A survey on the interval matrix properties related to the linear complementarity problem

Milan Hladík

Interval Methods Group
https://kam.mff.cuni.cz/gim

Department of Applied Mathematics Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

> MatTriad 2019 Liblice, Czech Republic September 8–13, 2019

LCP with an interval matrix - Introduction

Linear complementarity problem (LCP)

$$y = Az + q, \quad y, z \ge 0,$$

$$y^{T}z = 0,$$

- LCP appears in many optimization and operations research models (quadratic programming, equilibria in bimatrix games,...).
- NP-hard to solve

Interval matrix

$$\mathbf{A} := \{ A \in \mathbb{R}^{n \times n} : \underline{A} \le A \le \overline{A} \},$$

where $\underline{A}, \overline{A} \in \mathbb{R}^{n \times n}$, $\underline{A} \leq \overline{A}$, and the inequality is understood entrywise.

The midpoint and the radius matrices are defined as

$$A_c := \frac{1}{2}(\underline{A} + \overline{A}), \quad A_{\Delta} := \frac{1}{2}(\overline{A} - \underline{A}).$$

LCP with an interval matrix – Introduction

Linear complementarity problem (LCP)

$$y = Az + q, \quad y, z \ge 0,$$
$$y^T z = 0,$$

- LCP appears in many optimization and operations research models (quadratic programming, equilibria in bimatrix games,...).
- NP-hard to solve

Problem statement

Let \mathcal{P} be a matrix property. We say that \mathcal{P} holds *strongly* for \mathbf{A} if it holds for each $A \in \mathbf{A}$.

LCP with an interval matrix - Motivation

Motivation

Problem: Ax = b.

matrix type	property
nonsingular	unique solution for each b
full column rank	at most one solution for each b
full row rank	at least one solution for each $\it b$

LCP with an interval matrix – Motivation

Motivation

Problem LCP: y = Az + q, $y^Tz = 0$, $y, z \ge 0$.

matrix type	property
<i>P</i> -matrix	unique solution for each q
principally nondegenerate	finitely many solutions (incl. 0) for each q
strictly copositive	at most one solution for each q
semimonotone	unique solution for each $q>0$
column sufficient	the solution set is convex (or empty)
R_0 -matrix	the solution set is bounded
<i>R</i> -matrix	at most one solution for each q

Copositive matrix

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is

- copositive if $x^T A x \ge 0$ for each $x \ge 0$
- strictly copositive if $x^T A x > 0$ for each $x \ge 0$ ($x \ge 0$ and $x \ne 0$)

Properties

- A copositive matrix ensures that the complementary pivot algorithm for solving the LCP works.
- A strictly copositive matrix implies that the LCP has a solution for each $q \in \mathbb{R}^n$.
- Checking whether A is copositive is a co-NP-hard problem (Murty and Kabadi, 1987).

Copositive matrix

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is

- copositive if $x^T A x \ge 0$ for each $x \ge 0$
- strictly copositive if $x^T A x > 0$ for each $x \ge 0$ ($x \ge 0$ and $x \ne 0$)

Convention

- A is (strictly) copositive if and only if its symmetric counterpart $\frac{1}{2}(A+A^T)$ is (strictly) copositive.
- That is why we can without loss of generality focus on symmetric matrices.

Observation

A is strongly (strictly) copositive if and only if \underline{A} is (strictly) copositive.

Copositive matrix

Recall

A matrix $A \in \mathbb{R}^{n \times n}$ is

- an M-matrix if $A = sI_n N$ for some $N \ge 0$ such that $s > \rho(N)$,
- an M_0 -matrix if $A = sI_n N$ for some $N \ge 0$ such that $s \ge \rho(N)$.

Proposition

Let A_c be an M-matrix. Then

- (1) **A** is strongly copositive if and only if \underline{A} is an M_0 -matrix;
- (2) **A** is strongly strictly copositive if and only if \underline{A} is an M-matrix.

Corollary

Let $A_c = I_n$. Then

- (1) **A** is strongly copositive if and only if $\rho(A_{\Delta}) \leq 1$;
- (2) **A** is strongly strictly copositive if and only if $\rho(A_{\Delta}) < 1$.

