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LCP with an interval matrix — Introduction

Linear complementarity problem (LCP)

y=Az+gq, y,z>0,
yTz=0,
o LCP appears in many optimization and operations research models
(quadratic programming, equilibria in bimatrix games, ... ).
@ NP-hard to solve

Interval matrix
A={AcR™": A< A<A},
where A, A€ R™" A< A, and the inequality is understood entrywise.

The midpoint and the radius matrices are defined as

1, 1,
Ac:=(A+A), An=3(A-A).




LCP with an interval matrix — Introduction

Linear complementarity problem (LCP)

y=Az+gq, y,z>0,
yTz=0,
o LCP appears in many optimization and operations research models
(quadratic programming, equilibria in bimatrix games, ... ).
@ NP-hard to solve

Problem statement

Let P be a matrix property. We say that P holds strongly for A if it holds
for each A € A.




LCP with an interval matrix — Motivation

Motivation
Problem: Ax = b.

matrix type property

nonsingular unique solution for each b
full column rank at most one solution for each b
full row rank at least one solution for each b




LCP with an interval matrix — Motivation

Motivation
Problem LCP: y = Az +gq, y'z=0, y,z>0.

matrix type property
P-matrix unique solution for each g
principally nondegenerate  finitely many solutions (incl. 0) for each g
strictly copositive at most one solution for each g
semimonotone unique solution for each g > 0
column sufficient the solution set is convex (or empty)
Rop-matrix the solution set is bounded
R-matrix at most one solution for each g




Copositive matrix

Definition
A matrix A € R™" js
@ copositive if xTAx > 0 for each x > 0

o strictly copositive if xT Ax > 0 for each x = 0 (x > 0 and x # 0)

Properties

@ A copositive matrix ensures that the complementary pivot algorithm
for solving the LCP works.

@ A strictly copositive matrix implies that the LCP has a solution for
each g € R".

@ Checking whether A is copositive is a co-NP-hard problem (Murty
and Kabadi, 1987).




Copositive matrix

Definition
A matrix A € R™" js
@ copositive if xTAx > 0 for each x > 0

o strictly copositive if xT Ax > 0 for each x = 0 (x > 0 and x # 0)

Convention

@ Ais (strictly) copositive if and only if its symmetric counterpart
F(A+ AT) is (strictly) copositive.

@ That is why we can without loss of generality focus on symmetric
matrices.

Observation

A is strongly (strictly) copositive if and only if A is (strictly) copositive.




Copositive matrix

Recall

A matrix A € R™" is
@ an M-matrix if A= sl, — N for some N > 0 such that s > p(N),
@ an My-matrix if A= sl, — N for some N > 0 such that s > p(N).

Proposition

Let Ac be an M-matrix. Then

(1) A is strongly copositive if and only if A is an My-matrix;

(2) A is strongly strictly copositive if and only if A is an M-matrix.

Corollary
Let Ac = 1,. Then
(1) A is strongly copositive if and only if p(Ap) < 1;

(2) A is strongly strictly copositive if and only if p(Aa) < 1.




Copositive matrix — A proof

Proposition
Let Ac be an M-matrix. Then
(1) A is strongly copositive if and only if A is an My-matrix.

Proof.
“If
If Ais an Mg-matrix, then it is positive semidefinite and so is copositive.
“Only if."
@ If Ais not an My-matrix, then A = sl, — N, where N > 0, p(N) > s.
@ For the corresponding Perron vector x = 0 we have
Nx = p(N)x = sx, from which Ax < 0.
o If x; =0, then (Nx); = 0 and so (Ax); = 0. Similarly, if x; > 0, then
(NX),' > sx; and so (AX),' < 0.
@ Hence Ax and x have the same nonzero entries, whence x " Ax < 0; a
contradiction. ]
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Principally nondegenerate matrix

Definition

A is principally nondegenerate if all its principal minors are nonzero.

Properties
@ The LCP has finitely many solutions (including zero) for every g € R".
@ Checking principal nondegeneracy is co-NP-hard (Tseng, 2000).

