Combinatorial Aspects of Absolute Value Linear Programming

Milan Hladík
Interval Methods Group
https://kam.mff.cuni.cz/gim
Department of Applied Mathematics, Charles University, Prague, Czech Republic https://kam.mff.cuni.cz/~hladik/

8th International Symposium on Combinatorial Optimization ISCO 2024, Tenerife, Spain

May 22 - 24, 2024

Part I

Absolute Value Equations

What are Absolute Value Equations?

Definition

Absolute value equations (AVE):

$$
A x+|x|=b \quad\left(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}\right)
$$

Generalized absolute value equations:

$$
A x+B|x|=b \quad\left(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}\right)
$$

Properties

- The solution set forms a convex polyhedron in each orthant.
- May possess up to 2^{n} isolated points.
(Example: $|x|=e$, where $e=(1, \ldots, 1)^{T}$
Remark: each value between 1 and 2^{n} is attained)
- Checking solvability of AVE is NP-complete (Mangasarian, 2007).
- Equivalent to the linear complementarity problem (LCP)

$$
y=M z+q, y^{\top} z=0, y, z \geq 0
$$

The solution set of AVE - Example 1

Example

Consider the absolute value equations

$$
\left(\begin{array}{cc}
-1 & 3 \\
0 & -1
\end{array}\right) x+|x|=\binom{6}{0}
$$

Its solution set:

The solution set of AVE - Example 2

Example

Consider the absolute value equations

$$
\left(\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right) x+|x|=\binom{2}{2}
$$

Its solution set:

Unique solvability

Interval notation

- $\left[A \pm I_{n}\right]=\left\{B \in \mathbb{R}^{n \times n}:|A-B| \leq I_{n}\right\}$
- $\left[A \pm I_{n}\right]$ is regular if each matrix $B \in\left[A \pm I_{n}\right]$ is nonsingular

Theorem (Wu \& Li, 2018)
The AVE system $A x+|x|=b$ has a unique solution for each $b \in \mathbb{R}^{n}$ if and only if $\left[A \pm I_{n}\right]$ is regular.

- Analogous to nonsingularity of A for system $A x=b$
- NP-hard
- Open problem: Can we find the solution efficiently then?

Motivation from LCP

The linear complementarity problem (equivalent to AVE)

$$
y=A z+q, y^{\top} z=0, y, z \geq 0
$$

More than 50 matrix classes. . .
matrix type definition
P-matrix unique solution for each q
principally nondegenerate strictly copositive semimonotone column sufficient
R_{0}-matrix
Q-matrix
finitely many solutions (incl. 0) for each q at least one solution for each q unique solution for each $q>0$ the solution set is convex (or empty)
the solution set is bounded at least one solution for each q

AVE - topological properties

Proposition

The AVE has a unique nonnegative solution for each $b \geq 0$ if and only if $\left(A+I_{n}\right)^{-1} \geq 0$.

Proposition

There is no AVE such that each orthant contains infinitely many solutions.

- Example. $x+|x|=0$

All orthants have infinitely many solutions, except the positive one.

Proposition

The solution set is finite for each $b \in \mathbb{R}^{n}$ if and only if $A+\operatorname{diag}(s)$ is nonsingular for each $s \in\{ \pm 1\}^{n}$.

Proposition

This property is co-NP-hard to check, even if $\operatorname{rank}(A)=1$.

Part II

Absolute Value Linear Programming

What is Absolute Value Linear Programming?

Absolute value linear programming
Linear programming with absolute values

$$
\max c^{\top} x \text { subject to } A x-D|x| \leq b
$$

Assumption: $D \geq 0$

Negative coefficients can be reformulated as linear constraints

- Example: $2 x+|x| \leq 3$ rewrite as $2 x+y \leq 3,-y \leq x \leq y$

Hard and challenging problem

- NP-hard to check for feasibility and other issues

Formulation Power

Integer linear programming
Consider a 0-1 integer linear program

$$
\max c^{T} x \text { subject to } A x \leq b, x \in\{0,1\}^{n} .
$$

The problem equivalently states

$$
\max c^{\top} x \text { subject to } A x \leq b,|2 x-e|=e
$$

Interval linear programming

Our problem

$$
\max c^{T} x \text { subject to } A x-D|x| \leq b
$$

is equivalent to the best case of

$$
\max c^{\top} x \text { subject to }[A-D, A+D] x \leq b
$$

Indeed,

$$
\{x: A x-D|x| \leq b\}=\bigcup_{A^{\prime} \in[A-D, A+D]}\left\{x: A^{\prime} x \leq b\right\}
$$

Basic Properties

Our problem max $c^{T} x$ subject to $A x-D|x| \leq b$

- nonconvex and nonsmooth optimization problem
- the feasible set can be disconnected: $|x|=e$

Proposition

The feasible set is a convex polyhedra set inside each orthant.

Solvability

Denote the feasible set

$$
\mathcal{M}=\mathcal{M}(b)=\left\{x \in \mathbb{R}^{n}: A x-D|x| \leq b\right\} .
$$

Proposition

The feasible set $\mathcal{M}(b)$ is nonempty for each $b \in \mathbb{R}^{n}$ if and only if it is nonempty for $b:=-e$.

Proposition

It is NP-hard to check $\mathcal{M}(-e) \neq \emptyset$.

Boundedness and Connectedness

Proposition

The feasible set is bounded for each $b \in \mathbb{R}^{n}$ if and only if the system

$$
A x-D|x| \leq 0
$$

has only the trivial solution $x=0$.

Proposition

It is a co-NP-complete problem to check if the feasible set is bounded.

Proposition

The feasible set is connected if the system is solvable:

$$
(A+D) u-(A-D) v \leq b, u, v \geq 0
$$

- Let u, v be a solution of (\star).
- Then $x^{*}:=u-v$ solves $\tilde{A} x \leq b$ for every $\tilde{A} \in[A-D, A+D]$.
- Thus, every two feasible points are connected via x^{*}.

Duality

Primal problem

Our problem

$$
f^{*}=\max c^{T} x \text { subject to } A x-D|x| \leq b
$$

Dual problem

Interval linear program

$$
\min b^{T} y \text { subject to }[A-D, A+D]^{T} y=c, y \geq 0
$$

If (\star) is solvable, then the worst case optimal value is equal to f^{*}.

Integrality

Proposition

The vertices of

$$
\mathcal{M}=\left\{x \in \mathbb{R}^{n}: A x-D|x| \leq b\right\}
$$

are integral for every $b \in \mathbb{Z}^{m}$ if and only if matrix $(A-D \operatorname{diag}(s))^{T}$ is unimodular for each $s \in\{ \pm 1\}^{n}$.

Proposition

There is no subset $\mathcal{S} \subseteq\{ \pm 1\}^{n}$ of size at most $2^{n-1}-1$ such that the condition on unimodularity can be reduced to $s \in \mathcal{S}$.

Open problem
What is the actual complexity of testing integrality?

Proposition

Let $\operatorname{rank}(D)=1$. Then the condition on unimodularity is satisfied if and only if $(A-D \operatorname{diag}(s))^{T}$ is unimodular for each $s \in\{ \pm 1,0\}^{n}:\|s\|_{0} \leq 2$.

Conclusion

- theoretical properties
- numerical methods (TODO)

Interval Methods Group

$\left[\begin{array}{l}\text { Group on } \\ \text { Interval } \\ \text { Methods }\end{array}\right]$

https://kam.mff.cuni.cz/gim