Copositive matrix - A proof

Proposition

Let A_c be an M-matrix. Then

(1) **A** is strongly copositive if and only if \underline{A} is an M_0 -matrix.

Proof.

"If."

If \underline{A} is an M_0 -matrix, then it is positive semidefinite and so is copositive.

"Only if."

- If \underline{A} is not an M_0 -matrix, then $A=sI_n-N$, where $N\geq 0$, $\rho(N)>s$.
- For the corresponding Perron vector $x \ngeq 0$ we have $Nx = \rho(N)x \ngeq sx$, from which $Ax \nleq 0$.
- If $x_i = 0$, then $(Nx)_i = 0$ and so $(Ax)_i = 0$. Similarly, if $x_i > 0$, then $(Nx)_i > sx_i$ and so $(Ax)_i < 0$.
- Hence Ax and x have the same nonzero entries, whence $x^TAx < 0$; a contradiction.

Principally nondegenerate matrix

Definition

A is *principally nondegenerate* if all its principal minors are nonzero.

Properties

- ullet The LCP has finitely many solutions (including zero) for every $q\in\mathbb{R}^n$.
- Checking principal nondegeneracy is co-NP-hard (Tseng, 2000).

Proposition

A is strongly principally nondegenerate if and only if

$$\det\left(D_{e-|y|}+D_{|y|}A_cD_{|z|}\right)\det\left(D_{e-|y|}+D_{|y|}A_cD_{|z|}-D_yA_{\Delta}D_z\right)>0$$

for each $y, z \in \{0, \pm 1\}^m$ such that |y| = |z|.

It enumerates 5^n instances, justified by co-NP-hardness of checking both

- principal nondegeneracy of a real matrix, and
- strong nonsingularity of an interval matrix (Poljak and Rohn, 1993).

Principally nondegenerate matrix

Proposition

Let A_c be an M-matrix. Then **A** is strongly principally nondegenerate if and only if \underline{A} is an M-matrix.

Proposition

Let A_c be positive definite. Then **A** is strongly principally nondegenerate if and only if it is strongly positive definite.

Remark

Checking strong positive definiteness of **A** is co-NP-hard, but there are various sufficient conditions known (e.g., Rohn, 1994).

Column sufficient matrix

Definition

 $A \in \mathbb{R}^{n \times n}$ is *column sufficient matrix* if for each pair of disjoint index sets $I, J \subseteq \{1, \dots, n\}, \ I \cup J \neq \emptyset$, the system

$$\begin{pmatrix} A_{I,I} & -A_{I,J} \\ -A_{J,I} & A_{J,J} \end{pmatrix} x \nleq 0, \quad x > 0$$

is infeasible.

Properties

- For any $q \in \mathbb{R}^n$ the solution set of the LCP is a convex set (including the empty set).
- Checking column sufficiency is co-NP-hard (Tseng, 2000).

Column sufficient matrix

Proposition

A is strongly column sufficient if and only if system

$$\begin{pmatrix} \underline{A}_{I,I} & -\overline{A}_{I,J} \\ -\overline{A}_{J,I} & \underline{A}_{J,J} \end{pmatrix} x \lesseqgtr 0, \quad x>0 \quad \text{is infeasible for each admissible I, J.}$$

Proposition

A is strongly column sufficient if and only if matrices of the form $A_{ss} = A_c - D_s A_{\Delta} D_s$ are column sufficient for each $s \in \{\pm 1\}^n$.

Proposition

Let A_c be an M-matrix and A_{Δ} irreducible. Then **A** is strongly column sufficient if and only A is an M_0 -matrix.

Proposition

Let A_c be positive semidefinite. Then **A** is strongly column sufficient if and only if it is strongly positive semidefinite.

R_0 -matrix

Definition

 $A \in \mathbb{R}^{n \times n}$ is an R_0 -matrix if the LCP with q = 0 has the only solution x = 0.

Equivalently, for each index set $\emptyset \neq I \subseteq \{1, \dots, n\}$, the system

$$A_{I,I}x = 0, \quad A_{J,I}x \ge 0, \quad x > 0$$

is infeasible, where $J := \{1, \dots, n\} \setminus I$.

