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Part I

Absolute Value Equations



What Are Absolute Value Equations?

Definition

Absolute value equations (AVE):

Ax + |x | = b (A ∈ R
n×n

, b ∈ R
n)

Generalized absolute value equations (GAVE):

Ax + B |x | = b (A,B ∈ R
n×n

, b ∈ R
n)

Properties

The solution set forms a convex polyhedron in each orthant.

May possess up to 2n isolated points.
(Example: |x | = e, where e = (1, . . . , 1)T

Remark: each value between 1 and 2n is attained)

Checking solvability of AVE is NP-complete (Mangasarian, 2007).

Equivalent to the linear complementarity problem (LCP)

y = Mz + q, yT z = 0, y , z ≥ 0
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The Solution Set of AVE – Example 1

Example

Consider the absolute value equations
(

−1 3
0 −1

)

x + |x | =

(

6
0

)

Its solution set:

1 2−1−2−3−4
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Σ
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The Solution Set of AVE – Example 2

Example

Consider the absolute value equations
(

0 −1
1 −2

)

x + |x | =

(

2
2

)

Its solution set:

1 2 3 4−1
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0

Σ
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Relation to Interval Analysis: Unique Solvability of AVE

Theorem (Wu & Li, 2018)

The AVE system

Ax + |x | = b

has a unique solution for each b ∈ R
n if and only if the interval matrix

[A− In,A+ In]

is regular.

Remarks

Analogous to nonsingularity of A for system Ax = b

NP-hard

Open problem: Can we find the solution efficiently then?

Sufficient conditions: ρ(|A−1|) < 1, or σmin(A) > 1
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Relation to Interval Analysis: Unique Solvability of GAVE

Theorem (Wu & Shen, 2021)

The GAVE system

Ax + B |x | = b

has a unique solution for each b ∈ R
n if and only if the matrix

A+ BD

is nonsingular for each D ∈ [−In, In].

Remarks

Equivalent characterization: regularity of the interval matrix
(

A B
[−In, In] In

)

.

Thus, Rohn’s 40 necessary and sufficient conditions apply.
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Part II

Absolute Value Linear Programming



What is Absolute Value Linear Programming?

Absolute value linear programming

Linear programming with absolute values

max cT x subject to Ax − D|x | ≤ b

Assumption: D ≥ 0

Negative coefficients can be reformulated as linear constraints

Example: 2x + |x | ≤ 3 rewrite as 2x + y ≤ 3, −y ≤ x ≤ y

Hard and challenging problem: Reduction from integer programming

Consider a 0-1 integer linear program

max cT x subject to Ax ≤ b, x ∈ {0, 1}n .

The problem equivalently states

max cT x subject to Ax ≤ b, |2x − e| = e.
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Basic Properties

Our problem max c
T
x subject to Ax − D|x | ≤ b

nonconvex and nonsmooth optimization problem

the feasible set can be disconnected: |x | = e

Proposition

The feasible set is a convex polyhedral set inside each orthant.

5 10 15−5−10
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Robust Solvability

Denote the feasible set

M = M(b) = {x ∈ R
n : Ax − D|x | ≤ b}.

Proposition

The feasible set M(b) is nonempty for each b ∈ R
n if and only if it is

nonempty for b := −e.

Proposition

It is NP-hard to check M(−e) 6= ∅.
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Robust Boundedness and Connectedness

Proposition

The feasible set (Ax −D|x | ≤ b) is bounded for each b ∈ R
n iff the system

Ax − D|x | ≤ 0

has only the trivial solution x = 0.

Proposition

It is a co-NP-complete problem to check if the feasible set is bounded.

Proposition

The feasible set is connected if the system is solvable:

(A+ D)u − (A− D)v ≤ b, u, v ≥ 0. (⋆)

Let u, v be a solution of (⋆).

Then x∗ := u − v solves Ãx ≤ b for every Ã ∈ [A− D,A+ D].

Thus, every two feasible points are connected via x∗.
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Relation to Interval Analysis: The Feasible Set

Our problem

Recall that

f ∗ = max cT x subject to Ax − D|x | ≤ b.

The feasible set

The feasible set is the united solution set of an interval linear system

[A− D,A+D]x ≤ b.

That is,

{x : Ax − D|x | ≤ b} =
⋃

A′∈[A−D,A+D]

{x : A′x ≤ b}
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Relation to Interval Analysis: Optimal Value Interpretation

Our problem

Recall that

f ∗ = max cT x subject to Ax − D|x | ≤ b.

Interpretation of f ∗

We have that f ∗ is equal to the best-case optimal value of

max cT x subject to [A −D,A+ D]x ≤ b,

that is,

f ∗ = max
Ã∈[A−D,A+D]

max cT x subject to Ã ≤ b.
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Relation to Interval Analysis: Duality

Primal problem

Our problem

f ∗ = max cT x subject to Ax − D|x | ≤ b.

Dual problem

If the linear system

(A +D)u − (A− D)v ≤ b, u, v ≥ 0

is solvable, then f ∗ is the worst-case optimal value of

min bT y subject to [A− D,A+ D]T y = c , y ≥ 0.

That is,

f ∗ = max
Ã∈[A−D,A+D]

min bT y subject to ÃT y = c , y ≥ 0.
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Relation to Interval Analysis: Theorem of the Alternatives

Theorem (Rohn, 2004)

Let A,D ∈ R
n×n, where D ≥ 0. Then exactly one of the following

alternatives holds:

1 the interval system

Ax − [−D,D]|x | = b

is strongly uniquely solvable (each realization has a unique solution);

2 the inequality

|Ax | ≤ D|x |

has a nontrivial solution.
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Integrality

Proposition

The vertices of
M = {x ∈ R

n : Ax −D|x | ≤ b}.

are integral for every b ∈ Z
m if and only if matrix (A− D diag(s))T is

unimodular for each s ∈ {±1}n.

Proposition

There is no subset S ⊆ {±1}n of size at most 2n−1 − 1 such that the
condition on unimodularity can be reduced to s ∈ S.

Open problem

What is the actual complexity of testing integrality?

Proposition

Let rank(D) = 1. Then the condition on unimodularity is satisfied if and
only if (A− D diag(s))T is unimodular for each s ∈ {±1, 0}n : ‖s‖0 ≤ 2.
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Conclusion

The End
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