Approximation of the Solution Set of Absolute Value Equations

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

EUROPT 2019 The 17th Workshop on Advances in Continuous Optimization, Glasgow, UK June 28-29, 2019

AVE – Introduction

Absolute value equation (AVE)

$$Ax - b = B|x|,$$

where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$.

Properties

- This problem is equivalent to the linear complementarity problem.
- Solving AVE is an NP-hard problem (Mangasarian, 2007).
- Checking uniqueness of a solution of AVE is NP-hard, too (Prokopyev, 2009).
- Diverse iterative methods were proposed (incl. generalized Newton and smoothing techniques).

AVE – Introduction

Absolute value equation (AVE)

$$Ax - b = B|x|,$$

where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$.

Goal

Develop outer approximation techniques for the solutions of AVE:

- A tight outer approximation of the solutions in the form of a convex polyhedral set
- If the outer approximation set is empty, this will also serve as a condition for unsolvability.
- A sufficient condition for the existence of 2ⁿ solutions lying in mutually different orthants.

AVE – Introduction

Absolute value equation (AVE)

$$Ax - b = B|x|,$$

where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$.

Approximation and consequences

Let $\mathcal{S} \subset \mathbb{R}^n$ be an enclosure of the solution set to AVE.

 $\bullet\,$ If ${\mathcal S}$ lies in one orthant, then the problem is easily resolved.

(Let $s \in \{\pm 1\}^n$ be the sign vector. Then AVE reads $(A - B \operatorname{diag}(s))x = b$, which is a standard linear equation system.)

AVE – Polyhedral enclosures

Properties

- Initial bounds: Let u be such that $|x| \le u$ for each solution x.
- Let us split $B = B^+ B^-$ into the positive and negative parts $B^+, B^- \ge 0$. Now, AVE Ax b = B|x| reads

$$Ax - b + B^-|x| = B^+|x|$$

• The inequality $Ax - b + B^-|x| \le B^+|x|$ is relaxed as follows

$$Ax - b + B^- y \le B^+ u, \quad \pm x \le y$$

• The converse inequality $Ax - b + B^{-}|x| \ge B^{+}|x|$ is relaxed as

$$Ax - b + B^- u \ge B^+ y, \quad \pm x \le y$$

Polyhedral outer estimation

$$Ax + B^{-}y \le b + B^{+}u, \quad -Ax + B^{+}y \le -b + B^{-}u, \quad \pm x - y \le 0$$

Absolute value equation of type I

$$x - b = B|x|$$

(easily obtained provided A is nonsingular)

Properties

- Uniqueness of the solution under the condition $\rho(B^T B) < 1$ (Mangasarian and Meyer, 2006).
- Uniqueness of the solution under the condition $\rho(|B|) < 1$ (Rohn et al, 2014).

AVE of type I – Interval enclosures

Absolute value equation of type I

$$x - b = B|x|$$

(easily obtained provided A is nonsingular)

Proposition (Bauer-Skeel type bounds)

If $\rho(|B|) < 1$, then the solution x satisfies

$$|x-b| \leq (I-|B|)^{-1}|B||b|.$$

Proposition (Hansen-Bliek-Rohn type bounds)

If $\rho(|B|) < 1$, then the solution x satisfies $x \in \mathbf{x}^{HBR}$, where

$$\mathbf{x}_{i}^{HBR} = \frac{b_{i} + (u_{i}/d_{i} - |b|_{i}))[-1, 1]}{1 + (1 - 1/d_{i})[-1, 1]}, \quad i = 1, \dots, n,$$

where C = I - |B|, $u = C^{-1}|b|$ and $d_i = (C^{-1})_{ii}$.

