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Pseudoconvexity

Motivation

Convexity has many nice properties in the context of optimization.
What about its generalizations?

Definition
Let /: R” — R be twice differentiable and S C R"” an open convex set.
Then f(x) is pseudoconvex on S if for every x,y € S we have

Vf(X)T(y —x)>0 = f(y)>f(x).

Key Properties
Minimizing pseudoconvex objective functions on convex feasible sets,
@ each stationary point is a global minimum,

@ each local minimum is a global minimum,

@ the optimal solution set is convex.
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Quasiconvex function
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Problem Formulation

Problem formulation
Given an affine form

x(p) = {25:1 xWpy + xc, px € py = [-1, 1]} :

Geometrically it is a zonotope A

The question

Is a differentiable function f: R” — R pseudoconvex on x(p)?
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Problem Formulation

Theorem (Ahmadi et al., 2013)

Deciding pseudoconvexity is NP-hard on a class of quartic polynomials. J
Aim

Therefore we will be content with cheap sufficient conditions. J




Technical Tools

Interval analysis

Interval arithmetic:
x+y=[x+y,X+7],
x—y=[x-y,X-yl
xy = [min(xy, xy, Xy, Xy), max(xy, xy, Xy, Xy)],
x/y = [min(x/y,x/y,X/y,X[¥), max(x/y, x|y, X[y, X/¥)l, 0&y.
Evaluation of functions and their derivatives,. . .

For interval matrix A: regularity, eigenvalues, det, positive semidef., ...
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Technical Tools

Affine arithmetic (reduced/revised version)
Given two affine forms

x(p) 1= Y4y xkpk + X0 = x" p+ xo,

K
¥(p) ==Y k1 YkPk + Yo =y P+ Yo,
where p € p. For any o, 5 € R we have

x(p) +y(p) = (x +y)"p+ (xo + ¥o),
ax(p) = (ax)"p + (axo).

4

Nonlinear operations have to be approximated. Multiplication usually reads
x(p) - ¥(p) = (M0)ex + (x0)ey) P+ 2,

where z = [z. — zp, zc + za] encloses the accumulative error with

— 1. T
Ze = XcYe T 35X Y,

zp = [xclya + Iyelxa + (IxI7e +xa) (Iy|"e + ya) = 3lx|lyl.




Method Based on Mereau and Paquet

Theorem (Mereau and Paquet, 1974)
The function f(x) is pseudoconvex on set S if there is & > 0 such that
V3f(x) + aVi(x)VF(x)" (%)

is positive semidefinite for all x € S.

Proposition

We have that (x) is positive semidefinite if and only if

(o7 von)

has at most one simple negative eigenvalue.
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Method Based on Mereau and Paquet

Theorem (Mereau and Paquet, 1974)
The function f(x) is pseudoconvex on set S if there is & > 0 such that
V3f(x) + aVi(x)VF(x)" (%)

is positive semidefinite for all x € S.

Method
@ Enclose V£ (x(p)) C g(p), V3f(x(p)) C H(p)

@ Denote
o0~ () o) 2 (b )

@ Check that the second smallest eigenvalue of the matrices D'(p)
stays nonnegative.
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Method Based on Crouzeix

Theorem (Crouzeix, 1998)

Function f(x) is pseudoconvex on S if for each x € S and every y # 0
such that Vf(x)Ty = 0 we have y " V2f(x)y > 0.

Equivalently, by Crouzeix (1998),

. 0 Vf(X)T
D)= (vax) v2f(x>> '

has n positive eigenvalues on S.

Method

o Compute

0 g(p)T> ( 0 Vf(X)T>
D(p) = )
0= (gt w2 (vt vircn
@ Compute an enclosure A, for the second smallest eigenvalue of D(p)
and check that A, > 0.

4
T2 19



Method Based on Crouzeix and Ferland

Theorem (Crouzeix and Ferland, 1982)

Function f(x) is pseudoconvex on S if for each x € S either Vf(x) is

positive semidefinite, or V2f(x) has one simple negative eigenvalue and
there is b € R" such that V2f(x)b = Vf(x) and Vf(x)Tb < 0.

Preliminaries

@ Enclose Vf(x(p)) C g(p), V2f(x(p)) C H(p)
@ Condition

Ib: Hh=g, g"b<0
is equivalent to g" H™1g < 0 for each g € g(p) and H € H(p).

The method checks that

— every matrix in H(p) has at most one simple negative eigenvalue,

— we have g"TH™1g < 0 for every g € g(p), H € H(p) and p € p.
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Method Based on Crouzeix and Ferland

The method checks that

— every matrix in H(p) has at most one simple negative eigenvalue, (1)

— we have g"TH™1g < 0 for every g € g(p), HE H(p) and pc p. (2)

4

Proposition
@ It is NP-hard to check (1).
o It is NP-hard to check (2) even for functions of type f(x) = 3xT Ax.

v

Two tests for (1)

@ Compute an enclosing interval A, for the second smallest eigenvalue
of the matrices in H(p) and then check whether A\, > 0.

