Interval Linear Programming and Its Applications

Milan Hladík

Interval Methods Group
https://kam.mff.cuni.cz/gim

Department of Applied Mathematics Charles University, Prague, Czech Republic https://kam.mff.cuni.cz/~hladik/

MME 2025, Zlín
43rd International Conference on Mathematical Methods in Economics
September 3–5, 2025

Outline

- 1 Introduction to Interval Linear Programming
- 2 Application: Numerical Verification for Real LP
- 3 Application: Relaxations in Global Optimization
- 4 Application: Sensitivity Measure

Next Section

- 1 Introduction to Interval Linear Programming
- 2 Application: Numerical Verification for Real LP
- 3 Application: Relaxations in Global Optimization
- 4 Application: Sensitivity Measure

Interval Linear Programming - Introduction

Consider an LP problem

min $c^T x$ subject to $Ax \le b$, $x \ge 0$

where

$$A = \begin{pmatrix} -3 & 7 \\ 7 & -5 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 15 \\ 18 \\ 6 \end{pmatrix}, \quad c = \begin{pmatrix} -5 \\ -1 \end{pmatrix}.$$

optimal solution: $x^* = (4, 2)^T$ optimal value: $c^T x^* = -22$

Interval Linear Programming – Introduction

Consider an LP problem

min $c^T x$ subject to $Ax \le b$, $x \ge 0$

where

$$A = \begin{pmatrix} -3 & 7 \\ 7 & -5 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 15 \\ 18 \\ 6 \end{pmatrix}, \quad c \in \begin{pmatrix} -[5,6] \\ -[1,2] \end{pmatrix}.$$

optimal solution: $x^* = (4,2)^T$ optimal value: $c^T x^* \in -[22,28]$

Interval Linear Programming – Introduction

Consider an LP problem

min
$$c^T x$$
 subject to $Ax \le b$, $x \ge 0$

where

$$A \in \begin{pmatrix} -[2,3] & [7,8] \\ [6,7] & -[4,5] \\ 1 & 1 \end{pmatrix}, \quad b \in \begin{pmatrix} [15,16] \\ [18,19] \\ [6,7] \end{pmatrix}, \quad c \in \begin{pmatrix} -[5,6] \\ -[1,2] \end{pmatrix}.$$

optimal solution: dotted area

optimal value:

$$c^T x^* \in -[21.27, 33.64]$$

Interval Linear Programming – Introduction

Linear programming

$$f(A, b, c) \equiv \min c^T x$$
 subject to $Ax \stackrel{(\leq)}{=} b$, $(x \geq 0)$

Interval data

Given interval matrix

$$\mathbf{A} = [\underline{A}, \overline{A}] = [A_c - A_{\Delta}, A_c + A_{\Delta}]$$

and interval vectors \boldsymbol{b} and \boldsymbol{c} ,

Interval linear programming

Family of linear programs with $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$, in short

$$f(\mathbf{A}, \mathbf{b}, \mathbf{c}) \equiv \min \ \mathbf{c}^T x \text{ subject to } \mathbf{A} x \stackrel{(\leq)}{=} \mathbf{b}, \ (x \geq 0).$$

Main goals

- determine the optimal value range;
- determine a tight enclosure to the optimal solution set.

Interval Linear Programming – Optimal Value Range

Definition

$$\underline{f} := \min \ f(A, b, c)$$
 subject to $A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c},$
 $\overline{f} := \max \ f(A, b, c)$ subject to $A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c}.$

Theorem (Vajda, 1961)

We have for type (min $c^T x$ subject to $Ax \le b$, $x \ge 0$)

$$\underline{f} = \min \ \underline{c}^T x \ \text{ subject to } \underline{A}x \le \overline{b}, \ x \ge 0,$$
 $\overline{f} = \min \ \overline{c}^T x \ \text{ subject to } \overline{A}x < b, \ x > 0.$

Theorem (Machost, 1970, Rohn, 1984)

We have for type (min c^Tx subject to Ax = b, $x \ge 0$)

$$\underline{f} = \min \ \underline{c}^T x \ \text{subject to} \ \underline{A}x \leq \overline{b}, \ \overline{A}x \geq \underline{b}, \ x \geq 0,$$

$$\overline{f} = \max_{s \in \{\pm 1\}^m} f(A_c - \operatorname{diag}(s)A_{\Delta}, b_c + \operatorname{diag}(s)b_{\Delta}, \overline{c}).$$

Interval Linear Programming – Complexity

Summary of complexity of the basic problems (general case)

