Robust Slater’s Condition in an Uncertain Environment

Milan Hladík

Interval Methods Group
https://kam.mff.cuni.cz/gim

Department of Applied Mathematics
Charles University in Prague, Czech Republic
https://kam.mff.cuni.cz/~hladik/

MME 2021, Prague
39th International Conference on Mathematical Methods in Economics
September 8–10, 2021
Robust Slater’s Condition

Slater’s condition
- a constraint qualification appearing e.g. in optimality conditions in convex optimization
- requires an existence of an interior feasible point

Our goal
- robust Slater’s condition for interval-valued constraints
- we will be content with linear systems

Another motivation
- many is known for interval linear systems ($Ax \leq b$), but less is known for strict systems ($Ax < b$)
Interval matrix

\[A = \{ A \in \mathbb{R}^{m \times n} : \underline{A} \leq A \leq \overline{A} \} \]

The midpoint and the radius matrices:

\[A_c = \frac{1}{2} (A + \overline{A}), \quad A_\Delta = \frac{1}{2} (\overline{A} - A). \]

System of interval linear inequalities

A family of linear systems

\[Ax \leq b, \quad A \in A, \quad b \in b \]

In short:

\[Ax \leq b \]

A realization is any system \(Ax \leq b \), where \(A \in A \) and \(b \in b \).
Intervals, interval vectors, interval matrices, . . .

Example

\[
\begin{pmatrix}
[1, 2] & 3 \\
[-1, 1] & [3, 4]
\end{pmatrix}
\begin{pmatrix}
x
\end{pmatrix}
\leq
\begin{pmatrix}
[11, 12] \\
[5, 6]
\end{pmatrix}
\]

Definition

An interval system \(Ax \leq b \) is

- *strongly solvable* if it is solvable for every realization,

A vector \(x \in \mathbb{R}^n \) is

- *a strong solution* if it solves every realization,

Similarly for other types of systems.
Strong solvability of interval equations

Theorem

An interval system \(Ax = b, \ x > 0 \) is strongly solvable iff the system

\[
(A_c + \text{diag}(s)A_\Delta)x = b_c - \text{diag}(s)b_\Delta, \quad x > 0
\]

is solvable for each \(s \in \{\pm 1\}^m \).

Remark

- In other words, \((\clubsuit)\) has the form \(Ax = b \), where

\[
A_{i*} = \begin{cases} \overline{A}_{i*} & \text{if } s_i = 1, \\ A_{i*} & \text{if } s_i = -1, \end{cases} \quad b_i = \begin{cases} b_i & \text{if } s_i = 1, \\ \frac{b_i}{b_i} & \text{if } s_i = -1. \end{cases}
\]

- An analogous result as for \(Ax = b, \ x \geq 0 \). [Rohn, 1981]

- Characterization \((\clubsuit)\) is exponential in the number of equations, not variables.

Theorem

Checking strong solvability of \(Ax = b, \ x > 0 \) is co-NP-hard.
Theorem

A vector x is a strong solution to an interval system $Ax = b$, $x > 0$, iff

$$A_c x = b_c, \ x > 0, \ A_\Delta = 0, \ b_\Delta = 0.$$

Remark

In other words, all intervals in $Ax = b$ must be degenerate.
Strong solvability of interval inequalities

Theorem

An interval system $\mathbf{A} \mathbf{x} < \mathbf{b}$ is strongly solvable iff the system

$$
\overline{\mathbf{A}} \mathbf{x}^1 - \underline{\mathbf{A}} \mathbf{x}^2 < \mathbf{b}, \quad x^1 \geq 0, \quad x^2 \geq 0 \quad \left(\spadesuit \right)
$$

is solvable in variables x^1, x^2.

Remark

An analogous result as for $\mathbf{A} \mathbf{x} \leq \mathbf{b}$. [Rohn & Kreslová, 1994]

Theorem

Let x^1, x^2 be a solution to (\spadesuit) and define $\mathbf{x}^* := x^1 - x^2$.