Numerical experiments - orthants

Example

 α ... norm of matrix B

unique ... portion of instances uniquely determining the orthant ort.num. ... number of orthants intersected by the enclosure

			Bauer–Skeel		polyhedral	
п	α	runs	unique	ort. num.	unique	ort. num.
10	0.1	10 ⁴	0.8303	1.193	0.9957	1.005
10	0.2	10 ⁴	0.6636	1.447	0.9857	1.014
10	0.5	10^{4}	0.2696	2.731	0.8827	1.128
10	0.75	104	0.0756	5.168	0.7158	1.372
100	0.1	10 ²	0.12	7.80	0.94	1.06
100	0.2	10 ²	0.00	72.4	0.87	1.15
100	0.5	10 ²	0.00	10 ⁵	0.15	5.79
100	0.75	10 ²	0.00	10 ⁸	0.01	58.45

Numerical experiments – times and tightness

Example

 α . . . norm of matrix B

 $\tt tightness \ldots$ average sum of radii of the enclosure w.r.t. the polyhedral enclosure

		Bauer-	-Skeel	polyhedral	
n	α	time (<i>s</i>)	tightness	time (s)	tightness
10	0.1	0.0003358	51.48	0.3733	1
10	0.2	0.0003200	25.19	0.3530	1
10	0.5	0.0003116	9.583	0.3347	1
10	0.75	0.0003101	6.108	0.3168	1
100	0.1	0.01658	44.78	76.77	1
100	0.2	0.01585	21.90	72.05	1
100	0.5	0.01503	8.160	67.95	1
100	0.75	0.01491	5.149	68.47	1

AVE of type II – Existence of 2^n solutions

Absolute value equation of type II

$$Ax - b = |x|$$

Example: AVE e = |x| has 2^n solutions: every vector in $\{\pm 1\}^n$.

Proposition (Mangasarian & Meyer, 2006)

There are 2ⁿ solutions, lying in interiors of mutually different orthants, if

$$b < 0 \ \ \text{and} \ \ \|A\|_{\infty} < rac{\min_i \{|b|_i\}}{2 \max_i \{|b|_i\}}$$

Proposition (more general than the above) Let $\rho(|A|) < 1$ and b < 0. There are 2^n solutions if (i) $2|b| > G(I - |A|)^{-1}|b|$, or (ii) |b| > 2|A||b|, where $G = \text{diag} (1/(I - |A|)^{-1}_{11}, \dots, 1/(I - |A|)^{-1}_{nn})$.

AVE of type II - Non-existence tests

Absolute value equation of type II

$$Ax - b = |x|$$

Corollary

AVE has no solution if

 $ho(|\mathsf{A}|) < 1$ and $x_\Delta = -(\mathsf{I} - |\mathsf{A}|)^{-1}b$ is not nonnegative

Proposition (Mangasarian & Meyer, 2006)

AVE has no solution if the system is feasible

$$r \ge A^T r \ge -r, \quad b^T r > 0 \tag{2}$$

Proposition

If $A \ge 0$ is irreducible, then we have

- (i) (1) implies solvability of (2),
- (ii) Solvability of (2) implies (1) with the condition in the form $\rho(A) \leq 1$.

(1)

- outer approximation for the solutions of AVE (polyhedral, interval box)
- a sufficient condition for unsolvability
- a sufficient condition for the existence of 2ⁿ solutions lying in mutually different orthants
- the approximation is often able to determine the signs of the solution(s)

References

M. Hladík.

Bounds for the solutions of absolute value equations. *Comput. Optim. Appl.*, 69(1):243–266, 2018.

 O. L. Mangasarian and R. R. Meyer. Absolute value equations. Linear Algebra Appl., 419(2):359–367, 2006.

O. A. Prokopyev.

On equivalent reformulations for absolute value equations. *Comput. Optim. Appl.*, 44(3):363–372, 2009.

J. Rohn.

A Manual of Results on Interval Linear Problems. Technical Report 1164, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, 2012.

http://www.library.sk/arl-cav/en/detail/?&idx=cav_un_epca*0381706

J. Rohn, V. Hooshyarbakhsh and R. Farhadsefat. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. *Optim. Lett.*, 8(1):35–44, 2014.