
The Role of Interval Linear Algebra
in Global Optimization

Milan Hlad́ık

Department of Applied Mathematics,

Faculty of Mathematics and Physics,

Charles University,

Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

Minisymposium on Trusted Numerical Computations
ETAMM2018

Kraków, June 19–20, 2018

1 / 24

http://kam.mff.cuni.cz/~hladik/

Example

One of the Rastrigin functions.

2 / 24

Global Optimization Questions

Questions

Can we find global minimum?

Can we prove that the found solution is optimal?

Can we prove uniqueness?

Can we handle roundoff errors?

Bad news

No, there is no algorithm solving global optimization problems using
operations +,×, sin. [Zhu, 2005]

(From Matiyasevich’s theorem solving the 10th Hilbert problem.)

Good news

Yes (under certain assumption) by using Interval Computations.

3 / 24

Interval Computations

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

Main Problem

Let f : Rn 7→ R
m and x ∈ IR

n. Determine the image

f (x) = {f (x) : x ∈ x},

or at least its tight interval enclosure.

4 / 24

Interval Arithmetic

Interval Arithmetic (proper rounding used when implemented)

For arithmetical operations (+,−, ·, /), their images are readily computed

a + b = [a+ b, a+ b],

a − b = [a− b, a− b],

a · b = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b), max(a/b, a/b, a/b, a/b)], 0 6∈ b.

Some basic functions x2, exp(x), sin(x), . . . , too.

Can we evaluate every arithmetical expression on intervals?
Yes, but with overestimation in general due to dependencies.

Example (Evaluate f (x) = x
2 − x on x = [−1, 2])

x2 − x = [−1, 2]2 − [−1, 2] = [−2, 5],

x(x − 1) = [−1, 2]([−1, 2]− 1) = [−4, 2],

(x − 1
2)

2 − 1
4 = ([−1, 2]− 1

2)
2 − 1

4 = [− 1
4 , 2].

5 / 24

Global Optimization by Interval Techniques

Global optimization problem

Compute global (not just local!) optima to

min f (x) subject to g(x) ≤ 0, h(x) = 0, x ∈ x0,

where x0 ∈ IR
n is an initial box.

Basic idea

Split the initial box x0 into sub-boxes.

If a sub-box does not contain an optimal solution, remove it.

Otherwise split it into sub-boxes and repeat.

6 / 24

Interval Approach to Global Optimization

Branch & prune scheme

1: L := {x0}, [set of boxes]
2: c∗ := ∞, [upper bound on the minimal value]
3: while L 6= ∅ do

4: choose x ∈ L and remove x from L,
5: contract x ,
6: find a feasible point x ∈ x and update c∗,
7: if maxi x

∆
i > ε then

8: split x into sub-boxes and put them into L,
9: else

10: give x to the output boxes,
11: end if

12: end while

It is a rigorous method to enclose all global minima in a set of boxes.

7 / 24

Implementation Details

Which box to choose?

the oldest one

the one with the largest edge, i.e., for which maxi x
∆
i is maximal

the one with minimal f (x).

How to divide the box?

the widest edge

the coordinate in which f varies possibly mostly (Walster, 1992; Ratz,
1992)

By Ratschek & Rokne (2009) there is no best strategy for splitting.

8 / 24

Contracting and Pruning (min f (x) s.t. g(x) ≤ 0, h(x) = 0)

Aim

Shrink x to a smaller box (or completely remove) such that no global
minimum is removed.

Simple techniques

if 0 6∈ hi (x) for some i , then remove x

if 0 < gj (x) for some j , then remove x

if 0 < f ′xi (x) for some i , then fix x i := x i

if 0 > f ′xi (x) for some i , then fix x i := x i

Optimality conditions

employ the Fritz–John (or the Karush–Kuhn–Tucker) conditions

u0∇f (x) + uT∇h(x) + vT∇g(x) = 0,

h(x) = 0, vℓgℓ(x) = 0 ∀ℓ, ‖(u0, u, v)‖ = 1.

solve by the Interval Newton method
9 / 24

Contracting and Pruning (min f (x) s.t. g(x) ≤ 0, h(x) = 0)

Inside the feasible region

Suppose there are no equality constraints and gj (x) < 0 ∀j .

