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LCP with an interval matrix – Introduction

Linear complementarity problem (LCP)

y = Az + q, y , z ≥ 0,

yT z = 0,

LCP appears in many optimization and operations research models
(quadratic programming, equilibria in bimatrix games, . . . ).

NP-hard to solve

Interval matrix

A := {A ∈ Rn×n : A ≤ A ≤ A},

where A,A ∈ Rn×n, A ≤ A, and the inequality is understood entrywise.

The midpoint and the radius matrices are defined as

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).
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LCP with an interval matrix – Introduction

Linear complementarity problem (LCP)

y = Az + q, y , z ≥ 0,

yT z = 0,

LCP appears in many optimization and operations research models
(quadratic programming, equilibria in bimatrix games, . . . ).

NP-hard to solve

Problem statement

Let P be a matrix property. We say that P holds strongly for A if it holds
for each A ∈ A.
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LCP with an interval matrix – Motivation

Motivation

Problem: Ax = b.

matrix type property

nonsingular unique solution for each b
full column rank at most one solution for each b
full row rank at least one solution for each b
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LCP with an interval matrix – Motivation

Motivation

Problem LCP: y = Az + q, yT z = 0, y , z ≥ 0.

matrix type property

P-matrix unique solution for each q
principally nondegenerate finitely many solutions (incl. 0) for each q

strictly copositive at most one solution for each q
semimonotone unique solution for each q > 0

column sufficient the solution set is convex (or empty)
R0-matrix the solution set is bounded
R-matrix at most one solution for each q
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Copositive matrix

Definition

A matrix A ∈ Rn×n is

copositive if xTAx ≥ 0 for each x ≥ 0

strictly copositive if xTAx > 0 for each x 	 0 (x ≥ 0 and x 6= 0)

Properties

A copositive matrix ensures that the complementary pivot algorithm
for solving the LCP works.

A strictly copositive matrix implies that the LCP has a solution for
each q ∈ Rn.

Checking whether A is copositive is a co-NP-hard problem (Murty
and Kabadi, 1987).
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Copositive matrix

Definition

A matrix A ∈ Rn×n is

copositive if xTAx ≥ 0 for each x ≥ 0

strictly copositive if xTAx > 0 for each x 	 0 (x ≥ 0 and x 6= 0)

Convention

A is (strictly) copositive if and only if its symmetric counterpart
1
2(A+ AT ) is (strictly) copositive.

That is why we can without loss of generality focus on symmetric
matrices.

Observation

A is strongly (strictly) copositive if and only if A is (strictly) copositive.
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Copositive matrix

Recall

A matrix A ∈ Rn×n is

an M-matrix if A = sIn − N for some N ≥ 0 such that s > ρ(N),

an M0-matrix if A = sIn − N for some N ≥ 0 such that s ≥ ρ(N).

Proposition

Let Ac be an M-matrix. Then

(1) A is strongly copositive if and only if A is an M0-matrix;

(2) A is strongly strictly copositive if and only if A is an M-matrix.

Corollary

Let Ac = In. Then

(1) A is strongly copositive if and only if ρ(A∆) ≤ 1;

(2) A is strongly strictly copositive if and only if ρ(A∆) < 1.
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Copositive matrix – A proof

Proposition

Let Ac be an M-matrix. Then

(1) A is strongly copositive if and only if A is an M0-matrix.

Proof.

“If.”
If A is an M0-matrix, then it is positive semidefinite and so is copositive.

“Only if.”

If A is not an M0-matrix, then A = sIn − N, where N ≥ 0, ρ(N) > s.

For the corresponding Perron vector x 	 0 we have
Nx = ρ(N)x 	 sx , from which Ax � 0.

If xi = 0, then (Nx)i = 0 and so (Ax)i = 0. Similarly, if xi > 0, then
(Nx)i > sxi and so (Ax)i < 0.

Hence Ax and x have the same nonzero entries, whence xTAx < 0; a
contradiction.

9 / 19



Principally nondegenerate matrix

Definition

A is principally nondegenerate if all its principal minors are nonzero.

Properties

The LCP has finitely many solutions (including zero) for every q ∈ Rn.

Checking principal nondegeneracy is co-NP-hard (Tseng, 2000).

Proposition

A is strongly principally nondegenerate if and only if

det
(

De−|y | + D|y |AcD|z |

)

det
(

De−|y | + D|y |AcD|z | − DyA∆Dz

)

> 0

for each y , z ∈ {0,±1}m such that |y | = |z |.

