Radius of Stability of Different Matrix Properties Related to Optimization Problems

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

The 8th International Conference on Matrix Analysis and Applications ICMAA 2019, Reno, Nevada, USA,
July 15-18, 2019

Outline

Matrix properties

- positive definiteness (relates to convexity of a function)
- P-matrix property (unique solvability of LCP)
- M-matrix property (Leontief's input-output model)
- H-matrix property
- total positivity
- inverse nonnegativity

Problem statement

Given $A \in \mathbb{R}^{n \times n}$, determine the radius of stability of a matrix property for a matrix norm (= distance to a nearest violated matrix).

Matrix norms

Vector *p*-norms: $||x||_p := \left(\sum_{i=1}^n |x|_i^p\right)^{\frac{1}{p}}, p \ge 1.$

Particular matrix norms

• The subordinate matrix norm

$$||A||_{\alpha,\beta} := \max_{\|x\|_{\alpha}=1} ||Ax||_{\beta}$$

• The induced p-norm

$$||A||_p := \max_{||x||_p=1} ||Ax||_p$$

Spectral norm (induced 2-norm)

$$||A||_2 = \max_{||x||_2=1} ||Ax||_2 = \sigma_{\mathsf{max}}(A).$$

- Frobenius norm $||A||_F := \sqrt{\sum_{i,j} a_{ij}^2}$
- max-norm $||A||_{\max} := \max_{i,j} |a_{ij}| = ||A||_{1,\infty}$

Matrix norms

Properties of matrix norms

- (P1) consistent norm: if $||AB|| \le ||A|| \cdot ||B||$ for every $A, B \in \mathbb{R}^{n \times n}$ (for induced norms, Frobenius, but not for max-norm)
- (P2) $\|I_n\| = 1$ (for induced norms and max-norm, not for Frobenius)
- (P3) $||A'|| \le ||A||$ whenever A' is a submatrix of A (for induced p-norms, Frobenius and max-norm)
- (P4) $\|e_i e_j^T\| = 1 \ \ \forall i,j$ (for induced p-norms, Frobenius and max-norm)

Regularity radius

Definition

Regularity radius of $A \in \mathbb{R}^{n \times n}$ is the distance to the nearest singular matrix

$$r(A) := \min\{\|A - B\| : B \text{ is singular}\}.$$

Particular cases

• For the spectral, Frobenius and some orthogonally invariant norms,

$$r(A) = \sigma_{\min}(A)$$

• For any induced matrix norm (Gastinel–Kahan theorem),

$$r(A) = ||A^{-1}||^{-1}$$

For the max-norm,

$$\mathsf{r}(A) = \|A^{-1}\|_{\infty,1}^{-1} = \frac{1}{\max_{y,z \in \{\pm 1\}^n} y^T A^{-1} z}$$

Its computation is NP-hard [Poljak and Rohn, 1993]

SDP approximation [Hartman and Hladík, 2016]

Positive definiteness

Definition

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Radius of positive definiteness of A is

$$\delta^* := \sup\{\delta \ge 0 : A + A' \text{ is positive definite } \forall A' : A' = A'^T, \|A'\| < \delta\}.$$

Theorem

For every consistent matrix norm satisfying (P2) (i.e., $||I_n|| = 1$) we have $\delta^* = \lambda_{\min}(A)$, the smallest eigenvalue of A.

For max-norm

- ullet co-NP-hard to check $\delta^* > 1$,
- $\delta^* \geq \frac{1}{n} \lambda_{\min}(A)$,
- $\bullet \ \delta^* = \min_{y \in \{\pm 1\}^n} \frac{1}{v^T A^{-1} v},$
- If A is inverse nonnegative, then $\delta^* = \frac{1}{e^T A^{-1} e}$.

P-matrix property

Definition

 $A \in \mathbb{R}^{n \times n}$ is a P-matrix if all its principal minors are positive.

• It guarantees a unique solution for each q of the LCP

$$q + Ax \ge 0, \quad x \ge 0, \quad (q + Ax)^T x = 0$$

[Cottle, Pang, and Stone, 2009; Murty, 1988]

- Checking P-matrix property is co-NP-hard [Coxson, 1994]
- Efficiently recognizable subclasses:
 - positive definite matrices,
 - M-matrices,
 - H-matrices with positive diagonal,
 - or totally positive matrices.

