type (min cT x subject to Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.

Theorem (Machost, 1970, Rohn, 1984)

We have for type (min cT x subject to Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
s∈{±1}m

f (Ac − diag(s)A∆, bc + diag(s)b∆, c).
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Interval Linear Programming – Complexity

Summary of complexity of the basic problems (general case)

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

optimal value range
f polynomial,

f NP-hard

f NP-hard,

f polynomial
polynomial

strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial

strong unboundedness co-NP-hard polynomial polynomial

weak unboundedness ?? NP-hard polynomial

strong optimality co-NP-hard co-NP-hard polynomial

weak optimality NP-hard NP-hard NP-hard

basis stability co-NP-hard co-NP-hard co-NP-hard
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Interval Linear Programming – Complexity

Summary of complexity of the basic problems (A non-interval)

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

optimal value range
f polynomial,

f NP-hard

f NP-hard,

f polynomial
polynomial

strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial polynomial polynomial

strong unboundedness co-NP-hard polynomial polynomial

weak unboundedness polynomial NP-hard polynomial

strong optimality co-NP-hard co-NP-hard polynomial

weak optimality polynomial polynomial polynomial

basis stability polynomial polynomial polynomial
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Interval Linear Programming – Complexity

Summary of complexity of the basic problems (A, b non-interval)

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

optimal value range
f polynomial,

f polynomial

f NP-hard,

f polynomial
polynomial

strong feasibility polynomial polynomial polynomial

weak feasibility polynomial polynomial polynomial

strong unboundedness polynomial polynomial polynomial

weak unboundedness polynomial NP-hard polynomial

strong optimality polynomial co-NP-hard polynomial

weak optimality polynomial polynomial polynomial

basis stability polynomial polynomial polynomial
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Verification – Motivation

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with a = 77617 and b = 33096.

Calculations from 80’s:

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .

Ordóñez and Freund, 2003

72% of real-life LP problems recorded in Netlib repository are
ill-conditioned and many commercial solvers failed to solve them.
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Verification for Linear Equations

Verification of a system of linear equations

Given a real system Ax = b and x∗ approximate solution, find
x∗ ∈ x ∈ IR

n such that A−1b ∈ x .

Example

x1

x2

x∗
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Verification for Linear Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., aij =
1

i+j−1), and b := Ae.

Then Ax = b has the solution x = e = (1, . . . , 1)T .

Solution by Matlab Enclosure by ε-inflation method

0.999999999235452 [0.99999973843401, 1.00000026238575]
1.000000065575364 [0.99999843048508, 1.00000149895660]
0.999998607887449 [0.99997745481481, 1.00002404324710]
1.000012638750021 [0.99978166603900, 1.00020478046370]
0.999939734980300 [0.99902374408278, 1.00104070076742]
1.000165704992114 [0.99714060702796, 1.00268292103727]
0.999727989024899 [0.99559932282378, 1.00468935360003]
1.000263042205847 [0.99546972629357, 1.00425202249136]
0.999861803020249 [0.99776781605377, 1.00237789028988]
1.000030414871015 [0.99947719419921, 1.00049082925529]

Overestimation factor about 20; compare κ(A) ≈ 1.6 · 1013.
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Verification in Linear Programming

Consider a linear program

min cT x subject to Ax = b, x ≥ 0.

Let B∗ be an optimal basis, f ∗ optimal value and x∗ optimal solution.
All these are numerically computed.

Verification of the optimal basis (Jansson, 1988)

confirmation that B∗ is (unique) optimal basis,

Verification of the optimal value (Neumaier & Shcherbina, 2004)

finding f ∗ ∈ f ∈ IR such that f contains the optimal value,

Verification of the optimal solution

finding x∗ ∈ x ∈ IR
n such that x contains the (unique) optimum.

Relation

basis → optimal solution → optimal value
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Verification of Optimal Basis

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Verification of condition C2

Compute verification interval xB for ABxB = b,

check xB ≥ 0 (resp. xB > 0 for uniqueness)

Verification of condition C3

Compute verification interval y for AT
B y = cB ,

check cTN − yTAN ≥ 0 (resp. cTN − yTAN > 0 for uniqueness).
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Verification Challenges

Verification challenges and obstacles

Verification of degenerate problems
(in particular verification optimal solutions and basis).

Handling ill-posed LP problems (e.g., matrix A has not full row rank).
Many practical problems, e.g. in NETLIB, are mostly ill-posed
(Keil and Jansson, 2006).
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Global Optimization

Example (Find the global minimum of Rastrigin’s function)

f (x) = 20 + x21 + x22 − 10(cos(2πx1) + cos(2πx2))

Global optimization ingredients

branch & bound

lower and upper bounds (linearizations, convexifications,. . . )
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Global Optimization

Lower bounds

interval arithmetic

convex underestimating functions (αBB method)
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McCormick envelopes: For every y ∈ y ∈ IR and z ∈ z ∈ IR:

yz ≥ max{yz + zy − yz , yz + zy − yz}

Reformulation Linearization Technique (RLT)

semidefinite programming, . . .

interval linear programming
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Interval Linearization

Example (Interval linearization of a nonlinear function)

f (x)

x

y

a

f (a)

x x

f (a) + f
′(x)(x − a)

Theorem (Mean value form)

For x ∈ IR and a ∈ x we have

f (x) ⊆ f (a) + f ′(x)(x − a) ∀x ∈ x .
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Interval Linearization in Global Optimization

Global optimization problem

min f (x)

subject to hi(x) = 0, i ∈ I ,

gj(x) ≤ 0, j ∈ J.

