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Part I

Absolute Value Equations



What are Absolute Value Equations?

Definition

Absolute value equations (AVE):

Ax + |x | = b (A ∈ R
n×n

, b ∈ R
n)

Generalized absolute value equations:

Ax + B |x | = b (A,B ∈ R
n×n

, b ∈ R
n)

Properties

The solution set forms a convex polyhedron in each orthant.

May possess up to 2n isolated points.
(Example: |x | = e, where e = (1, . . . , 1)T

Remark: each value between 1 and 2n is attained)

Checking solvability of AVE is NP-complete (Mangasarian, 2007).

Equivalent to the linear complementarity problem (LCP)

y = Mz + q, yT z = 0, y , z ≥ 0
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The solution set of AVE – Example 1

Example

Consider the absolute value equations
(

−1 3
0 −1

)

x + |x | =

(

6
0

)

Its solution set:

1 2−1−2−3−4
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1

2

0

Σ
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The solution set of AVE – Example 2

Example

Consider the absolute value equations
(

0 −1
1 −2

)

x + |x | =

(

2
2

)

Its solution set:

1 2 3 4−1
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1

2

0

Σ
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Unique solvability

Interval notation

[A± In] = {B ∈ R
n×n : |A− B | ≤ In}

[A± In] is regular if each matrix B ∈ [A± In] is nonsingular

Theorem (Wu & Li, 2018)

The AVE system Ax + |x | = b has a unique solution for each b ∈ R
n if

and only if [A± In] is regular.

Analogous to nonsingularity of A for system Ax = b

NP-hard

Open problem: Can we find the solution efficiently then?
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Motivation from LCP

The linear complementarity problem (equivalent to AVE)

y = Az + q, yT z = 0, y , z ≥ 0.

More than 50 matrix classes. . .

matrix type definition

P-matrix unique solution for each q

principally nondegenerate finitely many solutions (incl. 0) for each q

strictly copositive at least one solution for each q

semimonotone unique solution for each q > 0
column sufficient the solution set is convex (or empty)

R0-matrix the solution set is bounded
Q-matrix at least one solution for each q
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AVE – topological properties

Proposition

The AVE has a unique nonnegative solution for each b ≥ 0 if and only if

(A+ In)
−1 ≥ 0.

Proposition

There is no AVE such that each orthant contains infinitely many solutions.

Example. x + |x | = 0
All orthants have infinitely many solutions, except the positive one.

Proposition

The solution set is finite for each b ∈ R
n if and only if A+ diag(s) is

nonsingular for each s ∈ {±1}n.

Proposition

This property is co-NP-hard to check, even if rank(A) = 1.
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Part II

Absolute Value Linear Programming



What is Absolute Value Linear Programming?

Absolute value linear programming

Linear programming with absolute values

max cT x subject to Ax − D|x | ≤ b

Assumption: D ≥ 0

Negative coefficients can be reformulated as linear constraints

Example: 2x + |x | ≤ 3 rewrite as 2x + y ≤ 3, −y ≤ x ≤ y

Hard and challenging problem

NP-hard to check for feasibility and other issues
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Formulation Power

Integer linear programming

Consider a 0-1 integer linear program

max cT x subject to Ax ≤ b, x ∈ {0, 1}n .

The problem equivalently states

max cT x subject to Ax ≤ b, |2x − e| = e.

Interval linear programming

Our problem

max cT x subject to Ax − D|x | ≤ b

is equivalent to the best case of

max cT x subject to [A −D,A+ D]x ≤ b.

Indeed,

{x : Ax − D|x | ≤ b} =
⋃

A′∈[A−D,A+D]

{x : A′x ≤ b}
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Basic Properties

Our problem max c
T
x subject to Ax − D|x | ≤ b

nonconvex and nonsmooth optimization problem

the feasible set can be disconnected: |x | = e

Proposition

The feasible set is a convex polyhedra set inside each orthant.
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Solvability

Denote the feasible set

M = M(b) = {x ∈ R
n : Ax − D|x | ≤ b}.

Proposition

The feasible set M(b) is nonempty for each b ∈ R
n if and only if it is

nonempty for b := −e.

Proposition

It is NP-hard to check M(−e) 6= ∅.
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Boundedness and Connectedness Ax − D|x | ≤ b

Proposition

The feasible set is bounded for each b ∈ R
n if and only if the system

Ax − D|x | ≤ 0

has only the trivial solution x = 0.

Proposition

It is a co-NP-complete problem to check if the feasible set is bounded.

Proposition

The feasible set is connected if the system is solvable:

(A+ D)u − (A− D)v ≤ b, u, v ≥ 0. (⋆)

Let u, v be a solution of (⋆).

Then x∗ := u − v solves Ãx ≤ b for every Ã ∈ [A− D,A+ D].

Thus, every two feasible points are connected via x∗.
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Duality

Primal problem

Our problem

f ∗ = max cT x subject to Ax − D|x | ≤ b.

Dual problem

Interval linear program

min bT y subject to [A− D,A+ D]T y = c , y ≥ 0

If (⋆) is solvable, then the worst case optimal value is equal to f ∗.
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Integrality

Proposition

The vertices of
M = {x ∈ R

n : Ax −D|x | ≤ b}.

are integral for every b ∈ Z
m if and only if matrix (A− D diag(s))T is

unimodular for each s ∈ {±1}n.

Proposition

There is no subset S ⊆ {±1}n of size at most 2n−1 − 1 such that the

condition on unimodularity can be reduced to s ∈ S.

Open problem

What is the actual complexity of testing integrality?

Proposition

Let rank(D) = 1. Then the condition on unimodularity is satisfied if and

only if (A− D diag(s))T is unimodular for each s ∈ {±1, 0}n : ‖s‖0 ≤ 2.
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Conclusion

theoretical properties

numerical methods (TODO)
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