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AVE - Introduction

Absolute value equation (AVE)

Ax — b = B|x]|,
where A, B € R™" and b € R".

Properties

@ This problem is equivalent to the linear complementarity problem.
@ Solving AVE is an NP-hard problem (Mangasarian, 2007).

@ Checking uniqueness of a solution of AVE is NP-hard, too
(Prokopyev, 2009).

@ Diverse iterative methods were proposed (incl. generalized Newton
and smoothing techniques).




AVE - Introduction

Absolute value equation (AVE)

Ax — b = B|x]|,
where A, B € R™" and b € R".

Goal
Develop outer approximation techniques for the solutions of AVE:

@ A tight outer approximation of the solutions in the form of a convex
polyhedral set

@ If the outer approximation set is empty, this will also serve as a
condition for unsolvability.

o A sufficient condition for the existence of 2" solutions lying in
mutually different orthants.




AVE - Introduction

Absolute value equation (AVE)

Ax — b= B|x]|,
where A, B € R™" and b € R".

Approximation and consequences
Let S C R” be an enclosure of the solution set to AVE.
@ If S lies in one orthant, then the problem is easily resolved.

(Let s € {£1}" be the sign vector. Then AVE reads
(A — Bdiag(s))x = b, which is a standard linear equation system.)
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AVE — Polyhedral enclosures

Properties

@ Initial bounds: Let u be such that |x| < u for each solution x.

@ Let us split B = BT — B~ into the positive and negative parts
Bt,B~ > 0. Now, AVE Ax — b = B|x]| reads

Ax — b+ B |x| = BT|x|
@ The inequality Ax — b+ B~ |x| < BT|x]| is relaxed as follows
Ax—b+B y<BTu, +x<y
@ The converse inequality Ax — b+ B~ |x| > BT|x| is relaxed as
Ax—b+ B u>BTy, +x<y
@ Polyhedral outer estimation

Ax+ B y<b+Btu, —Ax+Bty<-b+Bu, +x—y<0
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AVE of type |

Absolute value equation of type |

x — b= B|x|

(easily obtained provided A is nonsingular)

Properties

o Uniqueness of the solution under the condition p(B7 B) < 1
(Mangasarian and Meyer, 2006).

@ Uniqueness of the solution under the condition p(|B|) < 1 (Rohn et
al, 2014).




AVE of type | — Interval enclosures

Absolute value equation of type |

x — b= B|x|

(easily obtained provided A is nonsingular)

Proposition (Bauer—Skeel type bounds)
If p(|B]) < 1, then the solution x satisfies

|x = b < (I - |BI)*|BI|b].

Proposition (Hansen—Bliek—Rohn type bounds)
If p(|B|) < 1, then the solution x satisfies x € x"ER, where

Her _ bi+ (ui/di —[bl;))[~1,1]
i 1+ (1 -1/d)-L,1

where C = | — |B|, u= C~Yb| and d; = (C71);.

=1,...,n,
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Numerical experiments — orthants

Example
« ...norm of matrix B
unique ... portion of instances uniquely determining the orthant
ort.num. ...number of orthants intersected by the enclosure
Bauer—Skeel polyhedral

n e runs unique ort. num. unique ort. num.
10 0.1 10* 0.8303 1.193 0.9957 1.005
10 0.2 10* 0.6636 1.447 0.9857 1.014
10 0.5 10* 0.2696 2.731 0.8827 1.128
10 0.75 10* 0.0756 5.168 0.7158 1.372
100 0.1 102 0.12 7.80 0.94 1.06
100 0.2 102 0.00 72.4 0.87 1.15
100 0.5 102 0.00 10° 0.15 5.79
100 0.75 102 0.00 108 0.01 58.45
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Numerical experiments — times and tightness

Example

« ...norm of matrix B
tightness ...average sum of radii of the enclosure w.r.t. the polyhedral
enclosure

Bauer—Skeel polyhedral
n o' time (s) tightness time (s) tightness
10 0.1 0.0003358 51.48 0.3733 1
10 0.2 0.0003200 25.19 0.3530 1
10 0.5 0.0003116 9.583 0.3347 1
10 0.75 0.0003101 6.108 0.3168 1
100 0.1 0.01658 44.78 76.77 1
100 0.2 0.01585 21.90 72.05 1
100 0.5 0.01503 8.160 67.95 1
100 0.75 0.01491 5.149 68.47 1
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AVE of type Il — Existence of 2" solutions

Absolute value equation of type Il
Ax — b = |x| J
Example: AVE e = |x| has 2" solutions: every vector in {£1}". )

Proposition (Mangasarian & Meyer, 2006)
There are 2" solutions, lying in interiors of mutually different orthants, if

min,-{|b|,-}

b<0 and ||A — W
<0 s | HO°<2max,-{|b|,-}

Proposition (more general than the above)

Let p(|A|) < 1 and b < 0. There are 2" solutions if
(i) 2/b] > G(/ — JAl)|b
(i) 1b] > 2/A][b],

where G = diag (1/(/ — AN, -5 /(] — [ADpr) -

, or
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AVE of type Il — Non-existence tests

Absolute value equation of type Il

Ax — b = |x|

Corollary
AVE has no solution if

p(|A]) <1 and xa = —(I — |A])"*b is not nonnegative (1)

v

Proposition (Mangasarian & Meyer, 2006)

AVE has no solution if the system is feasible

r>ATr>—r, b'r>0 (2)

Proposition
If A > 0 is irreducible, then we have
(i) (1) implies solvability of (2),
(ii) Solvability of (2) implies (1) with the condition in the form p(A) < 1.
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Conclusion

@ outer approximation for the solutions of AVE (polyhedral, interval
box)

@ a sufficient condition for unsolvability
@ a sufficient condition for the existence of 2" solutions lying in
mutually different orthants

@ the approximation is often able to determine the signs of the
solution(s)
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