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Pseudoconvexity

Motivation

Convexity has many nice properties in the context of optimization.
What about its generalizations?

Definition

Let f : Rn → R be twice differentiable and S ⊂ R
n an open convex set.

Then f (x) is pseudoconvex on S if for every x , y ∈ S we have

∇f (x)T (y − x) ≥ 0 ⇒ f (y) ≥ f (x).

Key Properties

Minimizing pseudoconvex objective functions on convex feasible sets,

each stationary point is a global minimum,

each local minimum is a global minimum,

the optimal solution set is convex.
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Illustration
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Illustration
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Illustration

Quasiconvex function
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Problem Formulation

Problem formulation

Given an affine form

x(p) :=
{

∑

K

k=1 x
(k)pk + xc , pk ∈ pk ≡ [−1, 1]

}

.

Geometrically it is a zonotope

0

The question

Is a differentiable function f : Rn → R pseudoconvex on x(p)?
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Problem Formulation

Theorem (Ahmadi et al., 2013)

Deciding pseudoconvexity is NP-hard on a class of quartic polynomials.

Aim

Therefore we will be content with cheap sufficient conditions.
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Technical Tools

Interval analysis

Interval arithmetic:

x + y = [x + y , x + y ],

x − y = [x − y , x − y ],

xy = [min(xy , xy , xy , xy),max(xy , xy , xy , xy)],

x/y = [min(x/y , x/y , x/y , x/y),max(x/y , x/y , x/y , x/y)], 0 6∈ y .

Evaluation of functions and their derivatives,. . .

For interval matrix A: regularity, eigenvalues, det, positive semidef., . . .
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Technical Tools

Affine arithmetic (reduced/revised version)

Given two affine forms

x(p) :=
∑

K

k=1 xkpk + x0 = xTp + x0,

y(p) :=
∑

K

k=1 ykpk + y0 = yTp + y0,

where p ∈ p. For any α, β ∈ R we have

x(p) + y(p) = (x + y)Tp + (x0 + y0),

αx(p) = (αx)T p + (αx0).

Nonlinear operations have to be approximated. Multiplication usually reads

x(p) · y(p) = ((y0)cx + (x0)cy)
Tp + z ,

where z = [zc − z∆, zc + z∆] encloses the accumulative error with

zc = xcyc +
1
2x

T y ,

z∆ = |xc |y∆ + |yc |x∆ +
(

|x |T e + x∆
)(

|y |T e + y∆
)

− 1
2 |x |

T |y |.
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Method Based on Mereau and Paquet

Theorem (Mereau and Paquet, 1974)

The function f (x) is pseudoconvex on set S if there is α ≥ 0 such that

∇2f (x) + α∇f (x)∇f (x)T (⋆)

is positive semidefinite for all x ∈ S.

Proposition

We have that (⋆) is positive semidefinite if and only if
(

− 1
α

∇f (x)T

∇f (x) ∇2f (x)

)

has at most one simple negative eigenvalue.
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Method Based on Mereau and Paquet

Theorem (Mereau and Paquet, 1974)

The function f (x) is pseudoconvex on set S if there is α ≥ 0 such that

∇2f (x) + α∇f (x)∇f (x)T (⋆)

is positive semidefinite for all x ∈ S.

Method

Enclose ∇f (x(p)) ⊆ g(p), ∇2f (x(p)) ⊆ H(p)

Denote

D ′(p) :=

(

− 1
α

g(p)T

g(p) H(p)

)

⊇

(

− 1
α

∇f (x)T

∇f (x) ∇2f (x)

)

Check that the second smallest eigenvalue of the matrices D ′(p)
stays nonnegative.
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Method Based on Crouzeix

Theorem (Crouzeix, 1998)

Function f (x) is pseudoconvex on S if for each x ∈ S and every y 6= 0
such that ∇f (x)T y = 0 we have yT∇2f (x)y > 0.

Equivalently, by Crouzeix (1998),

D(x) :=

(

0 ∇f (x)T

∇f (x) ∇2f (x)

)

.

has n positive eigenvalues on S.

Method

Compute

D(p) :=

(

0 g (p)T

g (p) H(p)

)

⊇

(

0 ∇f (x)T

∇f (x) ∇2f (x)

)

Compute an enclosure λ2 for the second smallest eigenvalue of D(p)
and check that λ2 > 0.
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Method Based on Crouzeix and Ferland

Theorem (Crouzeix and Ferland, 1982)

Function f (x) is pseudoconvex on S if for each x ∈ S either ∇2f (x) is
positive semidefinite, or ∇2f (x) has one simple negative eigenvalue and

there is b ∈ R
n such that ∇2f (x)b = ∇f (x) and ∇f (x)Tb < 0.

Preliminaries

Enclose ∇f (x(p)) ⊆ g(p), ∇2f (x(p)) ⊆ H(p)

Condition

∃b : Hb = g , gTb < 0

is equivalent to gTH−1g < 0 for each g ∈ g(p) and H ∈ H(p).

The method checks that

− every matrix in H(p) has at most one simple negative eigenvalue,

− we have gTH−1g < 0 for every g ∈ g(p), H ∈ H(p) and p ∈ p.
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Method Based on Crouzeix and Ferland

The method checks that

− every matrix in H(p) has at most one simple negative eigenvalue, (1)

− we have gTH−1g < 0 for every g ∈ g(p), H ∈ H(p) and p ∈ p. (2)

Proposition

It is NP-hard to check (1).

