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Motivation

Classical Transportation Problem

min
∑m

i=1

∑n
j=1 cijxij

subject to
∑m

i=1 xij = bj , j = 1, . . . , n,
∑n

j=1 xij = ai , i = 1, . . . ,m,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

where ai is the supply, bj the demand, and cij the cost.

Changing supplies or demands changes the optimal solution, but
optimal basis B may remain optimal.

Basis B says which routes will be active and which not.

The Question

For any admissible variation of demands bj , exists a feasible
adjustment of supplies ai such that basis B remains optimal?
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Interval Data

Interval Vector

v = [v , v ] = {v ∈ R
n : v ≤ v ≤ v}

We will also use

inf(v) = v , sup(v) = v

Interval Arithmetic

For two intervals a and b,

a + b = [a + b, a + b],

a − b = [a − b, a − b],

ab = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)], 0 6∈ b.
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Problem Formulation

Linear Programming Problem

min cT x subject to Ax = b, x ≥ 0

Input

Let b and c be interval vectors

Each interval is associated either with ∃ or with ∀

Without loss of generality b = (b∃;b∀) and c = (c∃; c∀)

Problem Formulation

For a given basis B , decide if for each (b∀, c∀) ∈ (b∀, c∀) there is
(b∃, c∃) ∈ (b∃, c∃) such that basis B is optimal for (b, c).

Basis Optimality Criteria

1 (feasibility) A−1
B b ≥ 0

2 (optimality) cTN − cTB A−1
B AN ≥ 0T
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Basis Feasibility Criterion: A−1
B b ≥ 0

Case b = b∀

By interval arithmetic, check if inf(A−1
B b) ≥ 0

Case b = b∃

Check solvability of the linear system

A−1
B b ≥ 0, b ≤ b ≤ b

This problem is P-complete

Mixed Case b = (b∃;b∀)

Write the feasibility criterion as ABxB = b, xB ≥ 0

By splitting the quantifiers write it as

A∀

BxB = b∀, A∃

BxB = b∃, xB ≥ 0

For each b∀ such that b∀i ∈ {b∀i , b
∀

i }, check solvability of

A∀

BxB = b∀, b∃ ≤ A∃

BxB ≤ b
∃
, xB ≥ 0
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Basis Feasibility Criterion: A−1
B b ≥ 0

Complexity

The condition is exponential in the length of b∀.

Proposition

Checking basis feasibility is co-NP-hard.

Proposition (Sufficient condition)

Split A−1
B = (C∃ | C∀) according to the quantifiers in b. If the linear

system

C∃b∃ + inf(C∀
b
∀) ≥ 0, b∃ ≤ b∃ ≤ b

∃

is feasible, then feasibility criterion holds.

Proof.

The idea is based on reversing the quantifiers.
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Basis Optimality Criterion: cTN − c
T
B A

−1
B AN ≥ 0T

Case c = c∀

By interval arithmetic, check if inf
(

cT
N − cT

B (A−1
B

AN)
)

≥ 0T .

Case c = c
∃

Check solvability of the linear system

cTN − cTB A−1
B AN ≥ 0T , c ≤ c ≤ c .

Mixed Case c = (c∃; c∀) co-NP-hard

Write the optimality criterion as AT
B y = cB , AT

Ny ≤ cN ,

By splitting the quantifiers write it as

(A∀

B)
T y = c∀B , (A∃

B)
T y = c∃B , (A∀

N)
T y ≤ c∀N , (A∃

N)
T y ≤ c∃N

For each c∀B such that (c∀B )i ∈ {(c∀B)i , (c
∀

B)i}, check solvability of

(A∀

B)
T y = (c∀B), c∃B ≤ (A∃

B)
T y ≤ c∃B , (A∀

N)
T y ≤ c∀N , (A∃

N)
T y ≤ c∃N
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Example

Example (Transportation Problem from Xie et al. (2017))

C =

(

15 25 54 5 25

31 21 87 29 46

2 15 10 60 30

)

, a =

(

120

150

200

)

, b =









90

60

120

50

150









.

The optimal solution is

X ∗ =

(

0 0 0 50 70

10 60 0 0 80

80 0 120 0 0

)

,

Assume:

demands known with 10% uncertainty, b∀ = [b − 0.1|b|, b + 0.1|b|]

supplies can be adjusted within 10%, a∃ = [a − 0.1|a|, a + 0.1|a|]

Results:

optimal basis is stable (sufficient condition applies)

if uncertainty increased to 20%, basis no more stable
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Extensions to Uncertainty in the Matrix

Recall: Basis Optimality Criteria

1 (feasibility) A−1
B b ≥ 0

2 (optimality) cTN − cTB A−1
B AN ≥ 0T

Intervals only in AN and ∀-quantified

1 Basis Feasibility: trivial

2 Basis Optimality: rewrite the criterion as

AT
B y = cB , A

T

Ny ≤ cN .

Then the problem reduces to the case just with interval c

AT
B y = cB , A

T

Ny
1 − AT

Ny
2 ≤ cN , y = y1 − y2, y1, y2 ≥ 0

General Case with Intervals in A

a finite reduction exists for ∀-quantification

sufficient conditions exist
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Example: Diet Problem

Example (Stigler’s Nutrition Model)

Nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c
(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg)

wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106

canned milk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4

peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525

pork roast 4.4 249 .3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209

green beans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257

lima beans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navy beans 26.9 1691 11.4 792 38.4 24.6 217

demand 3 70 .8 12 5 1.8 2.7 18 75
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Example: Diet Problem

Example (Stigler’s Nutrition Model)

http://www.gams.com/modlib/libhtml/diet.htm.

n = 20 different types of food,

m = 9 nutritional demands,

aij is the the amount of nutrient j contained in one unit of food i ,

bi is the required minimal amount of nutrient j ,

cj is the price per unit of food j ,

minimize the overall cost

The model reads

min cT x subject to Ax ≥ b, x ≥ 0.

The entries aij are not stable!
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Example: Diet Problem

Example (Stigler’s Nutrition Model)

We compute

Optimal basis B = (1, 8, 12, 15, 20)
(wheat, liver, cabbage, spinach and navy beans)

Suppose:

the entries of A can vary up to δ1 of their nominal values

the nutritional demands are usually not hard constraints,
the tolerances for b are δ2

The results on stability:

For δ1 = 2.5% and δ2 = 2.5%, basis is not stable

For δ1 = 1.5% and δ2 = 2.5%, basis is stable

For δ1 = 0.9% and δ2 = 2.5%, basis is stable
(sufficient condition succeeds)
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Conclusion

Novel type of Robustness of a Basis

Based of forall-exists quantification of interval parameters

Allows for more complex and flexible variations of data

In general computationally hard, but sufficient conditions work

Open problem:

characterize the case of ∃-quantified interval parameters in A
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