Properties

- For any $q \in \mathbb{R}^n$ the LCP has a bounded solution set.
- Checking R₀-matrix property is co-NP-hard (Tseng, 2000).

R_0 -matrix

Proposition

A is strongly R_0 -matrix if and only if system

$$\underline{A}_{I,I}x \leq 0$$
, $\overline{A}_{I,I}x \geq 0$, $\underline{A}_{J,I}x \geq 0$, $x > 0$

is infeasible for each admissible I, J.

Proposition

Let A_c be an M-matrix. Then **A** is strongly an R_0 -matrix if and only if <u>A</u> is an M-matrix.

Corollary

Let $A_c = I_n$. Then **A** is strongly an R_0 -matrix if and only if $\rho(A_{\Delta}) < 1$.

Example

Example (Convex quadratic programming problem)

min
$$x^T Cx + d^T x$$
 subject to $Bx \le b, x \ge 0$.

Optimality conditions for this problem have the form of an LCP v = Az + a, $v^Tz = 0$, v.z > 0.

where

$$A := \begin{pmatrix} 0 & -B \\ B^T & 2C \end{pmatrix}, \quad q := \begin{pmatrix} b \\ d \end{pmatrix}, \quad z := \begin{pmatrix} u \\ x \end{pmatrix}.$$

For concreteness, consider the problem

$$\begin{aligned} & \text{min} & 10x_1^2 + 8x_1x_2 + 5x_2^2 + x_1 + x_2 \\ & \text{subject to} & 2x_1 - x_2 \leq 10, & -3x_1 + x_2 \leq 9, & x \geq 0, \end{aligned}$$

so we have

$$A = \begin{pmatrix} 0 & 0 & -2 & 1 \\ 0 & 0 & 3 & -1 \\ 2 & -3 & 20 & 8 \\ -1 & 1 & 8 & 10 \end{pmatrix}.$$

Example

Example (Convex quadratic programming problem (cont'd))

B_{Δ}	C_{Δ}	strong properties
$B_{\Delta}=0$	$C_{\Delta} = \frac{1}{4} C $	semimonotone, column sufficient
		R -matrix, R_0 -matrix
$B_{\Delta}=0$	$C_{\Delta} = \frac{1}{3} C $	semimonotone, R -matrix, R_0 -matrix
$B_{\Delta}=0$	$C_{\Delta} = \frac{9}{10} C $	semimonotone, R -matrix, R_0 -matrix
$B_{\Delta}=0$	$C_{\Delta} = C $	semimonotone
$B_{\Delta} = \frac{1}{10} B_c $	$C_{\Delta} = \frac{1}{10} C $	semimonotone, column sufficient
20	10	R -matrix, R_0 -matrix
$B_{\Delta} = \frac{1}{10} B_c $	$C_{\Delta} = \frac{1}{5} C $	semimonotone, column sufficient
	-	R -matrix, R_0 -matrix
$B_{\Delta} = \frac{1}{10} B_c $	$C_{\Delta} = \frac{1}{2} C $	semimonotone, R -matrix, R_0 -matrix
$B_{\Delta} = \frac{1}{5} B_c $	$C_{\Delta} = \frac{1}{5} C $	Ø

Conclusion

Conclusion

- matrix properties of the linear complementarity problem extended to interval matrices
- challenging: new polynomial cases

References

R. W. Cottle, J.-S. Pang, and R. E. Stone. *The Linear Complementarity Problem*. SIAM, 2009.

M. Hladík.

Stability of the linear complementarity problem properties under interval uncertainty.

preprint arXiv: https://arxiv.org/abs/1908.07925, 2019.

K. G. Murty and S. N. Kabadi.

Some NP-complete problems in quadratic and nonlinear programming. *Math. Program.*, 39(2):117–129, 1987.

S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard.

Math. Control Signals Syst., 6(1):1–9, 1993.

P. Tseng.

Co-NP-completeness of some matrix classification problems.

Math. Program., 88(1):183-192, June 2000.