(monotonicity test) if 0 6∈ f ′xi (x) for some i , then remove x

apply the Interval Newton method to the additional constraint
∇f (x) = 0

(nonconvexity test) if the interval Hessian ∇2f (x) contains no
positive semidefinite matrix, then remove x

10 / 24

Contracting and Pruning

Constraint propagation

Iteratively reduce domains for variables such that no feasible solution is
removed by handling the relations and the domains.

Example

Consider the constraint

x + yz = 7, x ∈ [0, 3], y ∈ [3, 5], z ∈ [2, 4]

express x

x = 7− yz ∈ 7− [3, 5][2, 4] = [−13, 1]

thus, the domain for x is [0, 3] ∩ [−13, 1] = [0, 1]

express y

y = (7− x)/z ∈ (7− [0, 1])/[2, 4] = [1.5, 3.5]

thus, the domain for y is [3, 5] ∩ [1.5, 3.5] = [3, 3.5]

11 / 24

Lower and Upper Bounds

For each Branch & Bound algorithm are essential:

tight upper bounds

tight lower bounds

12 / 24

Upper Bounds – Feasibility Test

Aim

Find a feasible point x∗, and update c∗ := min(c∗, f (x∗)).

if no equality constraints, take e.g. x∗ := xc

if k equality constraints, fix n − k variables xi := xci and solve system
of equations by the interval Newton method

if k = 1, fix the variables corresponding to the smallest absolute
values in ∇h(xc)

x xc

h(x) = 0

∇h(xc)

13 / 24

Upper Bounds – Feasibility Test

Aim

Find a feasible point x∗, and update c∗ := min(c∗, f (x∗)).

if no equality constraints, take e.g. x∗ := xc

if k equality constraints, fix n − k variables xi := xci and solve system
of equations by the interval Newton method

if k = 1, fix the variables corresponding to the smallest absolute
values in ∇h(xc)

in general, if k > 1, transform the matrix ∇h(xc) to a row echelon
form by using a complete pivoting, and fix components corresponding
to the right most columns

we can include f (x) ≤ c∗ to the constraints

14 / 24

Lower Bounds

Aim

Given a box x ∈ IR
n, determine a lower bound to f (x).

Why?

if f (x) > c∗, we can remove x

minimum over all boxes gives a lower bound on the optimal value

Methods

interval arithmetic

mean value form

Lipschitz constant approach

αBB algorithm

. . .

15 / 24

Intermezzo – Eigenvalues of Symmetric Interval Matrices

A symmetric interval matrix

AS := {A ∈ A : A = AT}.

Without loss of generality assume that A = AT , A = A
T
, and AS 6= ∅.

Eigenvalues of a symmetric interval matrix

Eigenvalues of a symmetric A ∈ R
n×n: λ1(A) ≥ · · · ≥ λn(A).

Eigenvalue sets of AS are compact intervals

λi (A
S) :=

{

λi (A) : A ∈ AS
}

, i = 1, . . . , n.

Theorem

Checking whether 0 ∈ λi (A
S) for some i = 1, . . . , n is NP-hard.

16 / 24

Eigenvalues – An Example

Example

Let

A ∈ A =





[1, 2] 0 0
0 [7, 8] 0
0 0 [4, 10]





What are the eigenvalue sets?
We have λ1(A

S) = [7, 10], λ2(A
S) = [4, 8] and λ3(A

S) = [1, 2].

0 1 2 3 4 5 6 7 8 9 10 ℜ

λ3(A) λ2(A) λ1(A)

Eigenvalue sets are compact intervals. They may intersect or equal.

17 / 24

Eigenvalues – Some Exact Bounds

Theorem (Hertz, 1992)

We have

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

λn(A
S) = min

z∈{±1}n
λn(A

c − diag(z)A∆ diag(z)).

Theorem

λ1(A
S) and λn(A

S) are polynomially computable by semidefinite
programming with arbitrary precision.

Proof.

We have

λn(A
S) = max α subject to A− αIn is positive semidefinite, A ∈ AS .

18 / 24

Eigenvalues – Easy Cases and Enclosures

Theorem
1 If Ac is essentially non-negative, i.e., Ac

ij ≥ 0 ∀i 6= j , then

λ1(A
S) = λ1(A).

