Combinatorial Aspects of Absolute Value Linear Programming

Milan Hladík

Interval Methods Group https://kam.mff.cuni.cz/gim

Department of Applied Mathematics, Charles University, Prague, Czech Republic https://kam.mff.cuni.cz/~hladik/

8th International Symposium on Combinatorial Optimization ISCO 2024, Tenerife, Spain May 22 – 24, 2024

Part I

Absolute Value Equations

What are Absolute Value Equations?

Definition

Absolute value equations (AVE):

$$Ax + |x| = b$$
 $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$

Generalized absolute value equations:

$$Ax + B|x| = b$$
 $(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$

Properties

- The solution set forms a convex polyhedron in each orthant.
- May possess up to 2ⁿ isolated points. (Example: |x| = e, where e = (1,...,1)^T Remark: each value between 1 and 2ⁿ is attained)
- Checking solvability of AVE is NP-complete (Mangasarian, 2007).
- Equivalent to the linear complementarity problem (LCP)

$$y = Mz + q, \ y^T z = 0, \ y, z \ge 0$$

The solution set of AVE – Example 1

Example

Consider the absolute value equations

$$\begin{pmatrix} -1 & 3\\ 0 & -1 \end{pmatrix} x + |x| = \begin{pmatrix} 6\\ 0 \end{pmatrix}$$

Its solution set:

The solution set of AVE – Example 2

Example

Consider the absolute value equations

$$\begin{pmatrix} 0 & -1 \\ 1 & -2 \end{pmatrix} x + |x| = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Its solution set:

Interval notation

•
$$[A \pm I_n] = \{B \in \mathbb{R}^{n \times n} : |A - B| \le I_n\}$$

• $[A \pm I_n]$ is regular if each matrix $B \in [A \pm I_n]$ is nonsingular

Theorem (Wu & Li, 2018)

The AVE system Ax + |x| = b has a unique solution for each $b \in \mathbb{R}^n$ if and only if $[A \pm I_n]$ is regular.

- Analogous to nonsingularity of A for system Ax = b
- NP-hard
- Open problem: Can we find the solution efficiently then?

Motivation from LCP

The linear complementarity problem (equivalent to AVE)

$$y = Az + q, y^T z = 0, y, z \ge 0.$$

More than 50 matrix classes	
matrix type	definition
<i>P</i> -matrix	unique solution for each <i>q</i>
principally nondegenerate	finitely many solutions (incl. 0) for each q
strictly copositive	at least one solution for each q
semimonotone	unique solution for each $q > 0$
column sufficient	the solution set is convex (or empty)
R ₀ -matrix	the solution set is bounded
<i>Q</i> -matrix	at least one solution for each q

AVE – topological properties

Proposition

The AVE has a unique nonnegative solution for each $b \ge 0$ if and only if $(A + I_n)^{-1} \ge 0$.

Proposition

There is no AVE such that each orthant contains infinitely many solutions.

• Example.
$$x + |x| = 0$$

All orthants have infinitely many solutions, except the positive one.

Proposition

The solution set is finite for each $b \in \mathbb{R}^n$ if and only if A + diag(s) is nonsingular for each $s \in \{\pm 1\}^n$.

Proposition

This property is co-NP-hard to check, even if rank(A) = 1.

Part II

Absolute Value Linear Programming

Absolute value linear programming

Linear programming with absolute values

max
$$c^T x$$
 subject to $Ax - D|x| \le b$

Assumption: $D \ge 0$

Negative coefficients can be reformulated as linear constraints

• Example: $2x + |x| \le 3$ rewrite as $2x + y \le 3$, $-y \le x \le y$

Hard and challenging problem

• NP-hard to check for feasibility and other issues

Formulation Power

Integer linear programming Consider a 0-1 integer linear program max $c^T x$ subject to $Ax \leq b, x \in \{0,1\}^n$. The problem equivalently states max $c^T x$ subject to Ax < b, |2x - e| = e. Interval linear programming Our problem max $c^T x$ subject to Ax - D|x| < bis equivalent to the best case of max $c^T x$ subject to $[A - D, A + D]x \leq b$. Indeed. $\{x : Ax - D|x| \le b\} = \{x : A'x \le b\}$ $A' \in [A - D, A + D]$

Basic Properties

Our problem max $c^T x$ subject to $Ax - D|x| \le b$

- nonconvex and nonsmooth optimization problem
- the feasible set can be disconnected: |x| = e

Proposition

The feasible set is a convex polyhedra set inside each orthant.

Denote the feasible set

$$\mathcal{M} = \mathcal{M}(b) = \{x \in \mathbb{R}^n : Ax - D|x| \le b\}.$$

Proposition

The feasible set $\mathcal{M}(b)$ is nonempty for each $b \in \mathbb{R}^n$ if and only if it is nonempty for b := -e.

Proposition

It is NP-hard to check $\mathcal{M}(-e) \neq \emptyset$.

Boundedness and Connectedness

Proposition

The feasible set is bounded for each $b \in \mathbb{R}^n$ if and only if the system

$$Ax - D|x| \leq 0$$

has only the trivial solution x = 0.

Proposition

It is a co-NP-complete problem to check if the feasible set is bounded.

Proposition

The feasible set is connected if the system is solvable:

$$(A+D)u-(A-D)v\leq b, \ u,v\geq 0. \tag{(\star)}$$

- Let u, v be a solution of (\star) .
- Then $x^* \coloneqq u v$ solves $\tilde{A}x \leq b$ for every $\tilde{A} \in [A D, A + D]$.
- Thus, every two feasible points are connected via x^{*}.

 $|Ax - D|x| \leq b$

Primal problem

Our problem

$$f^* = \max c^T x$$
 subject to $Ax - D|x| \le b$.

Dual problem

Interval linear program

min
$$b^T y$$
 subject to $[A - D, A + D]^T y = c, y \ge 0$

If (\star) is solvable, then the worst case optimal value is equal to f^* .

Integrality

Proposition

The vertices of

$$\mathcal{M} = \{ x \in \mathbb{R}^n : Ax - D|x| \le b \}.$$

are integral for every $b \in \mathbb{Z}^m$ if and only if matrix $(A - D \operatorname{diag}(s))^T$ is unimodular for each $s \in \{\pm 1\}^n$.

Proposition

There is no subset $S \subseteq \{\pm 1\}^n$ of size at most $2^{n-1} - 1$ such that the condition on unimodularity can be reduced to $s \in S$.

Open problem

What is the actual complexity of testing integrality?

Proposition

Let rank(D) = 1. Then the condition on unimodularity is satisfied if and only if $(A - D \operatorname{diag}(s))^T$ is unimodular for each $s \in \{\pm 1, 0\}^n : \|s\|_0 \leq 2$.

- theoretical properties
- numerical methods (TODO)

[Group on] Interval Methods]

https://kam.mff.cuni.cz/gim