Then \mathbf{x}^* is a solution to $\mathbf{A} \mathbf{x} < \mathbf{b}$ for every $A \in \mathbf{A}$ and $b \in \mathbf{b}$.

Corollary

An interval system $\mathbf{A} \mathbf{x} < \mathbf{b}$ is strongly solvable iff it has a strong solution.
Corollary

For a vector $x \in \mathbb{R}^n$, the following conditions are equivalent:

1. x is a strong solution to $Ax < b$,

2. $x = x^1 - x^2$, $\overline{A}x^1 - \underline{A}x^2 < b$, $x^1, x^2 \geq 0$.

3. $A_c x + A_\Delta |x| < b$,
Three canonical forms of interval LP

\[
\begin{align*}
\min & \quad c^T x \quad \text{subject to} \quad Ax = b, \ x \geq 0, \\
\min & \quad c^T x \quad \text{subject to} \quad Ax \leq b, \\
\min & \quad c^T x \quad \text{subject to} \quad Ax \leq b, \ x \geq 0.
\end{align*}
\]

Notation:

- \(S(A, b, c) \) the optimal solution set for realization \((A, b, c) \in (A, b, c)\).
- The set of all possible optimal solutions

\[
S = \bigcup_{(A, b, c) \in (A, b, c)} S(A, b, c).
\]

Definition

An interval LP problem is *realization bounded* if \(S(A, b, c) \) is bounded for every realization \((A, b, c) \in (A, b, c)\).
Consequences for interval linear programming

Observation

If S is bounded, then the interval LP problem is realization bounded.

The converse implication does not hold in general.

Example

Consider the interval LP problem

$$
\min \ x \ \text{subject to} \ [0, 1]x = 1, \ x \geq 0.
$$

- For $a \in (0, 1]$ we have a unique optimal solution $x = 1/a$.
- For $a := 0$ we have an infeasible LP problem.

Thus $S = [1, \infty)$, but the problem is realization bounded.

Open problem

Is the converse implication valid if both primal and dual problems are strongly feasible?
Consequences for interval linear programming

Theorem (Roos, Terlaky and Vial, 2006)

For a real LP problem, suppose that primal and dual problems are feasible. Then the optimal solution set is bounded iff the dual problem contains a feasible solution satisfying the inequalities strictly.

Corollary

An interval LP problem is realization bounded if for every realization the dual problem contains a feasible solution satisfying the inequalities strictly.
Corollary

1. \(\min\{c^T x : Ax = b, \ x \geq 0\} \) is realization bounded if the system
 \[
 \overline{A}^T y^1 - \underline{A}^T y^2 < c, \ y^1, y^2 \geq 0
 \]
is feasible.

2. \(\min\{c^T x : Ax \leq b\} \) is hard to check since strong solvability of
 \(A^T y = b, \ y < 0 \) is intractable.

3. \(\min\{c^T x : Ax \leq b, \ x \geq 0\} \) is realization bounded if the system
 \(A^T y < c, \ y < 0 \) is feasible.
Example
Reconsider the interval LP problem

$$\min x \text{ subject to } [0, 1]x = 1, \ x \geq 0.$$
The sufficient condition succeeds.

Example
Consider a variation

$$\min -x \text{ subject to } [0, 1]x = 1, \ x \geq 0;$$
This problem is also realization bounded, but the sufficient condition fails.
Conclusion

Robust Slater’s condition

- First step to characterize robust Slater’s condition for interval-valued problems.
- Characterization and complexity analysis of strict interval linear systems.

Open problems & challenges

- Computationally cheap sufficient condition for intractable cases.
- Extensions to interval systems of mixed equations and inequalities.
- Under which conditions the realization boundedness implies boundedness of the optimal solution set S?
Group on Interval Methods

https://kam.mff.cuni.cz/gim