2 If A∆ is diagonal, then

λ1(A
S) = λ1(A), λn(A

S) = λn(A).

Theorem

We have

λi(A
S) ⊆ [λi (A

c)− ρ(A∆), λi (A
c) + ρ(A∆)], i = 1, . . . , n.

19 / 24

Lower Bounds: αBB algorithm

Special cases: bilinear terms

For every y ∈ y ∈ IR and z ∈ z ∈ IR we have

yz ≥ max{yz + zy − yz, yz + zy − yz}.

αBB algorithm (Androulakis, Maranas & Floudas, 1995)

Consider an underestimator g(x) ≤ f (x) in the form

g(x) := f (x) + α(x − x)T (x − x), where α ≥ 0.

We want g(x) to be convex to easily determine g(x) ≤ f (x).

In order that g(x) is convex, its Hessian

∇2g(x) = ∇2f (x) + 2αIn

must be positive semidefinite on x ∈ x . Thus we put

α := −1
2 · λmin(∇

2f (x)).

20 / 24

Illustration of a Convex Underestimator

0
1

2
3

4

0
1

2
3

4

−200

−150

−100

−50

0

50

100

150

200

250

300

Function f (x) and its convex underestimator g(x).

21 / 24

Examples

Example (The COPRIN examples, 2007, precision ∼ 10−6)

tf12 (origin: COCONUT, solutions: 1, computation time: 60 s)

min x1 +
1
2x2 +

1
3x3

s.t. − x1 −
i
m
x2 − (i

m
)2x3 + tan(i

m
) ≤ 0, i = 1, . . . ,m (m = 101).

o32 (origin: COCONUT, solutions: 1, computation time: 2.04 s)

min 37.293239x1 + 0.8356891x5x1 + 5.3578547x23 − 40792.141

s.t. −0.0022053x3x5 + 0.0056858x2x5 + 0.0006262x1x4 − 6.665593 ≤ 0,

−0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 − 85.334407 ≤ 0,

0.0071317x2x5 + 0.0021813x
2
3 + 0.0029955x1x2 − 29.48751 ≤ 0,

−0.0071317x2x5 − 0.0021813x
2
3 − 0.0029955x1x2 + 9.48751 ≤ 0,

0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 − 15.699039 ≤ 0,

−0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 + 10.699039 ≤ 0.

Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07 s)

min 10n+
∑n

j=1(xj − 1)2 − 10 cos(2π(xj − 1))

where n = 10, xj ∈ [−5.12, 5.12].
22 / 24

References

C. A. Floudas and P. M. Pardalos, editors.
Encyclopedia of Optimization. 2nd ed.
Springer, New York, 2009.

E. R. Hansen and G. W. Walster.
Global Optimization Using Interval Analysis.
Marcel Dekker, New York, second edition, 2004.

R. B. Kearfott.
Rigorous Global Search: Continuous Problems.
Kluwer, Dordrecht, 1996.

A. Neumaier.
Complete search in continuous global optimization and constraint
satisfaction.
Acta Numer., 13:271–369, 2004.

H. Ratschek and J. Rokne.
New Computer Methods for Global Optimization.
Wiley, Chichester, 2007.

23 / 24

Rigorous Global Optimization Software

GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source
http://interval.louisiana.edu/

Alias (by COPRIN team), A C++ library with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/

IBEX (by G. Chabert, B. Neveu, J. Ninin and others),
an open-source interval C++ library, http://www.ibex-lib.org/

COCONUT Environment, open-source C++ classes
http://www.mat.univie.ac.at/~coconut/coconut-environment/

GLOBAL (by Tibor Csendes), for Matlab / Intlab, free for academic
http://www.inf.u-szeged.hu/~csendes/linkek_en.html

PROFIL /BIAS (by O. Knüppel et al.), free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

See also

C.A. Floudas (http://titan.princeton.edu/tools/)

A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)
24 / 24

http://interval.louisiana.edu/
http://www-sop.inria.fr/coprin/logiciels/ALIAS/
http://www.ibex-lib.org/
http://www.mat.univie.ac.at/~coconut/coconut-environment/
http://www.inf.u-szeged.hu/~csendes/linkek_en.html
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
http://titan.princeton.edu/tools/
http://www.mat.univie.ac.at/~neum/glopt.html

