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Global Optimization Questions

Questions
@ Can we find global minimum?
@ Can we prove that the found solution is optimal?
@ Can we prove uniqueness?

@ Can we handle roundoff errors?

Bad news

@ No, there is no algorithm solving global optimization problems using
operations -+, X, sin. [Zhu, 2005]

(From Matiyasevich's theorem solving the 10th Hilbert problem.)

Good news

@ Yes (under certain assumption) by using Interval Computations.




Interval Computations

Notation
An interval matrix
A = [A,Z]:{AeR”’“\AgAgZ}.

The center and radius matrices

A = %(Z+A), AL = %(Z —A).
The set of all m x n interval matrices: TR™*".

Main Problem
Let f : R" — R™ and x € TR". Determine the image

f(x)={f(x): x € x},

or at least its tight interval enclosure.




Interval Arithmetic

Interval Arithmetic (proper rounding used when implemented)

For arithmetical operations (+, —, -, /), their images are readily computed
a+tb=I[a+b3+h]
a—b= [a —b,a— b]

a/b [mln(a/b a/b a/b a/b) max( a/b,a/b,a/b,a/b)], 0¢b.

Some basic functions x2, exp(x), sin(x), ..., too.

Can we evaluate every arithmetical expression on intervals?
Yes, but with overestimation in general due to dependencies.

Example (Evaluate f(x) = x> — x on x = [-1,2])
X2 —X= [_172]2 - [_172] = [_275]7
x(x—1)=[-1,2]([-1,2] - 1) = [-4, 2],
(=3 -i=(12-3-3=[32




Global Optimization by Interval Techniques

Global optimization problem

Compute global (not just local!) optima to
min f(x) subject to g(x) <0, h(x) =0, x € x°,

where x% € TR” is an initial box. )

Basic idea
@ Split the initial box x° into sub-boxes.

@ If a sub-box does not contain an optimal solution, remove it.

Otherwise split it into sub-boxes and repeat.




Interval Approach to Global Optimization

Branch & prune scheme

1 L= {x%, [set of boxes]
2: ¢* =00, [upper bound on the minimal value]
3: while L # ) do
choose x € £ and remove x from L,
contract x,
find a feasible point x € x and update c*,
if max; x® > ¢ then
split x into sub-boxes and put them into L,
else
10: give x to the output boxes,
11:  end if
12: end while
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It is a rigorous method to enclose all global minima in a set of boxes. J




Implementation Details

Which box to choose?

@ the oldest one

@ the one with the largest edge, i.e., for which max; x,-A is maximal

@ the one with minimal £(x).

How to divide the box?
@ the widest edge
@ the coordinate in which f varies possibly mostly (Walster, 1992; Ratz,
1992)

By Ratschek & Rokne (2009) there is no best strategy for splitting.




Contracting and Pruning (min f(x) st. g(x) <0, h(x) =0)
Aim

Shrink x to a smaller box (or completely remove) such that no global
minimum is removed.

Simple techniques
@ if 0 & hj(x) for some i, then remove x
e if 0 < gj(x) for some j, then remove x
e if 0 < f;(x) for some /, then fix x; := x;

o if 0 > f;(x) for some /, then fix x; :=X;

Optimality conditions
@ employ the Fritz—John (or the Karush—-Kuhn—Tucker) conditions
upVF(x) +u"Vh(x) + v Vg(x) =0,
h(x) =0, vege(x) =0V, |(uo,u,v)||=1.

@ solve by the Interval Newton method
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Contracting and Pruning (min f(x) st. g(x) <0, h(x) =0)

Inside the feasible region
Suppose there are no equality constraints and gj(x) < 0 Vj.
@ (monotonicity test) if 0 ¢ £ (x) for some 7, then remove x
@ apply the Interval Newton method to the additional constraint
Vi(x)=0
@ (nonconvexity test) if the interval Hessian V2f(x) contains no
positive semidefinite matrix, then remove x
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Contracting and Pruning

Constraint propagation

Iteratively reduce domains for variables such that no feasible solution is
removed by handling the relations and the domains.

Example

Consider the constraint

x+yz=17, x€l0,3], y€[3,5], z€[2,4]

@ express x
x=T—yze7—[35][24 =[-13,1]
thus, the domain for x is [0,3] N [—13,1] = [0, 1]
® express y
y=(7—-x)/ze (7-10,1])/[2,4] = [1.5, 3.5]
thus, the domain for y is [3,5] N [1.5, 3.5] = [3, 3.5]




Lower and Upper Bounds

For each Branch & Bound algorithm are essential:
@ tight upper bounds
o tight lower bounds
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Upper Bounds — Feasibility Test

Aim

Find a feasible point x*, and update ¢* := min(c*, f(x*)).

@ if no equality constraints, take e.g. x* := x¢

o if k equality constraints, fix n — k variables x; := x and solve system
of equations by the interval Newton method

o if k =1, fix the variables corresponding to the smallest absolute

values in Vh(x€)
\_’:/ h(x) =0
|




Upper Bounds — Feasibility Test

Aim

Find a feasible point x*, and update ¢* := min(c*, f(x*)).

@ if no equality constraints, take e.g. x* := x¢

o if k equality constraints, fix n — k variables x; := x and solve system
of equations by the interval Newton method

o if k =1, fix the variables corresponding to the smallest absolute
values in Vh(x€)

@ in general, if k > 1, transform the matrix Vh(x¢) to a row echelon
form by using a complete pivoting, and fix components corresponding
to the right most columns

@ we can include f(x) < c¢* to the constraints




Aim

Given a box x € IR", determine a lower bound to f(x).