	A <i>x</i> = b , <i>x</i> ≥ 0	$\mathbf{A}x \leq \mathbf{b}$	$\boldsymbol{A}x \leq \boldsymbol{b}, x \geq 0$
optimal value range	$\frac{f}{f}$ polynomial, \overline{f} NP-hard	$\frac{f}{f}$ NP-hard, \overline{f} polynomial	polynomial
strong feasibility	co-NP-hard polynomi		polynomial
weak feasibility	polynomial	NP-hard	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	??	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	NP-hard	NP-hard	NP-hard
basis stability	co-NP-hard	co-NP-hard	co-NP-hard

Interval Linear Programming – Complexity

Summary of complexity of the basic problems (A non-interval)

	A <i>x</i> = b , <i>x</i> ≥ 0	$\mathbf{A}x \leq \mathbf{b}$	$\boldsymbol{A}x \leq \boldsymbol{b}, x \geq 0$
optimal value range	$\frac{f}{f}$ polynomial, \overline{f} NP-hard	$\frac{f}{f}$ NP-hard, \overline{f} polynomial	polynomial
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial polynomial		polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	polynomial	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	polynomial	polynomial	polynomial
basis stability	polynomial	polynomial	polynomial

Interval Linear Programming – Complexity

Summary of complexity of the basic problems (A, b non-interval)

	A <i>x</i> = b , <i>x</i> ≥ 0	$\mathbf{A}x \leq \mathbf{b}$	$\boldsymbol{A}x \leq \boldsymbol{b}, x \geq 0$
optimal value range	\underline{f} polynomial,	\underline{f} NP-hard,	polynomial
optimal value range	\overline{f} polynomial	\overline{f} polynomial	polynomiai
strong feasibility	polynomial	polynomial	polynomial
weak feasibility	polynomial	polynomial	polynomial
strong unboundedness	polynomial	polynomial	polynomial
weak unboundedness	polynomial	NP-hard	polynomial
strong optimality	polynomial	co-NP-hard	polynomial
weak optimality	polynomial polynomial		polynomial
basis stability	polynomial	polynomial	polynomial
		· · · · · · · · · · · · · · · · · · ·	

Next Section

- 1 Introduction to Interval Linear Programming
- 2 Application: Numerical Verification for Real LP
- 3 Application: Relaxations in Global Optimization
- 4 Application: Sensitivity Measure

Verification - Motivation

Example (Rump, 1988)

Consider the expression

$$f = 333.75b^6 + a^2(11a^2b^2 - b^6 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$$

with a = 77617 and b = 33096.

Calculations from 80's:

```
single precision f \approx 1.172603... double precision f \approx 1.1726039400531... extended precision f \approx 1.172603940053178... the true value f = -0.827386...
```

Ordóñez and Freund, 2003

• 72% of real-life LP problems recorded in Netlib repository are ill-conditioned and many commercial solvers failed to solve them.

Verification for Linear Equations

Verification of a system of linear equations

Given a real system Ax = b and x^* approximate solution, find $x^* \in \mathbf{x} \in \mathbb{IR}^n$ such that $A^{-1}b \in \mathbf{x}$.

Example

Verification for Linear Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., $a_{ij} = \frac{1}{i+j-1}$), and b := Ae. Then Ax = b has the solution $x = e = (1, ..., 1)^T$.

Solution by Matlab	Enclosure by $arepsilon$ -inflation method
0.999999999235452	[0.99999973843401, 1.00000026238575]
1.000000065575364	[0.99999843048508, 1.00000149895660]
0.999998607887449	[0.99997745481481, 1.00002404324710]
1.000012638750021	[0.99978166603900, 1.00020478046370]
0.999939734980300	[0.99902374408278, 1.00104070076742]
1.000165704992114	[0.99714060702796, 1.00268292103727]
0.999727989024899	[0.99559932282378, 1.00468935360003]
1.000263042205847	[0.99546972629357, 1.00425202249136]
0.999861803020249	[0.99776781605377, 1.00237789028988]
1.000030414871015	[0.99947719419921, 1.00049082925529]

Overestimation factor about 20; compare $\kappa(A) \approx 1.6 \cdot 10^{13}$.

Verification in Linear Programming

Consider a linear program

min
$$c^T x$$
 subject to $Ax = b$, $x \ge 0$.

Let B^* be an optimal basis, f^* optimal value and x^* optimal solution. All these are numerically computed.

Verification of the optimal basis (Jansson, 1988)

ullet confirmation that B^* is (unique) optimal basis,

Verification of the optimal value (Neumaier & Shcherbina, 2004)

• finding $f^* \in \mathbf{f} \in \mathbb{IR}$ such that \mathbf{f} contains the optimal value,

Verification of the optimal solution

• finding $x^* \in \mathbf{x} \in \mathbb{IR}^n$ such that \mathbf{x} contains the (unique) optimum.