@ Check for A2(Hc) > 0 and regularity of H(p).
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Method Based on Crouzeix and Ferland

The method checks that

— every matrix in H(p) has at most one simple negative eigenvalue, (1)

— we have g"TH™1g < 0 for every g € g(p), HE H(p) and pc p. (2)

4

Proposition
@ It is NP-hard to check (1).
o It is NP-hard to check (2) even for functions of type f(x) = 3xT Ax.

v

Two tests for (2)

@ Let y(p) be an affine form enclosure of the solution set of
H(p)y = g(p). Check that g(p) " y(p) < 0.
@ Check that det(D.) < 0 and D(p) is regular.
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Numerical Experiments

Example (Random choices of H(p) and g(p))
n=dimension, d =radius of intervals, K = number of parameters.
Success rate (in %):

standard interval approach parametric approach
n K d|MP1 MP2 F CF C |[MPa MPb CFla CFlb CF2a CF2b C
5 5 01210 35.0 36.0 36.0 36.0|36.0 40.0 0.0 0.0 40.0 18.0 36.0
10 5 01| 7.0 30.0 37.0 37.0 27.0|27.0 58.0 0.0 0.0 530 280 27.0
5 5 03| 00 18.0 30.0 30.0 20.0{20.0 39.0 0.0 0.0 39.0 14.0 20.0
10 5 03| 00 50 9.0 100 30| 3.0 520 00 0.0 39.0 200 3.0

5 10 0.1| 7.0 18.0 18.0 24.0 19.0(19.0 30.0 0.0 0.0 30.0 9.0 19.0
10 10 0.1| 0.0 19.0 24.0 24.0 13.0|13.0 61.0 0.0 00 51.0 29.0 13.0
15 10 0.1 0.0 50 7.0 7.0 20|20 61.0 00 0.0 360 230 20
5 10 0.3| 0.0 40 120 18.0 80 |80 31.0 00 00 31.0 140 8.0
10 10 0.3 00 00 00 00 1.0| 10 20.0 00 00 11.0 4.0 1.0
15 10 0.3 0.0 00 00 00 O0O|O0OO 80 00 00 20 10 0.0
5 10 05 0.0 00 00 40 00|00 13.0 00 00 13.0 4.0 0.0
10 10 05 00 00 00 00 00|00 10 00 00 1.0 1.0 0.0

Parametric methods approx. 7 times slower. wy



Numerical Experiments

Example (Benchmark data (success rate in %))
standard interval approach parametric approach
function n divconv[MP1MP2 F CF C |MPaMPb CFla CFlb CF2a CF2b C
mhwdd 5 5 00| 0 O 0 O 0 0 100 O 0 0 100 O
mhwidd 5 8 00| 0 O O O 0 0 100 O 0 100 100 O
Colville 4 5 00| 0 O O O 0 0 O 0 0 0 0 O
Colville 410 00| 0 0 02 03 0 0 66 O 0 0 6.6 0
Rosenbrock 4 5 00| 0 0 02 03 0 0 O 0 0 0 0 O
Rosenbrock 4 10 0.0| 0 0 02 03 0 0 134 0 0 68 134 0
Rosenbrock 4 15 0.0 0 0 23 18 0 0 355 0O 0 196 355 0
G&P 210 00/ 0 O O O 0 0 O 0 0 0 0 O
G&P 250 04| 0 0O O 0 01|19 28 0 0 28 26 19
G&P 2100140 0O O 0 1.1 (34 7.1 0 0 7.1 47 34
f5_Messine 310 00| 0O 0 0 O 0 0 O 0 0 0 0 O
f5_Messine 330 00| 0 0 0.1 02 1.5 |3.9 157 10.0 13.9 10.5 18.8 4.0
f5_Messine 3 40 0.0| O 0 32 44 4.6 |6.7 179 142 206 143 24.8 7.2
6hum_camel2 10 00| 0O 0 0 O 0 0 O 0 0 0 0 O
6hum_camel 2 50 31.1| 4.1 11.332.136.9 26.6 [35.0 56.2 2.1 2.1 56.2 53.2 35.0
6hum_camel 2 100 43.1|10.9 16.7 45.250.8 40.9 |48.6 62.2 52 5.2 62.2 60.1 48.6
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Conclusion

Summary

@ Compared to direct interval approach, parametric methods are
significantly more efficient, but slightly slower.

Next steps?
@ Pseudoconvex envelopes instead of convex envelopes?

@ Some variation of the aBB method with pseudoconvex functions?
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