Two Approaches to Inner Estimations of the Optimal Solution Set in Interval Linear Programming

Milan Hladík
Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
http://kam.mff.cuni.cz/~hladik/

ISMSI 2020
4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence
Thimphu, Bhutan
April 19, 2020

Interval Linear Programming

Family of linear programs \((n \text{ variables, } m \text{ equations})\)
\[
\min c^T x \quad \text{subject to} \quad Ax = b, \quad x \geq 0
\]
with \(A \in [A, \overline{A}], b \in [b, \overline{b}], c \in [c, \overline{c}]\).

- The problem is basis stable if a basis \(B\) is optimal for each realization.
- If the problem is basis stable, then \(S\) is a polyhedron described as:
 \[
 \Delta k \geq 0, \quad \overline{A} x \geq \overline{b}, \quad \underline{A} x \geq \underline{b}, \quad x_M = 0
 \]

 and the problem is easy

Goal
- Compute an inner approximation of \(S\) in the form of a box.
- Subproblem: Given \(k\), find a lower bound for \(\max_{x \in S}(x_k)\)

Genetic Algorithm (GA)

Parameters
- Individuals = scenarios \((A, b, c)\)
- Fitness function = \(k\)th entry of the optimum
 (so polynomial, but not very cheap to compute)
- Initial population size: \(p = mn\)
- Selection: 15% of the individuals with the highest fitness value
- Crossover of \((A, b, c)\) and \((\overline{A}, \overline{b}, \overline{c})\):
 Split \(A\) and \(\overline{A}\) into two blocks of rows (of random size) and interchange them. The same approach is applied on \(b, \overline{b}\) and \(c, \overline{c}\).
- Mutation.
 It is applied on for 70% of the population on average. We mutate 30% of the entries to the lower or upper bound of the interval entries.
- Termination. The number of iterations is 2m.

Introduction to Interval Analysis

Where interval data do appear
- numerical analysis (handling rounding errors)
- \(\frac{1}{10^3} \in [0.333333333333, 0.3333333334]\)
- \(\pi \in [3.1415926535897932384, 3.1415926535897932385]\)
- statistical estimation
 - confidence intervals, prediction intervals (future prices, . . .)
- measurement errors
 - fuel consumption, stiffness in truss construction, velocity (75 \pm 2 km/h)
- discretization
 - time is split in days
- day range of stock prices – daily min / max
- missing data

Interval notation
A compact interval is \([a, b]\) = \([a - s\Delta, a + s\Delta]\) (for matrices entrywise)

We consider deterministic intervals with no distribution on them.

Local Search (LS)

Algorithm LS (based on the derivative of a local approximation)
- Choose \(A, b\) to be the midpoints of the input intervals. Put
 \(c_i = \pi_i, \quad c_i = \omega_i, \quad i \neq k\)

 While we improve the value of \(x_k\), perform the following steps:
- Compute the optimal solution \(x^*\) and the optimal basis \(B\)
- Put \(s = \text{sign}(A^*_{ik})x_k\)
- Put \(b := \overline{b} + \text{diag}(s)\Delta\)
- Put \(A := A_i - \text{diag}(s)\Delta\)

Observation
- Under mild assumptions, each fixed point computed by LS is an optimal solution with maximal \(k\)th coordinate.
- If the signs of the entries of \(A^*_{ik}\) do not change on \(A \in [A, \overline{A}]\), then LS produces an optimal solution with maximal \(k\)th coordinate in one iteration

Numerical Comparison

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>radius</th>
<th>basis stable</th>
<th>ratio (\text{LS (sec.)}/\text{GA (sec.)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>0.01</td>
<td>0.52</td>
<td>1.00240 0.7592 44.95</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0.05</td>
<td>0.2</td>
<td>0.97587 0.8481 46.90</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.92596 0.7652 43.33</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>0.01</td>
<td>0.16</td>
<td>1.26660 1.919 547.5</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>0.05</td>
<td>0</td>
<td>1.31197 2.124 544.7</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
<td>1.14029 2.146 554.0</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>0.01</td>
<td>0</td>
<td>1.64458 7.611 15943</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>0.05</td>
<td>0</td>
<td>1.22515 4.947 16120</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>0.1</td>
<td>0</td>
<td>1.11846 4.235 12423</td>
</tr>
</tbody>
</table>

Conclusion
LS is mostly tighter and significantly faster than GA.

Interval Methods Group

References

https://kam.mff.cuni.cz/~hladik/