It is NP-hard to check (2) even for functions of type f (x) = 1
2x

TAx.

Two tests for (1)

Compute an enclosing interval λ2 for the second smallest eigenvalue
of the matrices in H(p) and then check whether λ2 ≥ 0.

Check for λ2(Hc ) > 0 and regularity of H(p).
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Method Based on Crouzeix and Ferland

The method checks that

− every matrix in H(p) has at most one simple negative eigenvalue, (1)

− we have gTH−1g < 0 for every g ∈ g(p), H ∈ H(p) and p ∈ p. (2)

Proposition

It is NP-hard to check (1).

It is NP-hard to check (2) even for functions of type f (x) = 1
2x

TAx.

Two tests for (2)

Let y(p) be an affine form enclosure of the solution set of
H(p)y = g (p). Check that g(p)T y(p) < 0.

Check that det(Dc) < 0 and D(p) is regular.
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Numerical Experiments

Example (Random choices of H(p) and g(p))

n=dimension, d = radius of intervals, K =number of parameters.

Success rate (in %):

standard interval approach parametric approach

n K d MP1 MP2 F CF C MPa MPb CF1a CF1b CF2a CF2b C

5 5 0.1 21.0 35.0 36.0 36.0 36.0 36.0 40.0 0.0 0.0 40.0 18.0 36.0

10 5 0.1 7.0 30.0 37.0 37.0 27.0 27.0 58.0 0.0 0.0 53.0 28.0 27.0

5 5 0.3 0.0 18.0 30.0 30.0 20.0 20.0 39.0 0.0 0.0 39.0 14.0 20.0

10 5 0.3 0.0 5.0 9.0 10.0 3.0 3.0 52.0 0.0 0.0 39.0 20.0 3.0

5 10 0.1 7.0 18.0 18.0 24.0 19.0 19.0 30.0 0.0 0.0 30.0 9.0 19.0

10 10 0.1 0.0 19.0 24.0 24.0 13.0 13.0 61.0 0.0 0.0 51.0 29.0 13.0

15 10 0.1 0.0 5.0 7.0 7.0 2.0 2.0 61.0 0.0 0.0 36.0 23.0 2.0

5 10 0.3 0.0 4.0 12.0 18.0 8.0 8.0 31.0 0.0 0.0 31.0 14.0 8.0

10 10 0.3 0.0 0.0 0.0 0.0 1.0 1.0 20.0 0.0 0.0 11.0 4.0 1.0

15 10 0.3 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 2.0 1.0 0.0

5 10 0.5 0.0 0.0 0.0 4.0 0.0 0.0 13.0 0.0 0.0 13.0 4.0 0.0

10 10 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

Parametric methods approx. 7 times slower.
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Numerical Experiments

Example (Benchmark data (success rate in %))

standard interval approach parametric approach

function n div conv MP1MP2 F CF C MPaMPb CF1a CF1b CF2a CF2b C

mhw4d 5 5 0.0 0 0 0 0 0 0 100 0 0 0 100 0

mhw4d 5 8 0.0 0 0 0 0 0 0 100 0 0 100 100 0

Colville 4 5 0.0 0 0 0 0 0 0 0 0 0 0 0 0

Colville 4 10 0.0 0 0 0.2 0.3 0 0 6.6 0 0 0 6.6 0

Rosenbrock 4 5 0.0 0 0 0.2 0.3 0 0 0 0 0 0 0 0

Rosenbrock 4 10 0.0 0 0 0.2 0.3 0 0 13.4 0 0 6.8 13.4 0

Rosenbrock 4 15 0.0 0 0 2.3 1.8 0 0 35.5 0 0 19.6 35.5 0

G&P 2 10 0.0 0 0 0 0 0 0 0 0 0 0 0 0

G&P 2 50 0.4 0 0 0 0 0.1 1.9 2.8 0 0 2.8 2.6 1.9

G&P 2 100 1.4 0 0 0 0 1.1 3.4 7.1 0 0 7.1 4.7 3.4

f5 Messine 3 10 0.0 0 0 0 0 0 0 0 0 0 0 0 0

f5 Messine 3 30 0.0 0 0 0.1 0.2 1.5 3.9 15.7 10.0 13.9 10.5 18.8 4.0

f5 Messine 3 40 0.0 0 0 3.2 4.4 4.6 6.7 17.9 14.2 20.6 14.3 24.8 7.2

6hum camel 2 10 0.0 0 0 0 0 0 0 0 0 0 0 0 0

6hum camel 2 50 31.1 4.1 11.3 32.1 36.9 26.6 35.0 56.2 2.1 2.1 56.2 53.2 35.0

6hum camel 2 100 43.1 10.9 16.7 45.2 50.8 40.9 48.6 62.2 5.2 5.2 62.2 60.1 48.6
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Conclusion

Summary

Compared to direct interval approach, parametric methods are
significantly more efficient, but slightly slower.

Next steps?

Pseudoconvex envelopes instead of convex envelopes?

Some variation of the αBB method with pseudoconvex functions?
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