Why?
o if f(x) > c*, we can remove x

@ minimum over all boxes gives a lower bound on the optimal value

Methods
@ interval arithmetic
@ mean value form
@ Lipschitz constant approach
@ aBB algorithm
o ...
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Intermezzo — Eigenvalues of Symmetric Interval Matrices

A symmetric interval matrix
A ={AcA:A=AT}
Without loss of generality assume that A= AT, A=A", and AS # 0,

Eigenvalues of a symmetric interval matrix
Eigenvalues of a symmetric A € R™": A\;(A) > --- > \y(A).

Eigenvalue sets of A> are compact intervals

Ai(AS) = {)\,-(A): AeAS}, i=1,...,n.

Theorem

Checking whether 0 € X;(A®) for some i = 1,...,n is NP-hard.
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Eigenvalues — An Example

Example
Let
[1,2] O 0
AcA=|( 0 [7,8] 0
0 0 [410]

What are the eigenvalue sets?
We have A1(A°) = [7,10], A2(A>) = [4,8] and A3(A°) = [1,2].

0 1 2 3 4 5 6 7 8 9 10 R
A3(A) A2(A) A1(A)

Eigenvalue sets are compact intervals. They may intersect or equal.
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Eigenvalues — Some Exact Bounds

Theorem (Hertz, 1992)

We have
A (A%) = max A (AC + diag(z) A2 diag(z)),
ze{£1}"n
A (A%) = min A, (A€ — diag(z)A® diag(z)).
ze{x1}n
Theorem

A1 (A%) and X,(A®%) are polynomially computable by semidefinite
programming with arbitrary precision.

Proof.
We have

An(A®) = max a subject to A — al, is positive semidefinite, A € A°.




Eigenvalues — Easy Cases and Enclosures

Theorem
© If A€ is essentially non-negative, i.e., A; =2 0Vi = j, then
A1 (A%) = M (A).
Q IFAL s diagonal, then
M(A%) = Mi(A),  A,(A%) = M(A).

Theorem
We have

Ai(A%) C [Ni(AS) — p(AR), Xi(AS) + p(AR)], i=1,...,n.
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Lower Bounds: aBB algorithm

Special cases: bilinear terms

For every y € y € IR and z € z € IR we have

yz > max{yz+zy — yz, yz+zZy — yz}.

aBB algorithm (Androulakis, Maranas & Floudas, 1995)

o Consider an underestimator g(x) < f(x) in the form
g(x) = f(x) +a(x —x)T(x = X), where a > 0.
@ We want g(x) to be convex to easily determine g(x) < f(x).
@ In order that g(x) is convex, its Hessian
V2g(x) = V3f(x) + 2al,

must be positive semidefinite on x € x. Thus we put

o= _% ’ _min(v2f(x))'
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Function f(x) and its convex underestimator g(x).



Example (The COPRIN examples, 2007, precision ~ 107°)
o tf12 (origin: COCONUT, solutions: 1, computation time: 60s)
min x; + %xz + %X::,
st. —x—1x —(L)2g +tan(£) <0, i=1,...,m(m=101).
@ 032 (origin: COCONUT, solutions: 1, computation time: 2.04s)

min 37.293239x; + 0.8356891xsx; + 5.3578547x2 — 40792.141

S.t. —0.0022053x3x5 + 0.0056858x2 x5 4 0.0006262x1 x4 — 6.665593 < 0,
—0.0022053x3 x5 — 0.0056858x2 x5 — 0.0006262x1 x4 — 85.334407 < 0,
0.0071317x2x5 + 0.0021813x3 + 0.0029955x; x, — 29.48751 < 0,
—0.0071317x,x5 — 0.0021813x3 — 0.0029955x1 x> + 9.48751 < 0,
0.0047026x3x5 + 0.0019085x3 x4 4+ 0.0012547x1 x3 — 15.699039 < 0,
—0.0047026x3 x5 — 0.0019085x3 x4 — 0.0012547x1 x3 + 10.699039 < 0.

@ Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07s)
min 100 + 377, (% — 1)> — 10 cos(2m(x; — 1))
where n =10, x; € [-5.12,5.12].

22 /24




References

[@ C. A. Floudas and P. M. Pardalos, editors.
Encyclopedia of Optimization. 2nd ed.
Springer, New York, 2009.

[ E.R. Hansen and G. W. Walster.
Global Optimization Using Interval Analysis.
Marcel Dekker, New York, second edition, 2004.

[@ R. B. Kearfott.
Rigorous Global Search: Continuous Problems.
Kluwer, Dordrecht, 1996.

@ A. Neumaier.
Complete search in continuous global optimization and constraint
satisfaction.
Acta Numer., 13:271-369, 2004.

[ H. Ratschek and J. Rokne.
New Computer Methods for Global Optimization.
Wiley, Chichester, 2007.

23 /24



Rigorous Global Optimization Software

@ GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source
http://interval.louisiana.edu/

o Alias (by COPRIN team), A C++ library with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/

o IBEX (by G. Chabert, B. Neveu, J. Ninin and others),
an open-source interval C++ library, http://www.ibex-1ib.org/

® COCONUT Environment, open-source C++ classes

http://www.mat.univie.ac.at/~coconut/coconut-environment/

@ GLOBAL (by Tibor Csendes), for Matlab / Intlab, free for academic
http://www.inf.u-szeged.hu/~csendes/linkek_en.html

@ PROFIL /BIAS (by O. Kniippel et al.), free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

See also
@ C.A. Floudas (http://titan.princeton.edu/tools/)

o A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)
24
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