Two Approaches to Inner Estimations of the Optimal Solution Set in Interval Linear Programming

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics Charles University, Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

ISMSI 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence Thimphu, Bhutan April 19, 2020

1/8

Interval Linear Programming

Interval linear programming

Family of linear programs (n variables, m equations)

min $c^T x$ subject to $Ax = b, x \ge 0$

with $A \in [\underline{A}, \overline{A}]$, $b \in [\underline{b}, \overline{b}]$, $c \in [\underline{c}, \overline{c}]$.

- Optimal solution set S: The union of all optimal solutions over all realizations of interval coefficients.
- The problem is basis stable if a basis B is optimal for each realization.
- If the problem is basis stable, then S is a polyhedron described

 $\underline{A}_B x_B \leq \overline{b}_B, \ \overline{A}_B x_B \geq \underline{b}_B, \ x_B \geq 0, \ x_N = 0$

and the problem is easy

Goal

- Compute an inner approximation of S in the form of a box.
- Subproblem: Given k, find a lower bound for $\max_{x \in S} \{x_k\}$

Genetic Algorithm (GA)

Parameters

- Individuals = scenarios (A, b, c)
- *Fitness function* = *k*th entry of the optimum (so polynomial, but not very cheap to compute)
- Initial population size: p = mn
- Selection: 15% of the individuals with the highest fitness value
- *Crossover* of (*A*, *b*, *c*) and (*A*', *b*', *c*'): Split A and A' into two blocks of rows (of random size) and interchange them. The same approach is applied on b, b' and c, c'. Mutation.
- It is applied on for 70% of the population on average. We mutate 30% of the entries to the lower or upper bound of the interval entries.
- Termination. The number of iterations is 2m.

References

- M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, and K. Zimmermann. Linear Optimization Problems with Inexact Data. Springer, New York, 2006
- E. Garajová and M. Hladík. On the optimal solution set in interval linear programming. Comput. Optim. Appl., 72(1):269-292, 2019.
- M. Hladík.
 - Interval linear programming: A survey.

In Z.A. Mann, ed., Linear Programming - New Frontiers in Theory and Applications, chapter 2, pages 85-120. Nova Science Publishers, 2012.

M. Hladík

How to determine basis stability in interval linear programming. Optim. Lett., 8(1):375-389, 2014

Introduction	to	Interval	Anal	vsis
in cloudection		meen var	7 th tai	,

Where interval data do appear

- numerical analysis (handling rounding errors)
 - • $\pi \in [3.1415926535897932384, 3.1415926535897932385]$
- statistical estimation
- confidence intervals, prediction intervals (future prices....) measurement errors
- fuel consumption, stiffness in truss construction, velocity (75 \pm 2 km/h) discretization
 - time is split in days
 - day range of stock prices daily min / max
- missing data

Interval notation

A compact interval is $[\underline{a}, \overline{a}] = [a_c - a_\Delta, a_c + a_\Delta]$ (for matrices entrywise)

We consider deterministic intervals with no distribution on them.

Local Search (LS)

Algorithm LS (based on the derivative of a local approximation)

Schoose A, b to be the midpoints of the input intervals. Put

$$c_k = \overline{c}_k, \quad c_i = c_i, \quad i \neq k$$

While we improve the value of x_k^* , perform the following steps:

- Outputs the optimal solution x* and the optimal basis B
- $\bigcirc \text{Put } s = \operatorname{sgn}(A_B^{-1})_{k*}$ (the sign vector of the kth row of A_B^{-1})
- Put b := b_c + diag(s)b_A
- $I Put A := A_c diag(s)A_{\Delta}$

Observation

- Under mild assumptions, each fixed point computed by LS is an optimal solution with maximal kth coordinate.
- **(a)** If the signs of the entries of A_B^{-1} do not change on $A \in [\underline{A}, \overline{A}]$, then LS produces an optimal solution with maximal kth coordinate in one iteration

Numerical Comparison

basis stable = % of basis stable instances, ratio = width(LS)/width(GA) radius = radius of interval coefficients

т	n	radius	basis stable	ratio	LS (sec.)	GA (sec.)
10	5	0.01	0.52	1.00240	0.7592	44.95
10	5	0.05	0.2	0.97587	0.8481	46.90
10	5	0.1	0.2	0.92596	0.7652	43.33
30	10	0.01	0.16	1.29660	1.919	547.5
30	10	0.05	0	1.31197	2.124	544.7
30	10	0.1	0	1.14029	2.146	554.0
100	30	0.01	0	1.64458	7.611	15943
100	30	0.05	0	1.22515	4.947	16120
100	30	0.1	0	1 11846	4 235	12/23

Conclusion

LS is mostly tighter and significantly faster than GA.

Interval Methods Group

https://kam.mff.cuni.cz/gim