It enumerates 5n instances, justified by co-NP-hardness of checking both

principal nondegeneracy of a real matrix, and

strong nonsingularity of an interval matrix (Poljak and Rohn, 1993).
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Principally nondegenerate matrix

Proposition

Let Ac be an M-matrix. Then A is strongly principally nondegenerate if
and only if A is an M-matrix.

Proposition

Let Ac be positive definite. Then A is strongly principally nondegenerate if
and only if it is strongly positive definite.

Remark

Checking strong positive definiteness of A is co-NP-hard, but there are
various sufficient conditions known (e.g., Rohn, 1994).
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Column sufficient matrix

Definition

A ∈ Rn×n is column sufficient matrix if for each pair of disjoint index sets
I , J ⊆ {1, . . . , n}, I ∪ J 6= ∅, the system

(

AI ,I −AI ,J

−AJ,I AJ,J

)

x � 0, x > 0

is infeasible.

Properties

For any q ∈ Rn the solution set of the LCP is a convex set (including
the empty set).

Checking column sufficiency is co-NP-hard (Tseng, 2000).
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Column sufficient matrix

Proposition

A is strongly column sufficient if and only if system
(

AI ,I −AI ,J

−AJ,I AJ,J

)

x � 0, x > 0 is infeasible for each admissible I , J.

Proposition

A is strongly column sufficient if and only if matrices of the form
Ass = Ac − DsA∆Ds are column sufficient for each s ∈ {±1}n.

Proposition

Let Ac be an M-matrix and A∆ irreducible. Then A is strongly column
sufficient if and only A is an M0-matrix.

Proposition

Let Ac be positive semidefinite. Then A is strongly column sufficient if
and only if it is strongly positive semidefinite.
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R0-matrix

Definition

A ∈ Rn×n is an R0-matrix if the LCP with q = 0 has the only solution
x = 0.
Equivalently, for each index set ∅ 6= I ⊆ {1, . . . , n}, the system

AI ,Ix = 0, AJ,I x ≥ 0, x > 0

is infeasible, where J := {1, . . . , n} \ I .

Properties

For any q ∈ Rn the LCP has a bounded solution set.

Checking R0-matrix property is co-NP-hard (Tseng, 2000).
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R0-matrix

Proposition

A is strongly R0-matrix if and only if system

AI ,Ix ≤ 0, AI ,Ix ≥ 0, AJ,I x ≥ 0, x > 0

is infeasible for each admissible I , J.

Proposition

Let Ac be an M-matrix. Then A is strongly an R0-matrix if and only if A
is an M-matrix.

Corollary

Let Ac = In. Then A is strongly an R0-matrix if and only if ρ(A∆) < 1.
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Example

Example (Convex quadratic programming problem)

min xTCx + dT x subject to Bx ≤ b, x ≥ 0.

Optimality conditions for this problem have the form of an LCP

y = Az + q, yT z = 0, y , z ≥ 0,

where

A :=

(

0 −B
BT 2C

)

, q :=

(

b
d

)

, z :=

(

u
x

)

.

For concreteness, consider the problem

min 10x21 + 8x1x2 + 5x22 + x1 + x2

subject to 2x1 − x2 ≤ 10, −3x1 + x2 ≤ 9, x ≥ 0,

so we have

A =









0 0 −2 1

0 0 3 −1

2 −3 20 8

−1 1 8 10









.
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Example

Example (Convex quadratic programming problem (cont’d))

B∆ C∆ strong properties

B∆ = 0 C∆ = 1
4 |C | semimonotone, column sufficient

R-matrix, R0-matrix

B∆ = 0 C∆ = 1
3 |C | semimonotone, R-matrix, R0-matrix

B∆ = 0 C∆ = 9
10 |C | semimonotone, R-matrix, R0-matrix

B∆ = 0 C∆ = |C | semimonotone

B∆ = 1
10 |Bc | C∆ = 1

10 |C | semimonotone, column sufficient

R-matrix, R0-matrix

B∆ = 1
10 |Bc | C∆ = 1

5 |C | semimonotone, column sufficient

R-matrix, R0-matrix

B∆ = 1
10 |Bc | C∆ = 1

2 |C | semimonotone, R-matrix, R0-matrix

B∆ = 1
5 |Bc | C∆ = 1

5 |C | ∅
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Conclusion

Conclusion

matrix properties of the linear complementarity problem extended to
interval matrices

challenging: new polynomial cases
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