Proposition
A is strongly principally nondegenerate if and only if

det (De-jy| + Dyy|AcDy) det (De-y) + DiyjAcDjz| = DyAnD;) > 0
for each y,z € {0,£1}™ such that |y| = |z|.

It enumerates 5” instances, justified by co-NP-hardness of checking both

@ principal nondegeneracy of a real matrix, and

@ strong nonsingularity of an interval matrix (Poljak and Rohn, 1993).
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Principally nondegenerate matrix

Proposition
Let Ac be an M-matrix. Then A is strongly principally nondegenerate if
and only if A is an M-matrix.

Proposition
Let A. be positive definite. Then A is strongly principally nondegenerate if
and only if it is strongly positive definite.

4

Remark
Checking strong positive definiteness of A is co-NP-hard, but there are
various sufficient conditions known (e.g., Rohn, 1994).
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Column sufficient matrix

Definition

A € R™" is column sufficient matrix if for each pair of disjoint index sets
I,JC{1,...,n}, 1UJ#0, the system

( A ‘Au) xS0, x>0
—Ay J,J

is infeasible.

Properties

@ For any g € R" the solution set of the LCP is a convex set (including
the empty set).

@ Checking column sufficiency is co-NP-hard (Tseng, 2000).
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Column sufficient matrix

Proposition
A is strongly column sufficient if and only if system

A —-A
( Il ”J> xS0, x>0 isinfeasible for each admissible I, J.
_AJ,I AJ,J

Proposition

A is strongly column sufficient if and only if matrices of the form
Ass = Ac — DsApDs are column sufficient for each s € {£1}".

Proposition

Let Ac be an M-matrix and A irreducible. Then A is strongly column
sufficient if and only A is an My-matrix.

Proposition

Let Ac be positive semidefinite. Then A is strongly column sufficient if
and only if it is strongly positive semidefinite.




Definition

A € R™" is an Ry-matrix if the LCP with g = 0 has the only solution

x = 0.

Equivalently, for each index set () # | C {1,...,n}, the system
A/,IX:()’ AJJXEO, x>0

is infeasible, where J := {1,...,n}\ I.

Properties
@ For any g € R” the LCP has a bounded solution set.
@ Checking Rp-matrix property is co-NP-hard (Tseng, 2000).
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Proposition
A s strongly Ryo-matrix if and only if system

AI,IX < 0, Z,’IX > 0, AJ,IX > O, x>0

is infeasible for each admissible I, J.

Proposition
Let Ac be an M-matrix. Then A is strongly an Ro-matrix if and only if A
is an M-matrix.

Corollary

Let Ac = I,. Then A is strongly an Ro-matrix if and only if p(Ap) < 1.




Example (Convex quadratic programming problem)

min x" Cx +d’ x subject to Bx < b, x > 0.
Optimality conditions for this problem have the form of an LCP

y=Az+gq, y'z=0, y,z>0,

A= (3 28) o= () =)

For concreteness, consider the problem

where

min 10xf + 8x1x0 + 5X22 + x1 + xo
subject to 2x3 — xp < 10, —3x1 +x <9, x > 0,

so we have
0 0 -2 1
0 0 3 -1
o= 2 -3 20 8

-1 1 8 10




Example (Convex quadratic programming problem (cont'd))

Ba Ca strong properties
Ba =0 Ca = 1|C]| semimonotone, column sufficient
R-matrix, Rp-matrix
Ba=0 Cp = %|C| semimonotone, R-matrix, Rp-matrix
Ba = Cp = I%\C\ semimonotone, R-matrix, Ryp-matrix
Ba = Ca =|C] semimonotone
Ba = &5|Bc| Ca=4|C|  semimonotone, column sufficient

R-matrix, Rp-matrix

Ba = &5|Bc|  Ca=3|C]| semimonotone, column sufficient
R-matrix, Rp-matrix

Ba = %\BC| Ca = %|C| semimonotone, R-matrix, Rp-matrix

Ba =5|B| Ca=3lC| 0
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Conclusion

Conclusion

@ matrix properties of the linear complementarity problem extended to
interval matrices

@ challenging: new polynomial cases
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