Relation

basis ightarrow optimal solution ightarrow optimal value

Verification of Optimal Basis

Non-interval case

Basis B is optimal iff

- \bigcirc A_B is non-singular;
- $A_R^{-1}b \ge 0$;
- $c_N^T c_B^T A_B^{-1} A_N \geq 0^T.$

Verification of condition C2

- Compute verification interval x_B for $A_B x_B = b$,
- check $\underline{x}_B \ge 0$ (resp. $\underline{x}_B > 0$ for uniqueness)

Verification of condition C3

- Compute verification interval \mathbf{y} for $A_B^T y = c_B$,
- check $c_N^T \mathbf{y}^T A_N \ge 0$ (resp. $c_N^T \mathbf{y}^T A_N > 0$ for uniqueness).

Verification Challenges

Verification challenges and obstacles

- Verification of degenerate problems (in particular verification optimal solutions and basis).
- Handling ill-posed LP problems (e.g., matrix A has not full row rank).
 Many practical problems, e.g. in NETLIB, are mostly ill-posed (Keil and Jansson, 2006).

Next Section

- 1 Introduction to Interval Linear Programming
- 2 Application: Numerical Verification for Real LP
- 3 Application: Relaxations in Global Optimization
- 4 Application: Sensitivity Measure

Global Optimization

Example (Find the global minimum of Rastrigin's function)

$$f(x) = 20 + x_1^2 + x_2^2 - 10(\cos(2\pi x_1) + \cos(2\pi x_2))$$

Global optimization ingredients

- branch & bound
- lower and upper bounds (linearizations, convexifications,...)

Global Optimization

Lower bounds

- interval arithmetic
- convex underestimating functions (αBB method)

• McCormick envelopes: For every $y \in \mathbf{y} \in \mathbb{IR}$ and $z \in \mathbf{z} \in \mathbb{IR}$:

$$yz \ge \max\{\underline{y}z + \underline{z}y - \underline{y}\underline{z}, \ \overline{y}z + \overline{z}y - \overline{y}\overline{z}\}$$

- Reformulation Linearization Technique (RLT)
- semidefinite programming, ...
- interval linear programming

Interval Linearization

Example (Interval linearization of a nonlinear function)

Theorem (Mean value form)

For $\mathbf{x} \in \mathbb{IR}$ and $\mathbf{a} \in \mathbf{x}$ we have

$$f(x) \subseteq f(a) + f'(x)(x - a) \quad \forall x \in x.$$

Global optimization problem

min
$$f(x)$$

subject to $h_i(x) = 0$, $i \in I$, $g_j(x) \le 0$, $j \in J$.

Interval linearization on a box x around $a \in x$

We get an interval linear program, rigorous outer approximation

min
$$f(a) + \nabla f(x)^T(x - a)$$
)
subject to $h_i(a) + \nabla h_i(x)^T(x - a) = 0$, $i \in I$,
 $g_j(a) + \nabla g_j(x)^T(x - a) \leq 0$, $j \in J$.

Questions: Selection of $a \in x$

- Case $a = \underline{x}$ (or any other vertex of x): leads to LP
- General case: piecewise linear

Example

Typical situation when choosing *a* to be vertex:

Example

Typical situation when choosing *a* to be the opposite vertex:

Example

Typical situation when choosing $a = x_c$:

Example

Typical situation when choosing $a = x_c$ (after linearization):

Example

Typical situation when choosing all of them:

Next Section

- 1 Introduction to Interval Linear Programming
- 2 Application: Numerical Verification for Real LP
- 3 Application: Relaxations in Global Optimization
- 4 Application: Sensitivity Measure

Sensitivity Measure – Definition

Setup

Consider real LP problem

$$f(A, b, c) = \min c^T x$$
 subject to $Ax = b, x \ge 0$,

and intervals

$$\mathbf{A}_{\alpha} := [A - \alpha A_{\Delta}, A + \alpha A_{\Delta}],$$

$$\mathbf{b}_{\alpha} := [b - \alpha b_{\Delta}, b + \alpha b_{\Delta}],$$

$$\mathbf{c}_{\alpha} := [c - \alpha c_{\Delta}, c + \alpha c_{\Delta}],$$

depending on $\alpha \geq 0$.

