Introduction to Interval Analysis

Two Approaches to Inner Estimations of the Optimal Where interval data do appear
@ numerical analysis (handling rounding errors)

o 1 €[0.33333333333333, 0.33333333333334]
e T € [3.1415926535897932384, 3.1415926535897932385]
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Solution Set in Interval Linear Programming
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We consider deterministic intervals with no distribution on them. )
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Interval Linear Programming Local Search (LS)

Interval linear programming Algorithm LS (based on the derivative of a local approximation)
Family of linear programs (n variables, m equations) @ Choose A, b to be the midpoints of the input intervals. Put
min ¢’ x subject to Ax=bh, x>0

Ck=7Ck, Ci=¢Cj I #£k

with A € [A,A], b€ [b,B], c € [c,T]. While we improve the value of x}, perform the following steps:

@ Optimal solution set S: The union of all optimal solutions over all Q@ Compute the optimal solution x* and the optimal basis B

realizations of interval coefficients. © Puts= sgn(Agl)k* (the sign vector of the kth row of Agl)
@ The problem is basis stable if a basis B is optimal for each realization. Q Put b := b, + diag(s)ba
o If the problem is basis stable, then S is a polyhedron described Q Put A:= A, —diag(s)Aa

Apxg < bp, Apxg 2 bp, xg 20, xy =0 -
. Observation
and the problem is easy

@ Under mild assumptions, each fixed point computed by LS is an

Goal optimal solution with maximal kth coordinate.
o Compute an inner approximation of S in the form of a box. Q@ If the signs of the entries of Ag' do not change on A € [A, A, then
o Subproblem: Given k, find a lower bound for maxxes{xc} LS produces an optimal solution with maximal kth coordinate in one
B ’ XE . .
iteration
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Genetic Algorithm (GA) Numerical Comparison

basis stable = % of basis stable instances, ratio = width(LS)/width(GA)
Parameters radius = radius of interval coefficients

@ Individuals = scenarios (A, b, c) m  n radius basis stable  ratio LS (sec.) GA (sec.)

@ Fitness function = kth entry of the optimum

. 10 5 0.01 0.52 1.00240  0.7592 44.95

(so polynomial, but not very cheap to compute) ® 5 06 b OOTET (e 50

@ Initial population size: p = mn 10 5 0.1 0.2 0.92596  0.7652 43.33
@ Selection: 15% of the individ,ualls w,ith the highest fitness value 30 10 001 016 120660 1919 575
o Crossover of (A, b, c) and (A', b/, c'): 30 10 005 0 131197 2124 5447
Split A and A’ into two blocks of rows (of random size) and 30 10 01 114029  2.146 554.0

interchange them. The same approach is applied on b, b’ and c, c’.

0
100 30 0.01 0 1.64458 7.611 15943
100 30 0.05 0 1.22515 4.947 16120
100 30 0.1 0 1.11846 4.235 12423

@ Mutation.
It is applied on for 70% of the population on average. We mutate
30% of the entries to the lower or upper bound of the interval entries.

@ Termination. The number of iterations is 2m.

Conclusion
LS is mostly tighter and significantly faster than GA. J
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