Robustness Properties of Absolute Value Linear Programming Problems and Relations to Interval Analysis

Milan Hladík

Interval Methods Group
https://kam.mff.cuni.cz/gim

Department of Applied Mathematics, Charles University, Prague, Czech Republic https://kam.mff.cuni.cz/~hladik/

17th International Workshop on Constraint Programming and Decision Making
CoProD 2025, Oldenburg, Germany
September 22, 2025

Part I

Absolute Value Equations

What Are Absolute Value Equations?

Definition

Absolute value equations (AVE):

$$|Ax + |x| = b$$
 $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$

Generalized absolute value equations (GAVE):

$$|Ax + B|x| = b$$
 $(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$

Properties

- The solution set forms a convex polyhedron in each orthant.
- May possess up to 2^n isolated points. (Example: |x| = e, where $e = (1, ..., 1)^T$ Remark: each value between 1 and 2^n is attained)
- Checking solvability of AVE is NP-complete (Mangasarian, 2007).
- Equivalent to the linear complementarity problem (LCP)

$$y = Mz + q, \ y^Tz = 0, \ y, z \ge 0$$

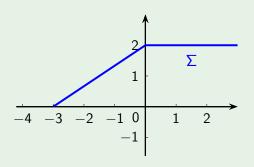
The Solution Set of AVE – Example 1

Example

Consider the absolute value equations

$$\begin{pmatrix} -1 & 3 \\ 0 & -1 \end{pmatrix} x + |x| = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$

Its solution set:



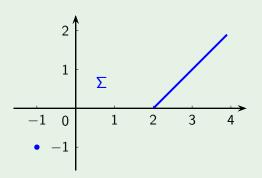
The Solution Set of AVE – Example 2

Example

Consider the absolute value equations

$$\begin{pmatrix} 0 & -1 \\ 1 & -2 \end{pmatrix} x + |x| = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Its solution set:



Relation to Interval Analysis: Unique Solvability of AVE

Theorem (Wu & Li, 2018)

The AVE system

$$Ax + |x| = b$$

has a unique solution for each $b \in \mathbb{R}^n$ if and only if the interval matrix

$$[A-I_n,A+I_n]$$

is regular.

Remarks

- Analogous to nonsingularity of A for system Ax = b
- NP-hard
- Open problem: Can we find the solution efficiently then?
- Sufficient conditions: $\rho(|A^{-1}|) < 1$, or $\sigma_{\min}(A) > 1$

Relation to Interval Analysis: Unique Solvability of GAVE

Theorem (Wu & Shen, 2021)

The GAVE system

$$Ax + B|x| = b$$

has a unique solution for each $b \in \mathbb{R}^n$ if and only if the matrix

$$A + BD$$

is nonsingular for each $D \in [-I_n, I_n]$.

Remarks

• Equivalent characterization: regularity of the interval matrix

$$\begin{pmatrix} A & B \\ [-I_n, I_n] & I_n \end{pmatrix}.$$

• Thus, Rohn's 40 necessary and sufficient conditions apply.

Part II

Absolute Value Linear Programming

What is Absolute Value Linear Programming?

Absolute value linear programming

Linear programming with absolute values

max
$$c^T x$$
 subject to $Ax - D|x| \le b$

Assumption: $D \ge 0$

Negative coefficients can be reformulated as linear constraints

• Example: $2x + |x| \le 3$ rewrite as $2x + y \le 3$, $-y \le x \le y$

Hard and challenging problem: Reduction from integer programming

Consider a 0-1 integer linear program

max
$$c^T x$$
 subject to $Ax \le b$, $x \in \{0,1\}^n$.

The problem equivalently states

max
$$c^T x$$
 subject to $Ax \le b$, $|2x - e| = e$.

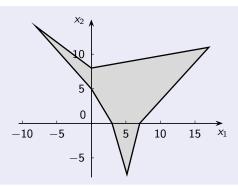
Basic Properties

Our problem max $c^T x$ subject to $Ax - D|x| \le b$

- nonconvex and nonsmooth optimization problem
- the feasible set can be disconnected: |x| = e

Proposition

The feasible set is a convex polyhedral set inside each orthant.