Sensitivity measure

$$egin{aligned} d_w &:= \lim_{lpha o 0^+} rac{\overline{f}(oldsymbol{A}_lpha, oldsymbol{b}_lpha, oldsymbol{c}_lpha) - f(A, b, c)}{lpha}, \ d_r &:= rac{1}{\|(A_\Delta, b_\Delta, c_\Delta)\|_F} d_w. \end{aligned}$$

Sensitivity Measure - Computation

Proposition

If the LP problem has the unique nondegenerate optimal solution x^* , and if y^* is a dual optimal solution, then

$$d_w = |y^*|^T A_{\Delta} x^* + b_{\Delta}^T |y^*| + c_{\Delta}^T x^*.$$

Degenerate case assumptions

- Matrix A has full row rank and there is a primal feasible $x^0 > 0$.
- The dual feasible set has nonempty interior.

Proposition

We have

$$d_w = d_w(B) := |y^*(B)|^T A_{\Delta} x^*(B) + b_{\Delta}^T |y^*(B)| + c_{\Delta}^T x^*(B)$$

for certain optimal basis B.

• Corollary: lower and upper bounds on d_w .

Sensitivity Measure – Computation

Computational complexity

- It is NP-hard to check if $d_w \ge 1$.
- It is NP-hard to check $\max_{B \in \mathcal{B}} d_w(B) \ge 1$.

Special cases for the nondegenerate

- If $A_{\Delta}=0$, $b_{\Delta}=0$ and $c_{\Delta}=e_{j}$, then $d_{w}=x_{j}^{*}$.
- If $A_{\Delta} = 0$, $b_{\Delta} = e_i$ and $c_{\Delta} = 0$, then $d_w = |y_i^*|$.
- If $A_{\Delta}=e_{i}e_{j}^{T}$, $b_{\Delta}=0$ and $c_{\Delta}=0$, then $d_{w}=|y_{i}^{*}x_{j}^{*}|$.

Sensitivity Measure – Examples

Example

Consider

$$\max c^T x \text{ subject to } -e \leq Ax \leq e.$$

with $A_{\Delta}=|A|$, $b_{\Delta}=|b|$ and $c_{\Delta}=|c|$.

n	$A = I_n$		rand	dom	Vanderm	onde	Hilbert	
	d_w	d _r	d_w	d _r	d_w	d _r	d_w	d_r
2	2.545	0.876	3.953	1.338	23.35	8.287	144.3	52.13
3	7.055	1.894	9.747	2.693	56.67	9.801	$1.2 \cdot 10^{4}$	3468
4	5.392	1.308	26.60	6.295	2034	78.66	$1.4\cdot 10^7$	$3.7 \cdot 10^6$
5	6.646	1.436	152.3	30.36	$1.2\cdot 10^5$	641.7	$3.6\cdot 10^{10}$	$9.0 \cdot 10^{9}$
6	9.640	1.887	106.0	17.75	$2.9 \cdot 10^{6}$	1457	$4.8\cdot10^{13}$	$1.1\cdot 10^{13}$
7	13.76	2.468	27.09	3.777	$8.0 \cdot 10^{7}$	3063	$8.7\cdot 10^{16}$	$1.8\cdot10^{16}$
8	9.683	1.666	92.10	12.20	$5.5 \cdot 10^{7}$	136.3	_	-
9	14.66	2.342	205.8	23.59	$2.8 \cdot 10^{9}$	376.2	_	_
10	16.54	2.498	5251	575.2	$1.9\cdot10^{10}$	120.5	-	-

Sensitivity Measure – Examples

Example (Netlib data)

name	vars	constr	$d_w(B)$	$d_r(B)$	f(A, b, c)
BANDM	472	305	4686 7584	4.128 6.707	-158.6 -78.44
CAPRI	353	271	$1.5 \cdot 10^5$ $1.5 \cdot 10^5$	20.4 20.39	2690 2690
GREENBEB	5405	2392	$1.7 \cdot 10^7$ $2.4 \cdot 10^7$	12650 17990	$-4.3 \cdot 10^6 \\ -4.3 \cdot 10^6$
MAROS	1443	846	$2.4 \cdot 10^{6} \\ 2.4 \cdot 10^{6}$	15.7 15.77	-58060 -58060
PILOT	3652	1441	13140 13130	1.654 1.652	-557.5 -557.5
SCSD1	760	77	50.42 66	0.6369 0.8337	8.667 8.667
SHIP04L	2118	402	$8.8 \cdot 10^6$ $8.8 \cdot 10^6$	320.5 320.5	$1.8 \cdot 10^6 \\ 1.8 \cdot 10^6$

Sensitivity Measure – Challenges

Challenges and obstacles – degenerate problems

- Efficient upper bounds
- Computational complexity

References