P-matrix radius of a P-matrix A

$$\delta^* := \sup\{\delta \ge 0 \colon A + A' \text{ is an P-matrix } \forall A' \colon ||A'|| < \delta\}.$$

P-matrix property

Theorem

For any matrix norm we have

$$\delta^* = \min\{r(\hat{A}) : \hat{A} \text{ is a principal submatrix of } A\}.$$

In particular, for the spectral or Frobenius norm we have

$$\delta^* = \min\{\sigma_{\min}(\hat{A}) : \hat{A} \text{ is a principal submatrix of } A\}.$$

Theorem

Suppose A is a symmetric positive definite or an M-matrix ($a_{ij} \leq 0$, $i \neq j$, and $A^{-1} \geq 0$). For the spectral or Frobenius norm we have

$$\delta^* = \sigma_{\min}(A).$$

Theorem

Suppose A is an M-matrix. For the max-norm we have

$$\delta^* = \frac{1}{e^T A^{-1} e}.$$

M-matrix property

Definition

 $A \in \mathbb{R}^{n \times n}$ is an M-matrix if $a_{ij} \leq 0$ for every $i \neq j$ and $A^{-1} \geq 0$ (or, Av > 0 for certain v > 0). [Horn and Johnson, 1991]

- sub-class of P-matrices
- stability of Leontief's input-output analysis in economic systems, and others

M-matrix radius of an M-matrix A

$$\delta^* := \sup \{ \delta \geq 0 \colon A + A' \text{ is an M-matrix } \forall A' \colon \|A'\| < \delta \}.$$

Example

Consider the identity matrix $A = I_n$ and the spectral norm:

- the P-matrix radius is 1
- the M-matrix radius is 0

M-matrix property

Theorem

For every matrix norm satisfying (P3) and (P4) we have

$$\delta^* = \min_{i \neq j} \{-a_{ij}, \mathsf{r}(A)\}.$$

In particular, for the spectral or Frobenius norm, we have

$$\delta^* = \min_{i \neq j} \{ -a_{ij}, \sigma_{\min}(A) \}.$$

Max-norm

- The worst case is $A \delta E$, where E consists of ones.
- δ^* is maximal such that $A \delta E$ is an M-matrix for all $\delta \in [0, \delta^*)$.
- Simple parametrization (linear constraints by Sherman–Morrison formula):

$$(A - \delta E)_{ij} \leq 0, \ i \neq j, \text{ and } (A - \delta E)^{-1} \geq 0.$$

Total positivity

Definition

 $A \in \mathbb{R}^{n \times n}$ is totally positive if the determinants of all submatrices are positive.

- Sub-class of P-matrices.
- Only initial submatrices $A^{(1)},\ldots,A^{(n^2)}$ needed to check: rows are indexed by $\{1,\ldots,k\}$ and columns by $\{\ell,\ldots,\ell+k-1\}$ or vice versa. [Fallat and Johnson, 2011]

Totally positive radius of A

$$\delta^* := \sup \{ \delta \ge 0 : A + A' \text{ is totally positive } \forall A' : ||A'|| < \delta \}.$$

Total positivity

Theorem

We have
$$\delta^* = \min_{i=1,...,n^2} r(A^{(i)}).$$

In particular, for the spectral or Frobenius norm, $\delta^* = \min_{i=1,\dots,n^2} \sigma_{\min}(A^{(i)})$.

Max-norm

- The worst case is $A \delta ss^T$ or $A + \delta ss^T$, where $s := (1, -1, 1, -1, \dots)^T$ [Garloff, 1982]
- δ^* is thus computed by simple parametrization (Sherman–Morrison formula)

Inverse nonnegativity

Definition

 $A \in \mathbb{R}^{n \times n}$ is inverse nonnegative if $A^{-1} \geq 0$.

Inverse nonnegativity radius of A

$$\delta^* := \sup \{ \delta \geq 0 \colon A + A' \text{ is inverse nonnegative } \forall A' \colon \|A'\| < \delta \}.$$

Theorem

We have $\delta^* = \min_{i,j=1,...,n} \{r(A), r(A^{ij})\}$. In particular, for the spectral or Frobenius norm, $\delta^* = \min_{i,j=1,...,n} \{\sigma_{\min}(A), \sigma_{\min}(A^{ij})\}$.

Max-norm

- The worst case is $A \delta E$ or $A + \delta E$ [Kuttler, 1971]
- \bullet δ^* is thus computed by simple parametrization (Sherman–Morrison formula)

Conclusion

Conclusion

- stability radius for diverse matrix properties related to optimization
- typically reduced to several problems of regularity radius
- often for many norms tractable (spectral of Frobenius norm), sometimes NP-hard (max-norm)

References

- Cottle, R. W., Pang, J.-S., and Stone, R. E. (2009).

 The Linear Complementarity Problem.

 SIAM, Philadelphia, PA, revised ed. of the 1992 original edition.
- Fallat, S. M. and Johnson, C. R. (2011).

 Totally Nonnegative Matrices.

 Princeton University Press, Princeton, NJ.
- Hartman, D. and Hladík, M. (2016). Tight bounds on the radius of nonsingularity. volume 9553 of *LNCS*, pages 109–115. Springer.
- Hladík M. (2019).
 Tolerances, robustness and parametrization of matrix properties related to optimization problems.

 Optim., 68(2-3):667–690.
- Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge University Press.