Interval linearization on a box x around a ∈ x

We get an interval linear program, rigorous outer approximation

min f (a) +∇f (x)T (x − a))

subject to hi(a) +∇hi (x)
T (x − a) = 0, i ∈ I ,

gj (a) +∇g j(x)
T (x − a) ≤ 0, j ∈ J.

Questions: Selection of a ∈ x

Case a = x (or any other vertex of x): leads to LP

General case: piecewise linear

23 / 36



Interval Linearization in Global Optimization

Example

Typical situation when choosing a to be vertex:

x

a

S
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Interval Linearization in Global Optimization

Example

Typical situation when choosing a to be the opposite vertex:

x

a

S
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Interval Linearization in Global Optimization

Example

Typical situation when choosing a = xc :

x
S

a
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Interval Linearization in Global Optimization

Example

Typical situation when choosing a = xc (after linearization):

x
S

a
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Interval Linearization in Global Optimization

Example

Typical situation when choosing all of them:

x
S
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Sensitivity Measure – Definition

Setup

Consider real LP problem

f (A, b, c) = min cT x subject to Ax = b, x ≥ 0,

and intervals

Aα
:= [A− αA∆,A+ αA∆],

bα
:= [b − αb∆, b + αb∆],

cα
:= [c − αc∆, c + αc∆],

depending on α ≥ 0.

Sensitivity measure

dw := lim
α→0+

f (Aα,bα, cα)− f (A, b, c)

α
,

dr :=
1

‖(A∆, b∆, c∆)‖F
dw .
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Sensitivity Measure – Computation

Proposition

If the LP problem has the unique nondegenerate optimal solution x∗, and
if y∗ is a dual optimal solution, then

dw = |y∗|TA∆x
∗ + bT∆|y

∗|+ cT∆x∗.

Degenerate case assumptions

Matrix A has full row rank and there is a primal feasible x0 > 0.

The dual feasible set has nonempty interior.

Proposition

We have

dw = dw (B) := |y∗(B)|TA∆x
∗(B) + bT∆|y

∗(B)|+ cT∆x∗(B)

for certain optimal basis B.

Corollary: lower and upper bounds on dw .
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Sensitivity Measure – Computation

Computational complexity

It is NP-hard to check if dw ≥ 1.

It is NP-hard to check maxB∈B dw (B) ≥ 1.

Special cases for the nondegenerate

If A∆ = 0, b∆ = 0 and c∆ = ej , then dw = x∗j .

If A∆ = 0, b∆ = ei and c∆ = 0, then dw = |y∗i |.

If A∆ = eie
T
j , b∆ = 0 and c∆ = 0, then dw = |y∗i x

∗
j |.
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Sensitivity Measure – Examples

Example

Consider

max cT x subject to − e ≤ Ax ≤ e.

with A∆ = |A|, b∆ = |b| and c∆ = |c |.

n A = In random Vandermonde Hilbert

dw dr dw dr dw dr dw dr

2 2.545 0.876 3.953 1.338 23.35 8.287 144.3 52.13
3 7.055 1.894 9.747 2.693 56.67 9.801 1.2 · 104 3468
4 5.392 1.308 26.60 6.295 2034 78.66 1.4 · 107 3.7 · 106

5 6.646 1.436 152.3 30.36 1.2 · 105 641.7 3.6 · 1010 9.0 · 109

6 9.640 1.887 106.0 17.75 2.9 · 106 1457 4.8 · 1013 1.1 · 1013

7 13.76 2.468 27.09 3.777 8.0 · 107 3063 8.7 · 1016 1.8 · 1016

8 9.683 1.666 92.10 12.20 5.5 · 107 136.3 – –
9 14.66 2.342 205.8 23.59 2.8 · 109 376.2 – –
10 16.54 2.498 5251 575.2 1.9 · 1010 120.5 – –
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Sensitivity Measure – Examples

Example (Netlib data)

name vars constr dw (B) dr (B) f (A, b, c)

BANDM 472 305 4686 4.128 −158.6
7584 6.707 −78.44

CAPRI 353 271 1.5 · 105 20.4 2690
1.5 · 105 20.39 2690

GREENBEB 5405 2392 1.7 · 107 12650 −4.3 · 106

2.4 · 107 17990 −4.3 · 106

MAROS 1443 846 2.4 · 106 15.7 −58060
2.4 · 106 15.77 −58060

PILOT 3652 1441 13140 1.654 −557.5
13130 1.652 −557.5

SCSD1 760 77 50.42 0.6369 8.667
66 0.8337 8.667

SHIP04L 2118 402 8.8 · 106 320.5 1.8 · 106

8.8 · 106 320.5 1.8 · 106
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Sensitivity Measure – Challenges

Challenges and obstacles – degenerate problems

Efficient upper bounds

Computational complexity
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