Robust Solvability

Denote the feasible set

$$\mathcal{M} = \mathcal{M}(b) = \{x \in \mathbb{R}^n : Ax - D|x| \le b\}.$$

Proposition

The feasible set $\mathcal{M}(b)$ is nonempty for each $b \in \mathbb{R}^n$ if and only if it is nonempty for b := -e.

Proposition

It is NP-hard to check $\mathcal{M}(-e) \neq \emptyset$.

Robust Boundedness and Connectedness

Proposition

The feasible set $(Ax - D|x| \le b)$ is bounded for each $b \in \mathbb{R}^n$ iff the system

$$Ax - D|x| \leq 0$$

has only the trivial solution x = 0.

Proposition

It is a co-NP-complete problem to check if the feasible set is bounded.

Proposition

The feasible set is connected if the system is solvable:

$$(A + D)u - (A - D)v \le b, \ u, v \ge 0.$$
 (*)

- Let u, v be a solution of (\star) .
- Then $x^* := u v$ solves $\tilde{A}x \le b$ for every $\tilde{A} \in [A D, A + D]$.
- Thus, every two feasible points are connected via x^* .

Relation to Interval Analysis: The Feasible Set

Our problem

Recall that

$$f^* = \max c^T x$$
 subject to $Ax - D|x| \le b$.

The feasible set

The feasible set is the united solution set of an interval linear system

$$[A-D,A+D]x \leq b.$$

That is,

$$\{x : Ax - D|x| \le b\} = \bigcup_{A' \in [A-D, A+D]} \{x : A'x \le b\}$$

Relation to Interval Analysis: Optimal Value Interpretation

Our problem

Recall that

$$f^* = \max c^T x$$
 subject to $Ax - D|x| \le b$.

Interpretation of f^*

We have that f^* is equal to the best-case optimal value of

max
$$c^T x$$
 subject to $[A - D, A + D]x \le b$,

that is,

$$f^* = \max_{\tilde{A} \in [A-D,A+D]} \max c^T x$$
 subject to $\tilde{A} \le b$.

Relation to Interval Analysis: Duality

Primal problem

Our problem

$$f^* = \max c^T x$$
 subject to $Ax - D|x| \le b$.

Dual problem

If the linear system

$$(A+D)u-(A-D)v\leq b,\ u,v\geq 0$$

is solvable, then f^* is the worst-case optimal value of

min
$$b^T y$$
 subject to $[A - D, A + D]^T y = c, y \ge 0$.

That is,

$$f^* = \max_{\tilde{A} \in [A-D, A+D]} \min \ b^T y \ \text{ subject to } \ \tilde{A}^T y = c, \ y \ge 0.$$

Relation to Interval Analysis: Theorem of the Alternatives

Theorem (Rohn, 2004)

Let $A, D \in \mathbb{R}^{n \times n}$, where $D \ge 0$. Then exactly one of the following alternatives holds:

1 the interval system

$$Ax - [-D, D]|x| = b$$

is strongly uniquely solvable (each realization has a unique solution);

2 the inequality

$$|Ax| \leq D|x|$$

has a nontrivial solution.

Integrality

Proposition

The vertices of

$$\mathcal{M} = \{ x \in \mathbb{R}^n : Ax - D|x| \le b \}.$$

are integral for every $b \in \mathbb{Z}^m$ if and only if matrix $(A - D \operatorname{diag}(s))^T$ is unimodular for each $s \in \{\pm 1\}^n$.

Proposition

There is no subset $S \subseteq \{\pm 1\}^n$ of size at most $2^{n-1} - 1$ such that the condition on unimodularity can be reduced to $s \in S$.

Open problem

What is the actual complexity of testing integrality?

Proposition

Let $\operatorname{rank}(D) = 1$. Then the condition on unimodularity is satisfied if and only if $(A - D\operatorname{diag}(s))^T$ is unimodular for each $s \in \{\pm 1, 0\}^n : \|s\|_0 \le 2$.

Conclusion

The End